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Universality for transversal Hamilton cycles in random graphs

Micha Christoph∗ Anders Martinsson† Aleksa Milojević‡

Abstract

A tuple (G1, . . . , Gn) of graphs on the same vertex set of size n is said to be Hamilton-universal
if for every map χ : [n] → [n] there exists a Hamilton cycle whose i-th edge comes from Gχ(i).
Bowtell, Morris, Pehova and Staden proved an analog of Dirac’s theorem in this setting, namely
that if δ(Gi) ≥ (1/2 + o(1))n then (G1, . . . , Gn) is Hamilton-universal. Combining McDiarmid’s
coupling and a colorful version of the Friedman-Pippenger tree embedding technique, we establish
a similar result in the setting of sparse random graphs, showing that there exists C such that if the
Gi are independent random graphs sampled from G(n, p), where p ≥ C log n/n, then (G1, . . . , Gn)
is Hamilton-universal with high probability.

1 Introduction

One of the most fundamental questions in graph theory is that of determining whether a given graph
contains a Hamilton cycle, i.e. a cycle which contains all vertices of the graph. There is no simple
algorithm to check whether a graph contains such a cycle – the problem of finding a Hamilton cycle
in a given graph is famously NP-complete. Therefore, researchers focused on finding easy-to-check
conditions which ensure that a graph contains such a cycle, and perhaps even allow for finding the
cycle in polynomial time. The most famous condition of the kind is Dirac’s condition [6], dating
back to 1952, which states that every n-vertex graph of minimum degree at least n/2 must contain
a Hamilton cycle.

Although Dirac’s condition is undoubtedly elegant, and tight in the sense that the degree require-
ment n/2 cannot be lowered, it is quite restrictive – for example, it can only be satisfied by dense
graphs which have quadratically many edges. It is, therefore, natural to ask what kind of conditions
guarantee the existence of Hamilton cycles in sparser graphs. A common family of sparse graphs to
study are the random graphs.

The study of Hamilton cycles in random graphs is almost as old as the study of random graphs
– in their original paper from 1960 [8], Erdős and Rényi asked for the number of edges at which one
expects to start seeing a Hamilton path in a random graph G(n,m). This question was answered
by Pósa [17], who showed that one can expect Hamilton cycles in random graphs with Ω(n log n)
edges, by introducing a very useful and elegant technique now known as the Pósa rotation. His
argument was later tightened by Komlós and Szemerédi [13], and Bollobás [4] and Ajtai, Komlós and
Szemerédi [2], to ultimately attain very good understanding of Hamilton cycles in random graphs.
Namely, Bollobás, as well as Ajtai, Komlós and Szemerédi, showed that if we order the edges of Kn

randomly and add them one by one to our graph, the time at which the graph becomes Hamiltonian
with high probability coincides with the first time at which no vertex has degree less than 2, which
is clearly a necessary condition for the graph to be Hamiltonian.

In recent years, the study of Hamilton cycles and other spanning structures in graphs has taken an
interesting turn, by considering the colorful variants of classical questions from extremal graph theory.
In particular, the setup we will be studying was introduced by Joos and Kim in [12] while answering
a question of Aharoni [1], and it goes as follows. Given a collection of m graphs (G1, . . . , Gm) on the
same vertex set V , which we think of as colors of the edges (where an edge may receive an arbitrary
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number of colors), and a graph H with vertices in V , we say that (G1, . . . , Gm) contains a rainbow
(or transversal) copy of H if there exists an injective function ψ : E(H) → [m] such that the edge e
is contained in the graph Gψ(e) for all e ∈ E(H). In other words, the graph H can be constructed by
picking at most one edge from each of the graphs Gi. Joos and Kim showed that if each of the graphs
Gi is an n-vertex graph with minimum degree n/2 and if m ≥ n, then there exists a transversal
Hamilton cycle in the collection (G1, . . . , Gm).

This result inspired a large body of work on the subject, for example studying the existence of
transversal cliques [1], transversal F -factors [16] and transversal Hamilton cycles in random graphs
[3]. We recommend the survey of Sun, Wang and Wei [18] to the interested reader who would like
to learn more about the transversal subgraphs of graph collections. In this paper, we will consider
the question of universality for Hamilton cycles in collections of random graphs.

The notion of universality was introduced by Bowtell, Morris, Pehova and Staden in [5]. We
say that a collection of graphs (G1, . . . , Gn) on the same vertex set of size n is Hamilton-universal
if for each map χ : [n] → [n], which we call the color-pattern, there exists a Hamilton cycle whose
i-th edge lies in Gχ(i). The authors of [5] showed that every collection (G1, . . . , Gn) of n graphs on
the same vertex set of size n satisfying δ(Gi) ≥ (1/2 + o(1))n is Hamilton-universal. Note that the
difference from the result of Joos and Kim is that the edges of the Hamilton cycle must now come
from a prescribed member of the collection (G1, . . . , Gn), rather than an arbitrary one.

The aim of this paper is to extend the result of Bowtell, Morris, Pehova and Staden to the setting
of random graphs, answering a question of Pehova from the 30th British Combinatorial Conference.

Theorem 1.1. There exists C such that for p ≥ C log n/n the following holds with high probability.
Let (G1, . . . , Gn) be a tuple of independent random graphs on the same vertex set sampled from
G(n, p). Then, (G1, . . . , Gn) is Hamilton-universal.

Note that the above result is tight up to the constant C, since by considering the color-pattern
χ(i) = 1 for all i, the graph G1 is required to contain a Hamilton cycle for (G1, . . . , Gn) to be
Hamilton-universal. While showing the existence of a Hamilton cycle with any specific color-pattern
is sufficient for Hamilton-universality in the deterministic setting, dealing with the looming union
bound over all color-patterns is the key obstacle to overcome towards Theorem 1.1.

1.1 Proof sketch

We will now go through a short outline of the proof of our result. The tool underlying our proof, called
McDiarmid’s coupling, is a method which allows us to go from Hamilton cycles in a single random
graph to rainbow Hamilton cycles in a collection of n independent random graphs. Introduced by
McDiarmid [14] in 1980, the coupling was mostly overlooked in the random graph community until
its recent revival by Ferber [9], Ferber and Long [10] and Montgomery [15].

The gist of the method is encapsulated in the following statement, which is essentially due to
McDiarmid [14], albeit in a slightly different language. If F is a family of ordered n-tuples with
distinct elements from a ground set E and S0, . . . , Sn are random subsets of E including each element
independently with probability p, then S1 × · · · × Sn is at least as likely to contain an n-tuple of F
as S0 × · · · × S0 is. In our setting, one should think of the ground set E as the collection of all edges
of the complete graph on n vertices, thus making the random sets S0, . . . , Sn Erdős-Rényi random
graphs, while F will be a collection of tuples of edges, roughly speaking, representing the Hamilton
cycles of the complete graph. However, the actual statement we use is slightly more general, since
we need a bit more flexibility.

Lemma 1.2. Let n ≥ 1 be a positive integer and E a set. Let F be a family of ordered n-tuples from
E ∪ {⋆} containing each element of E at most once. Let S′

0, . . . , S
′
n be i.i.d. random subsets of E,

where the element e ∈ E is included in S′
i with probability pe ∈ [0, 1] and let Si = S′

i ∪{⋆}. Then, for
any map χ : [n] → [n], the probability that S0 × · · · × S0 contains an n-tuple of F is smaller or equal
to the probability that Sχ(1) × · · · × Sχ(n) contains an n-tuple of F .
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Here is a simple application of Lemma 1.2. Let C denote the set of edge-ordered Hamilton cycles
of the complete graph on n vertices. That is C is the set of n-tuples of edges (e1, . . . , en) forming a
Hamilton cycle in this order. If we apply Lemma 1.2 with F = C and any fixed map χ : [n] → [n], it
follows that a collection of n independent random graphs is at least as likely to contain a χ-colored
Hamilton cycle as a single random graph is to contain a Hamilton cycle. Therefore, a collection of
n independent random graphs G(n, p) with high probability contains a Hamilton cycle in a given
color-pattern already at probability p≫ log n/n.

Note that in order to prove Theorem 1.1, we need to find a Hamilton cycle for every color-pattern.
Therefore, we would like to apply a union bound over the set of all color-patterns. However, the
random graph G(n,C log n/n) fails to have a Hamilton cycle with probability at least n−C , since
it has isolated vertices with at least this probability. Therefore, applying McDiarmid’s coupling
together with a simple union bound is not enough to complete the proof.

The way to circumvent this issue and boost the probability of success is to show that with very
high probability, one can remove up to εn vertices from G(n,C log n/n) so that the rest is Hamilton-
connected, for some small constant ε > 0. Here, we say that a graph G is Hamilton-connected if G
contains a Hamilton path with endpoints u, v for any distinct vertices u, v ∈ V (G). Before we state
things more precisely, it will be very convenient for us to partition the set of vertices into L and R
with |L| = ⌊n/2⌋ and |R| = ⌈n/2⌉. From now on, this partition will be fixed throughout the proof.

Lemma 1.3. For every ε > 0 there exists a constant C > 0 such that the following holds. If
G ∼ G(n, p) is a random graph where p ≥ C/n, with probability at least 1− exp(−Ωε(n

2p)) we have
the following. There exists some set X of at most εn vertices such that for every set Y ⊆ L, the
induced subgraph of G on V (G)\(X ∪ Y ) is Hamilton-connected.

This lemma gives us not only a way of finding almost-spanning paths in G, but we are also allowed
to pick and choose which vertices of L we want to include in our path – something we will find very
useful later on. However, the almost-spanning path we construct will not be able to cover vertices of
X. For that, we need a different argument based on a colorful version of the Friedman-Pippenger tree
embedding technique, which was first introduced in [11]. Therefore, we need a final lemma, which
allows us to cover sets of at most εn vertices using a path with prescribed edges colors.

Given a tuple (G1, . . . , Gn) of graphs and a map χ : [n] → [n], we say that (e1, . . . , en) ∈ C
is a χ-colored Hamilton cycle if ei ∈ E(Gχ(i)) for all 1 ≤ i ≤ n and, similarly, a (not necessarily
Hamiltonian) path (e1, . . . ek) is χ-colored if ei ∈ E(Gχ(i)) for all 1 ≤ i ≤ k.

Lemma 1.4. There exists C such that for any ε ∈ (0, 10−4), large integer n and p ≥ C log n/n the
following holds with high probability. Let (G1, . . . , Gn) be a tuple of independent random graphs on
the same vertex set sampled from G(n, p). Then, for every map χ : [n] → [n] and every set X of at
most εn vertices, there exists a χ-colored path P with X ⊆ V (P ) ⊆ X ∪ L such that both endpoints
of P are outside X.

Let us now show how one can complete the proof, modulo these three lemmas.

Proof of Theorem 1.1, assuming Lemmas 1.2, 1.3, 1.4. Let us set ε = 10−5 and begin the
proof by a slight change in perspective. Instead of sampling the graphs from G(n, p), for each
i ∈ [n] we generate two random graphs Gi, Hi ∼ G(n, p′) with p′ = 1−

√
1− p ≥ p/2 ≥ C log n/2n,

independently for each i. Then, the graph Gi∪Hi follows the distribution of G(n, p). Hence, to prove
the statement of the theorem, it suffices to show that the n-tuple of graphs (G1 ∪H1, . . . , Gn ∪Hn)
is Hamilton-universal with high probability.

By Lemma 1.4, the graphs (G1, . . . , Gn) with high probability have the property that for each
map χ : [n] → [n], and for each set of vertices X ⊆ [n] with |X| ≤ εn, there is a χ-colored path PX
in (G1, . . . , Gn) which covers X and is disjoint from R \ X. Throughout the rest of the proof, fix
a single outcome of (G1, . . . , Gn) and condition on the fact this outcome satisfies the conclusion of
Lemma 1.4.

Having fixed the graphs (G1, . . . , Gn), we next analyze the probability that (G1∪H1, . . . Gn∪Hn)
contains a χ-colored Hamilton cycle for some given color-pattern χ : [n] → [n], with the intention of
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using the union bound over all χ. Here, the probability refers to the choice of the graphs (H1, . . . ,Hn),
since the n-tuple (G1, . . . , Gn) has been fixed. For any such χ, let Aχ = Aχ(G1, . . . , Gn) denote the
set of n-tuples of graphs (H1, . . . ,Hn) such that (G1∪H1, . . . , Gn∪Hn) contains a χ-colored Hamilton
cycle. Let H0 denote an additional random graph from G(n, p′). We aim to show the following two
statements.

(a) Pr[(H0, . . . ,H0) ∈ Aχ] ≥ 1− n−2n.

(b) Pr[(H1, . . . ,Hn) ∈ Aχ] ≥ Pr[(H0, . . . ,H0) ∈ Aχ].

First, we prove (a) using Lemma 1.3. Applying this lemma to H0, if C is large enough, with
probability at least 1 − e−Ω(p′n2) = 1 − e−2n logn there exists a set X ⊆ V with |X| ≤ εn such that
for every Y ⊆ L, the graph H0 − X − Y is Hamilton-connected. If such a set X exists and C is
large enough, recall that (G1, . . . , Gn) satisfies the conclusion of Lemma 1.4, meaning that there is a
χ-colored path P = e1e2 . . . ek with X ⊆ V (P ) ⊆ X ∪L and with endpoints outside X. If we denote
the endpoints of P by u, v, the graph H0 − (V (P )\{u, v}) is Hamilton-connected and, in particular,
contains a Hamilton path Q = ek+1 . . . en from v to u. Hence (G1 ∪H0, . . . , Gn ∪H0) contains the
χ-colored Hamilton cycle PQ = e1 . . . en, which implies (H0, . . . ,H0) ∈ Aχ.

To prove (b), we apply Lemma 1.2. Let E = E(Kn) and define the collection of n-tuples F of
elements in E as follows: for each n-tuple of edges forming a Hamilton cycle (e1, . . . , en) ∈ C, we
define a corresponding tuple (f1, . . . , fn), where fi = ei if ei /∈ E(Gχ(i)) and fi = ⋆ otherwise. Let
F denote the set of all such (f1, . . . , fn). Observe that, since H0, . . . ,Hn are sampled from G(n, p′),
their edge-sets E(Hi) are random subsets of E, including each element e ∈ E with probability pe = p′.

It follows from the above definitions that (G1 ∪H1, . . . , Gn ∪Hn) contains a χ-colored Hamilton
cycle, that is (H1, . . . ,Hn) ∈ Aχ, if and only if

(f1, . . . , fn) ∈
(
E(Hχ(1)) ∪ {⋆}

)
× . . .

(
E(Hχ(n)) ∪ {⋆}

)
for some (f1, . . . , fn) ∈ F . Similarly (H0, . . . ,H0) ∈ Aχ if and only if

(f1, . . . , fn) ∈
(
E(H0) ∪ {⋆}

)
× . . .

(
E(H0) ∪ {⋆}

)
for some (f1, . . . , fn) ∈ F . The conclusion of Lemma 1.2 then directly implies (b).

Having confirmed inequalities (a) and (b), Theorem 1.1 follows from a union bound argument
over the possible color-patterns χ : [n] → [n]. Namely, if (G1, . . . , Gn) satisfies the conclusion of
Lemma 1.4, which happens with high probability, we have

Pr
[
(G1 ∪H1, . . . , Gn ∪Hn) is not Hamilton-universal

∣∣∣(G1, . . . , Gn)
]
≤∑

χ:[n]→[n]

Pr
[
(H1, . . . ,Hn) ̸∈ Aχ

]
≤ nn · n−2n = o(1).

Therefore, we conclude that a collection of n independent random graphs from G(n, p) is Hamilton-
universal with high probability when p ≥ C log n/n.

2 Proof details

2.1 McDiarmid’s coupling

The proof of Lemma 1.2 follows the strategy of [14]. We include the proof for the convenience of the
reader since our setup is slightly different than that of [14].

Proof of Lemma 1.2. Let E = {e1, . . . , em} and let F ⊆ (E ∪ {⋆})n be such that each n-tuple in
F contains each element ei ∈ E at most once. We will prove the statement by considering a sequence
A0, . . . ,Am of n-tuples of subsets of E. For every 0 ≤ i ≤ m, let Ai = (Ai1, . . . , A

i
n) be as follows:
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• for every 1 ≤ j ≤ i and 1 ≤ k ≤ n, we include ej in A
i
k if ej ∈ S′

χ(k);

• for every i+ 1 ≤ j ≤ m and 1 ≤ k ≤ n, we include ej in A
i
k if ej ∈ S′

0.

By definition of these n-tuples, we have that A0 = (S′
0, . . . , S

′
0) and Am = (S′

χ(1), . . . , S
′
χ(n)). There-

fore, it suffices to prove that, for every 1 ≤ i ≤ m, (Ai−1
1 ∪ {⋆}) × · · · × (Ai−1

n ∪ {⋆}) is at least as
likely to contain a tuple from F as (Ai1 ∪ {⋆}) × · · · × (Ain ∪ {⋆}). Observe that Ai−1

k and Aik only
potentially differ on ei for each 1 ≤ k ≤ n. Let T ′

k = Ai−1
k \{ei} = Aik\{ei} and Tk = T ′

k ∪ {⋆}.
Let us consider the conditional probability for either (Ai−1

1 ∪{⋆})×· · ·×(Ai−1
n ∪{⋆}) or (Ai1∪{⋆})×

· · · × (Ain ∪ {⋆}) to contain an n-tuple of F , given the sets T1, . . . , Tn. Let Pi−1 = Pi−1(T1, . . . , Tn)
and Pi = Pi(T1, . . . , Tn) denote these respective conditional probabilities. We have three potential
outcomes:

• either T1 × · · · × Tn already contains an n-tuple of F , or

• (T1 ∪ {ei})× · · · × (Tn ∪ {ei}) contains an n-tuple F but T1 × · · · × Tn does not, or

• (T1 ∪ {ei})× · · · × (Tn ∪ {ei}) does not contain an n-tuple of F .

In the first case, (Ai−1
1 ∪ {⋆})× · · · × (Ai−1

n ∪ {⋆}) and (Ai1 ∪ {⋆})× · · · × (Ain ∪ {⋆}) both contain
an n-tuple of F with probability 1, so Pi−1 = Pi = 1.

In the second case, let (f1, . . . , fn) ∈ F be the n-tuple contained in (T1 ∪{ei})× · · ·× (Tn ∪{ei}).
Then, (Ai−1

1 ∪{⋆})×· · ·× (Ai−1
n ∪{⋆}) contains an n-tuple of F with probability pei , since this is the

probability ei is included in S′
0 and thus, in the sets Ai−1

1 , . . . , Ai−1
n . Since T1 × · · · × Tn contains no

n-tuple from F , ei appears in (f1, . . . , fn) on the ℓ-th coordinate, say. As ei appears at most once in
(f1, . . . , fn), the other elements of (f1, . . . , fn) are already present in the appropriate sets of the tuple
(T1, . . . , Tn). Then, (f1, . . . , fn) is completed in (Ai1, . . . , A

i
n) if ei is included in Aiℓ, i.e. if ei ∈ S′

χ(ℓ),
which happens with probability pei . Hence, we conclude that Pi ≥ pei = Pi−1.

Finally, in the third case, clearly Pi−1 = Pi = 0. Thus, we have in all cases that Pi−1 ≤ Pi,
completing the proof.

2.2 Almost spanning paths in random graphs

We will next prove Lemma 1.3. In doing so, we need the following result about finding Hamilton
paths in expanders, which was proven in [7, Theorem 7.1.].

Theorem 2.1. There exists an absolute constant C ≥ 1 such that the following statement holds. Let
G be a graph on n vertices with the following two properties

• |N(U)| ≥ C|U | for all sets U ⊆ V (G) of size |U | < n/2C, and

• there exists an edge between any two disjoint sets U,W ⊆ V (G) of size |U |, |W | ≥ n/2C.

Then, G is Hamilton-connected. In other words, for any two distinct vertices x, y ∈ V (G) there exists
a Hamilton path in G with these two endpoints.

In the literature, the graphs satisfying the two properties mentioned above are often called C-
expanders. However, since we also consider different kinds of expanders in this paper, we prefer to
avoid reusing the terminology.

Let us now give the proof of Lemma 1.3.

Proof of Lemma 1.3. As indicated before, the key ingredient of the proof will be Theorem 2.1,
which will ultimately ensure the Hamilton-connectedness of the induced subgraph on V (G)\(X ∪Y ).
Hence, let C0 be the absolute constant from Theorem 2.1 and set K = max{1/ε, C0}.

Let us denote by A the event that the random graph G ∼ G(n, p) has the property that any two
disjoint sets U,W ⊆ V (G) of size n

10K have an edge between them. To bound the probability of the
complement A, we use a union bound over all pairs of disjoint sets (U,W ) of size at least n

10K .
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The probability that no edge exists between U and W is (1− p)|U ||W | ≤ e−p·(n/10K)2 . Recall that
p ≥ C/n. Since there are at most 3n pairs of disjoint sets U,W ⊆ V (G), by setting the constant C
large enough with respect to K, we conclude that

Pr
[
A
]
≤ 3ne−

pn2

100K2 ≤ e−Ωε(pn2).

Suppose now that A holds and let us define the set X to be the largest set of size |X| ≤ n
10K ≤ εn

which has |NG(X) ∩ R| ≤ K|X|. What remains to show is that for every set Y ⊆ L, the subgraph
of G induced on V (G)\(X ∪ Y ) satisfies the assumptions of Theorem 2.1. Once this is done, we will
immediately obtain the conclusion that this subgraph is Hamilton-connected, as needed.

Hence, let us fix a set Y ⊆ L and let us denote the number of vertices of G′ = G[V (G)\(X∪Y )] by
m ≥ n−|X|−|Y | ≥ 4n/10. Observe that for any two sets U,W ⊆ V (G′) of size |U |, |W | ≥ m

2K ≥ n
5K ,

there must be an edge between them since A holds. Hence, we only need to verify that for any
U ⊆ V (G′) of size |U | ≤ m

2K one has |NG′(U)| ≥ K|U |.
We have three cases. If |U ∪ X| ≤ n

10K , then by maximality of X we have |NG(U ∪ X) ∩ R| ≥
K(|U |+|X|). SinceX has at mostK|X| neighbors in R by assumption, we conclude |NG(U)∩R\X| ≥
K|U | and in particular |NG′(U)| ≥ K|U | since R \X ⊆ V (G′).

On the other hand, if |U ∪X| ≥ n
10K and |U | ≤ n

10K , there are at most n
10K vertices from R with

no neighbors in U ∪X, since the event A holds. Hence, |NG(U ∪X)∩R| ≥ n
2 −

n
10K ≥ 4n

10 and since X
has at most K|X| ≤ n

10 neighbors in R, we find |NG(U)∩R| ≥ 3n
10 , which is enough since K|U | ≤ n

10 .
Finally, if |U | ≥ n

10K , then there are at most n
10K vertices in the whole graph non-adjacent to U .

In particular, this means that U has at least m− |U | − n
10K > m/2 neighbors in G′, which completes

the proof.

2.3 Covering small sets using Friedman-Pippenger embeddings

In this section, we give the proof of the Lemma 1.4. To recall, this lemma states that if (G1, . . . , Gn)
is a collection of graphs sampled independently from G(n,C log n/n), with the same vertex set
V = L ∪ R, then with high probability for every color-pattern χ : [n] → [n] and every set X ⊆ V of
size |X| ≤ εn, one can cover X with a χ-colored path P satisfying V (P ) ⊆ L ∪X.

Our proof will proceed in two stages. In the first stage, we will show that with high probability,
for every color-pattern χ : [n] → [n] and every set X ⊆ V of size at most εn, one can cover all but
εn/ log n vertices of X using a path that alternates between X and L\X. After this stage, one is
left with only εn/ log n vertices which need to be incorporated into a path, which can be done using
a Friedman-Pippenger embedding technique. The main difficulty of this technique is that we work
in a colorful setting, meaning that we need to carefully redefine the notions of expansion and good
embeddings which are usually used.

Let us begin by setting up the definitions we need to make the Friedman-Pippenger machinery
work and proving variants of several standard lemmas adapted to our setting.

Let (G1, . . . Gn) be an n-tuple of graphs on the vertex set V , and let us refer to the edges of the
graph Gi as the edges of color i. A pair of a vertex v ∈ V and a color i ∈ [n] is called a color-vertex,
and a color-set A ⊆ V × [n] is just a set of color-vertices.

For a color-set A and integers m,D > 0, we say that the collection (G1, . . . , Gn) is an (m,D,A)-
color expander if for all S ⊆ A of size at most m, we have |N(S)| ≥ D|S|. Here, N(S) =⋃

(u,i)∈S NGi(u) stands for the union of the neighbors of u in Gi, where (u, i) ranges over S.
This definition perhaps needs a bit of motivation. One should think of A as the set of color-

vertices which “expand” well. This set A will be defined formally as soon as the proof of Lemma 1.4
starts, and once it is defined it will not change throughout the proof. Intuitively we should think of
A as those pairs (u, i) where the vertex u has many neighbors in color i outside X. Typically, this
will be almost all color vertices, so one can intuitively think of A as the set of all color vertices.

Finally, in order to show that edge-colored forests can be embedded into (G1, . . . , Gn), we need
the notion of a good embedding of a forest F . Hence, let us start from an edge-colored forest F ,
with the set of colors [n]. For bookkeeping purposes, we will also assume the edges of our forest are
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oriented, but this assumption is only technical. We say that an injective function φ : V (F ) → V is
an embedding if φ(u) and φ(v) are adjacent in the graph Gi, whenever uv is an edge in F of color i.
For an embedding φ, we denote by φ(F ) the image of V (F ) under φ.

Further, this embedding is called (m,D,A)-good if for every S ⊆ A with |S| ≤ m, it holds that

|N(S) \ φ(F )| ≥
∣∣∣S ∩

{
(φ(u), i) |u ∈ V (F ) has an in-edge of color i

}∣∣∣
+

∑
(x,i)∈S

D − (number of edges of color i incident to φ−1(x) in F ). (1)

Finally, if we have a set of edges of G1, . . . , Gn which can be obtained as the set of edges of
some forest under an (m,D,A)-good embedding, we will say that this set of edges is (m,D,A)-good.
Correspondingly, one can say that an edge-colored subgraph of G1, . . . , Gn is (m,D,A)-good under
the same condition.

Let us begin by showing that good embeddings can be extended.

Lemma 2.2 (Extension Lemma). Let F be an oriented edge-colored forest, with at most mD vertices,
maximum degree D, with a leaf w and an edge v → w of color ℓ, and let K = F − w be the
forest obtained by removing the leaf w from F . Further, let (G1, . . . , Gn) be a (2m, 2D + 1, A)-color
expander. If (v, ℓ) ∈ A, then each (m,D,A)-good embedding of K into (G1, . . . , Gn) can be extended
to an (m,D,A)-good embedding of F .

Proof. Let φ be the (m,D,A)-good embedding of K into (G1, . . . , Gn). We will try to construct
the embedding ψ of F by extending φ, i.e. by defining φ(w) to be one of the neighbors of φ(v) in
Gℓ. Let us denote the neighbors of φ(v) in Gℓ which are not already used by the embedding φ by
w1, . . . , wk, i.e. set {w1, . . . , wk} = NGℓ

(φ(v))\φ(K).
To show that the set NGℓ

(φ(v))\φ(K) is nonempty, we recall that φ is a good embedding,
and apply the corresponding condition to the set S = {(v, ℓ)} to get |NGℓ

(φ(v))\φ(K)| ≥ D −
(number of edges of color ℓ incident to v in K) ≥ 1, since v has degree at most D − 1 in K.

Let ϕj be the embedding of F which extends φ by defining ψj(v) = wj , for 1 ≤ j ≤ k. If there is
some j for which this is an (m,D,A)-good embedding, we are done. Otherwise, for each ψj , there is
some set Sj violating the (m,D,A)-goodness condition.

To obtain the contradiction, we now introduce the key quantity in the proof, associated to every
color set S ⊆ V × [n]

fφ(S) = |N(S) \ φ(K)|−
∣∣∣S ∩

{
(φ(u), i) |u ∈ V (K) has an in-edge of color i

}∣∣∣
−

∑
(x,i)∈S

D − (number of edges of color i incident to φ−1(x) in K).

The basic observation is that fφ(S) ≥ 0 for all |S| ≤ m since φ is an (m,D,A)-good embedding.
The second observation is that fφ is a submodular function.

Claim 2.3. The function fφ is submodular, i.e. for all S, T ⊆ A, it holds that fφ(S∪T )+fφ(S∩T ) ≤
fφ(S) + fφ(T ).

Proof. Note that the second and third summand in the definition of fφ can be rewritten as a sum
over the elements of S. Therefore, these two summands are modular functions and we only need
to show that the summand |N(S) \ φ(K)| is submodular. In other words, we need to show that
|N(S ∩ T ) \ φ(K)| + |N(S ∪ T ) \ φ(K)| ≤ |N(S) \ φ(K)| + |N(T ) \ φ(K)|. Note that for each
v ∈ N(S ∪T ) \φ(K), we must have v ∈ (N(S)∪N(T )) \φ(K). If we also have v ∈ N(S ∩T ) \φ(F ),
then we have both v ∈ N(S) \ φ(K) and v ∈ N(T ) \ φ(K). This shows submodularity since

|N(S ∪ T ) \ φ(K)|+ |N(S ∩ T ) \ φ(K)| ≤ |N(S) ∪N(T ) \ φ(K)|+ |N(S) ∩N(T ) \ φ(K)|
= |N(S) \ φ(K)|+ |N(T ) \ φ(K)|.

⊡
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Having established submodularity of fφ, we are ready to proceed with the proof. Our next goal
is to understand how fφ changes when φ is extended to ψj .

Claim 2.4. For each S ⊆ A, we have fψj
(S) = fφ(S)+1wj∈N(S)−1(φ(v),ℓ)∈S, where 1E denotes the

indicator function for the condition E.

Proof. Let us consider how the three summands in the definition of fφ change when φ is extended.
First, we have that for each S ⊆ A

|N(S) \ φ(K)| = |N(S) \ ψj(F )|+ 1wj∈N(S).

Also, we observe∣∣∣S ∩
{
(φ(u), i) |u ∈V (K) has an in-edge of color i

}∣∣∣
=

∣∣∣S ∩
{
(ψj(u), i) |u ∈ V (F ) has an in-edge of color i

}∣∣∣− 1(wj ,ℓ)∈S .

Finally, the third summand is changed as follows∑
(x,i)∈S

D − (number of edges of color i incident to φ−1(x) in K)

=
∑

(x,i)∈S

D − (number of edges of color i incident to ψ−1
j (x) in F ) + 1(φ(v),ℓ)∈S + 1(wj ,ℓ)∈S .

Summing these three equations gives the proof of the claim. ⊡

Let us now recall what we were doing in the proof. We assumed that none of the embeddings ψj
were an (m,D,A)-good embedding, which meant that we had sets Sj ⊆ A witnessing that ψj is not
good, i.e. having fψj

(Sj) < 0. Since fψj
(Sj) = fφ(Sj) + 1wj∈N(Sj) − 1(φ(v),ℓ)∈Sj

and fφ(Sj) ≥ 0, it
follows that wj ∈ N(Sj), (φ(v), ℓ) /∈ Sj and fφ(Sj) = 0.

The final observation is that for any S ⊆ A of size m ≤ |S| ≤ 2m, we must have fφ(S) > 0, since
(G1, . . . , Gn) is a (2m, 2D + 1, A)-color-expander implying that |N(S) \ φ(K)| > (2D + 1)|S| −mD
and ∣∣∣S ∩

{
(φ(u), i) |u ∈ V (K) has an in-edge of color i

}∣∣∣ ≤ |S|,∑
(x,i)∈S

D − (number of edges of color i incident to φ−1(x) in F ) ≤ D|S|.

This gives us |N(S) \ φ(V (K))| > (2D + 1)|S| −mD ≥ (D + 1)|S| and so fφ(S) > 0.

Consider now the union Tj =
⋃j
t=1 St. By submodularity of fφ, we must have fφ(Tj) ≤ 0.

Moreover, by induction on j it is not hard to show |Tj | < m, since if we ever had m ≤ |Tj | ≤ 2m
we would get fφ(Tj) > 0, leading to a contradiction. Hence, the union of all sets S1, . . . , Sk, denoted
by Tk, has fφ(Tk) = 0 and |Tk| < m. But we showed that {w1, . . . wk} ⊆ N(Tk) and (φ(v), ℓ) /∈ Tk.
It follows that fφ(Tk ∪ {(φ(v), ℓ)}) < 0, contradicting that φ is an (m,D,A)-good embedding. This
completes the proof. □

The next lemma shows that φ is a good embedding of a forest F , removing one leaf from this
forest will leave this embedding good.

Lemma 2.5 (Rollback lemma). Let F be an oriented edge-colored forest, with a leaf w and an edge
v → w of color ℓ, and let K = F−w be the forest F with the leaf w removed. Also, let (G1, . . . , Gn) be
an n-tuple of graphs on the vertex set V . Then, for every (m,D,A)-good embedding φ : V (F ) → V ,
the restriction φ|K : V (K) → V is also an (m,D,A)-good embedding.
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Proof. Our goal is to verify the (m,D,A)-goodness condition for the embedding φ|K by checking
the inequality for each color-set S ⊆ A with |S| ≤ m. First of all, we have

|N(S) \ φ|K(K)| = |N(S) \ φ(F )|+ 1φ(w)∈N(S).

Then, we also have∣∣∣S ∩
{
(φ(u), i) |u ∈V (K) has an in-edge of color i

}∣∣∣
=

∣∣∣S∩{(φ(u), i) |u ∈ V (F ) has an in-edge of color i
}∣∣∣− 1(φ(w),ℓ)∈S .

Finally, we have∑
(x,i)∈S

D − (number of edges of color i incident to φ|−1
K (x) in K)

=
∑

(x,i)∈S

D − (number of edges of color i incident to φ−1(x) in F ) + 1(φ(v),ℓ)∈S + 1(φ(w),ℓ)∈S .

Since the embedding φ is (m,D,A)-good, we have

|N(S) \ φ(F )| ≥
∣∣∣S ∩

{
(φ(u), i) |u ∈ V (F ) has an incoming edge of color i

}∣∣∣
+

∑
(x,i)∈S

D − (number of edges of color i incident to φ−1(x) in F ).

When we restrict φ to φ|K , the left-hand side increases by 1φ(w)∈N(S), while the right-hand side
increases by 1(φ(v),ℓ)∈S . Hence, to establish the corresponding inequality for φ|K , it suffices to show
1φ(w)∈N(S) ≥ 1(φ(v),ℓ)∈S , which is true since φ(w) is a neighbor of φ(v) in color ℓ, due to φ being an
embedding.

We have now established all the results we need about good embeddings, and it is time to use
them to proof of Lemma 1.4.

The key object in the proof will be a star-system. A star-system M is a union of monochromatic
stars and an associated color for each star (which may be different from the color of the edges of the
star). More precisely we have the set of centers of stars, denoted by UM , together with two assigned
colors for each vertex u ∈ UM denoted by iu, ju, and a star of size log n centered at u in the graph
Giu . We refer to the color ju as the color assigned to this star, and note that we may have iu ̸= ju.
We denote the neighbors of u in this star by Nu, and we assume that the sets Nu, Nv are disjoint for
u ̸= v, and also disjoint from UM . The size of a star-system M is simply the size of UM and the set
of its vertices is V (M) = UM ∪u∈UM

Nu.

Proof of Lemma 1.4. The first step of the proof is to state three expansion properties of the
random graphs that we need, and show these properties occur with high probability. After this, the
proof is completed deterministically. Here are the properties we will need.

(A) Let M be a star-system, let Y be a set disjoint from V (M), and assume |UM |, |Y | ≥ εn/ log n.
Then, there is some vertex u ∈ UM for which there is an edge of color ju between Nu and Y .

(B) For every X ⊆ V with |X| ≤ εn and color-set W such that
∣∣(V (W )∪N(W )

)
∩ (L \X)

∣∣ ≤ n/3,
it holds that |W | ≤ εn/ log n.

(C) For any i ∈ [n] and any sets S, T ⊆ V of size |S| = n/27, |T | = n/27, there exists an edge
between S and T in the graph Gi.
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Showing that (A) holds with high probability. To show (A) holds with high probability, we
want to apply a union bound. Therefore, let us fix disjoint sets U and Y of size εn/ log n, as well as
disjoint set Nu, for each u ∈ UM , of size log n so that all chosen sets are disjoint. Also, choose two

colors iu and ju for each u ∈ UM . There are at most Z ≤
(
n3

(
n

logn

))εn/ logn
nεn/ logn ways to make

all of these choices. We can simplify this bound as follows

Z ≤ n4εn/ logn
(

en

log n

)logn· εn
logn

≤ e5εn
(

n

log n

)εn
.

The probability that (A) is violated can therefore be bounded by summing the probabilities that
U and the sets Nu, chosen as above, indeed form a star-system and that no set Nu has an edge to
Y in color ju. The probability that U and the sets Nu form a star-system is plogn·|U | = pεn, since we
need an edge in Giu between u and each vertex of Nu, for all u ∈ U . The probability there are no
edges from Nu to Y in color ju for any u is (1 − p)logn·|Y |·|U | ≤ exp(−pε2n2/ log n). Putting all of
this together, we have

Pr[(A) is violated] ≤ e5εn
(

n

log n

)εn
pεne−pε

2n2/ logn

≤ e5εn
(

n

log n

)εn(C log n

n

)εn
e−ε

2Cn

= e5εnCεne−ε
2Cn → 0,

as long as C is large enough compared to ε.

Showing that (B) and (C) hold with high probability. We show that, with high probability,
for every color-set W ⊆ V × [n] of size εn/ log n and every set U ⊆ V of size at least n/27, N(W )
intersects U .

Note that this property implies both (B) and (C). If (B) was violated for some X and W with
|W | ≥ εn/ log n, we can set U = L\(X∪V (W )∪N(W )) and observe that |U | = |L|−|X|−

∣∣(V (W )∪
N(W )

)
∩ (L \ X)

∣∣ ≥ n/2 − εn − n/3 ≥ n/27. Since N(W ) ∩ U = ∅, this would violate the above
property, thus showing (B) holds. To derive (C), we can set W = {(v, i) : v ∈ S} and U = T , and
note that N(W ) ∩ T ̸= ∅ implies that there is an edge in Gi between S and T .

Let us show that this new property holds with high probability. Fix such W ⊆ V × [n] with
|W | ≥ εn/ log n, U ⊆ V with |U | ≥ εn, and let U ′ = U \ V (W ). Note that |U ′| ≥ εn/2, as
long as log n ≥ 2. Then, the probability that N(W ) does not intersect U ′ can be bounded by
(1 − p)|W ||U ′| ≤ e−p|W ||U ′|, since for each u ∈ U ′, (w, i) ∈ W , the edge uw must not appear in Gi,
which happes with probability 1− p. By a union bound over all choices of W and U , we get

Pr
[
there are U,W with |U | ≥ εn, |W | ≥ εn

log n
s.t. N(W ) ∩ U = ∅

]
≤

(
n2

εn/ log n

)(
n

εn

)
· e−p|W ||U ′|.

Using the usual bounds on the binomial coefficients,
(

n2

εn/ logn

)
≤ n2·εn/ logn ≤ e2εn and

(
n
εn

)
≤(

en
εn

)εn ≤ (e/ε)εn, we get(
n2

εn/ log n

)(
n

εn

)
· e−p|W ||U ′| ≤ e2εn (e/ε)εn · e−ε2Cn/2 → 0,

as long as C is large enough compared to ε.

Setting up the deterministic part of the proof. From now on, we will assume that the properties
(A), (B) and (C) hold for (G1, . . . , Gn). Our covering procedure will have two steps. The first step
will be to economically cover most of X using a path which alternates between L\X and X, leaving
at most 3εn/ log n vertices of X uncovered. At this point, we will switch to the Friedman-Pippenger
embedding, which will allow us to cover the rest of the vertices in a less economical way, which we
can tolerate because we have to embed only a very small number of remaining vertices.
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Let us fix a map χ : [n] → [n] and a set X ⊆ V we would like to cover with |X| ≤ εn. Recall that
the goal is to find a χ-colored path in (G1, . . . , Gn) covering X, with endpoints in L\X.

Since our path is required to use vertices of X ∪ L, let us restrict our focus to V ′ = X ∪ L and
set G′

i = Gi[V
′]. Also, in order to guarantee the expansion properties needed for the Friedman-

Pippenger embedding, we need to remove the set of non-expanding color-vertex pairs from V ′. To
this end, define m = n/20 log n and D = log n + 1, where the choice of m and D is guided by
the requirements of Lemma 2.2. We will use Lemma 2.2 on forests with maximum degree D and
the size of these forests will never exceed n/20 ≤ mD. Let W ⊆ V ′ × [n] be a maximal color-set
such that |(V (W ) ∪ N(W )) ∩ (L \ X)| ≤ min{3D|W |, n/3}. By (B), |W | ≤ εn/ log n and hence,
|(V (W ) ∪N(W )) ∩ (L \X)| ≤ 3D|W | ≤ 3εn.

The goal of defining such W is that we can apply the Friedman-Pippenger machinery with the
ground set A = (V ′× [n])\W , which has good expansion properties. In the economical covering part,
we will strive to cover most of X\V (W ), and therefore we set L′ = L\ (X ∪V (W )), X ′ = X \V (W ).

Let F be an empty graph on |X ∪ V (W )| vertices and let φ be a bijection between V (F ) and
X ∪ V (W ). Now, we show that φ is an (m,D,A)-good embedding as well as that (G′

1, . . . , G
′
n) is a

(2m, 2D + 1, A)-color expander.
Let us first verify the expansion property for a color-set S ⊆ A of size at most 2m. By the

maximality of W , we have |(V (S ∪W ) ∪N(S ∪W )) ∩ (L \X)| > min{3D(|S| + |W |), n/3}. Using
that |(V (W ) ∪N(W )) ∩ (L \X)| ≤ 3D|W |, we get

|N(S) ∩ L′| > min{3D(|S|+ |W |), n/3} − 3D|W | − |S| ≥ min{(2D + 1)|S|, n/5}.

To see the last inequality, one needs to analyze the two cases, depending on what the minimum on the
left-hand side is. Firstly, if the minimum is 3D(|S|+|W |), then we have 3D(|S|+|W |)−3D|W |−|S| ≥
(2D + 1)|S|, and otherwise n/3− 3D|W | − |S| ≥ n/3− 3εn− n/20 log n ≥ n/5. Hence, if |S| ≤ 2m
then |N(S) ∩ L′| ≥ (2D + 1)|S|, which shows that (G′

1, . . . , G
′
n) is a (2m, 2D + 1, A)-color expander.

On the other hand, to verify that φ is an (m,D,A)-good embedding, we need to check that
|(N(S) ∩ A)\φ(F )| ≥

∑
(x,i)∈S D for all S ⊆ A with |S| ≤ m, where we note that other terms from

(1) do not appear since F has no edges. However, we already know that |(N(S) ∩ A)\φ(F )| ≥
|N(S) ∩ L′| ≥ (2D + 1)|S| ≥ D|S| for all |S| ≤ m. This shows that φ is (m,D,A)-good.

Economically covering most of X. If |X ′| ≤ 2εn/ log n, we already have very few vertices in
X and we do not need to perform the economical covering step, allowing us to just pass to the
Friedmann-Pippenger embedding step. So, in this step we assume that |X ′| > 2εn/ log n.

We say that a path P = v1 . . . vℓ is alternating if v1 ∈ L′\X ′, v2 ∈ X ′, v3 ∈ L′\X ′, . . . , vℓ ∈ X ′

and vivi+1 is of color χ(i) for all i ≤ ℓ− 1. Note that ℓ must be even for alternating paths P .
Let us now consider pairs (P,M), where P is an alternating path and M is a star-system disjoint

from P of size at most εn/ log n, with the following properties:

• For each u ∈ UM , Nu ⊆ L′ and G′
ju

contains no edges between Nu and X ′ \ (V (P ) ∪ V (M));

• Consider the following forest FP,M which extends F . Add an out-edge of color χ(1) from
φ−1(v2) to a new vertex, and for each vertex v of F with φ(v) = v2k and 2k < ℓ, add an out-
edge from v to a new vertex in color χ(2k). Also, for each vertex v of F with φ(v) = u ∈ UM ,
add log n out-edges from v to new vertices in color iu. Then, we require that there exists an
(m,D,A)-good embedding φP,M of FP,M extending φ, where, for each even index 2k < ℓ, the
new out-neighbor of φ−1(v2k) gets mapped to v2k+1, and for each u ∈ UM , φP,M is a bijection
between the new vertices of the star attached at φ−1(u) and Nu.

Note that at least some pairs (P,M) satisfy these properties (e.g. if both M and P are empty).
Let (P,M) be a pair satisfying the above properties maximizing the size of M and (with respect

to the size of M being maximal) the size of P . Note that in this maximizing pair, P is not an
empty path, since otherwise we could extend it as follows. Pick a vertex of v2 ∈ X ′\V (M) such that
(v2, χ(1)) /∈ W . This can be done since X ′\V (M) is nonempty and X ′ does not intersect V (W ).
Then, add an edge from φ−1(v2) to a new vertex of color χ(1) and use Lemma 2.2 to extend φ by
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embedding the new edge, and denote its end by v1. This shows that P can always be extended to
contain at least one edge.

Furthermore, we will show that the size of M is limited by the requirement |M | ≤ εn/ log n, as
the following claim shows.

Claim 2.6. |M | = εn/ log n.

Proof. Suppose towards a contradiction that |M | < εn/ log n, and let us denote the length of P
by ℓ − 1. Let φP,M be the embedding of the corresponding forest FP,M and note that |V (FP,M )| ≤
|(X ∪ V (W ))| + |M | · log n + |V (P )| ≤ 2εn + εn + 2εn ≤ 5εn. Let F ′

P,M ⊇ FP,M be obtained by

attaching log n out-edges of color χ(ℓ) to φ−1(vℓ).
By Lemma 2.2, there exists an (m,D,A)-good embedding φ′

P,M of F ′
P,M extending φ′

P,M . Let N
denote the set of vertices to which the new vertices of F ′

P,M get embedded to by φ′
P,M . Note that we

have N ⊆ L′, since all vertices of X ∪ V (W ) are already in the image of φP,M , and φ′
P,M must be

injective.
If G′

χ(ℓ+1) contains an edge uv with u ∈ N and v ∈ X ′ \ (V (P ) ∪ V (M)), we want to get a
contradiction by extending the path P and not altering M . We can define vℓ+1 = u, vℓ+2 = v, thus
obtaining a longer path Q and make no changes toM . We need to verify that (Q,M) still satisfy the
relevant properties. The first one is immediate, sinceM is unchanged and the set X ′\(V (P )∪V (M))
shrinks. To check the second property, note that FQ,M is a subgraph of F ′

P,M and therefore it can be

obtained from it by removing a number of leaves attached to φ−1
P,M (vℓ) (to be specific, one needs to

remove the leaves corresponding to φ′−1
P,M (N\{vℓ+1})). Thus, we can use Lemma 2.5 to remove, one

by one, all leaves attached to φ−1
P,M (vℓ) except φ

′−1
P,M (vℓ+1). This gives an embedding φQ,M verifying

the second condition and gives a contradiction to the maximality of (P,M).
So, suppose that G′

χ(ℓ+1) does not contain an edge between N and X ′ \ (V (P ) ∪ V (M)). Let
us shorten the path P by removing the last two vertices, i.e. define a new path Q = v1 . . . vℓ−2,
and extend M by adding to UM the vertex vℓ, together with colors ivℓ = χ(ℓ), jvℓ = χ(ℓ + 1)
and the neighborhood N . If the pair (Q,M ′) satisfies the two properties, it would constitute a
contradiction to maximality of (P,M), where we are using the assumption |M | < εn/ log n, and
therefore |M ′| ≤ εn/ log n.

Note that the first property is still satisfied, precisely because G′
χ(ℓ+1) does not contain an edge

between N and X ′ \ (V (P )∪V (M)) = X ′ \ (V (Q)∪V (M ′)). On the other hand, the second property
can be verified using Lemma 2.5 to remove φ′−1

P,M (vℓ−1) from the embedding φ′
P,M and thus obtain the

embedding φQ,M ′ . Hence, we get a contradiction to our original assumption that |M | < εn/ log n. ⊡

Hence, we have |M | = εn/ log n. Since, for every u ∈ UM , there are no edges of color ju from Nu to
X ′\(V (P )∪V (M)), we conclude that the number of vertices ofX not covered by V (M)∪V (P )∪V (W )
is at most εn/ log n, from property (A). Thus, if we let Y = X \ V (P ) = {y1, . . . , yh}, then we have
|Y | ≤ 3εn/ log n. Also, note that |V (P )| ≤ 2|V (P ) ∩X| ≤ 2|X| ≤ 2εn. This means that we covered
all but at most 3εn/ log n vertices of X by a path of length at most 2|X|, which completes the step
of economically covering most of X.

Covering the rest of X using Friedman-Pippenger embedding. In this step, we extend the
path P to a path Q which covers the set Y and has length at most 12εn. The first step will be
to decide in which order we will cover the vertices of Y . More precisely, to each vertex yt ∈ Y , we
will associate an index kt ∈ {ℓ + 2 log n, ℓ + 15εn} such that yt will be the kt-th vertex of Q. This
index kt needs to be chosen in such a way that the pairs (yt, χ(kt − 1)) and (yt, χ(kt)) are not in
the poorly-expanding color-set W , and also such that no two values ks, kt satisfy |ks − kt| < 2 log n.
However, since |W | ≤ εn/ log n, this will be possible, as shown by the following claim.

Claim 2.7. There exists a set of indices k1, . . . , kh ∈ {ℓ + 2 log n, ℓ + 15εn} with the following
properties: for any yt ∈ Y , the following vertex-color pairs do not belong to W , i.e. (yt, χ(kt −
1)), (yt, χ(kt)) /∈W , and |ks − kt| ≥ 2 log n for all 1 ≤ s < t ≤ h.
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v4 vℓ = y0

. . .

y1 y2
. . .

yh

P0 P ′
1 P1 P ′

2

Figure 1: Illustration of the construction of the forest Ft.

Proof. We can find such indices k1, . . . , kh greedily, one by one. Suppose we have already chosen the
values for k1, . . . , kt−1. Let us mark all values x ∈ {ℓ+2 log n, ℓ+15εn} which have |x−ks| < 2 log n
for some 1 ≤ s < t. In this way, at most t · 4 log n ≤ 12εn values in this interval are marked.
Furthermore, let us mark all values x ∈ {ℓ + 2 log n, ℓ + 15εn} for which (yt, χ(x − 1)) or (yt, χ(x))
belongs to W . This marks at most another 2εn/ log n ≤ εn values. However, since the set of all
possible values of kt has cardinality at least 15εn−2 log n ≥ 14εn, and we have marked at most 13εn
values, there is an unmarked kt which we can choose. Doing this for t = 1, . . . , h completes the proof.

⊡

Let us reindex the elements of y so that the indices kt are increasing, and also define y0 to be
the last vertex of the path P , along with k0 = ℓ. Now, the idea will be to join the vertices yt−1

and yt for all t by appropriately colored paths of length kt − kt−1, thus obtaining a single χ-colored
path. To do this, we define a sequence of forests F0 ⊆ F1 ⊆ · · · ⊆ Fh as follows. The initial forest
F0 is a restriction of FP,M on the vertex set φ−1

P,M (V (P ) ∪ Y ), and it comes with the (m,D,A)-
good embedding φ0 (which is defined as a restriction of φP,M to F0, and it is (m,D,A)-good by
Lemma 2.5). Then, Ft is inductively defined by attaching a directed path Pt−1 starting at the vertex
φ−1
0 (yt−1) of length s = log n− 6, such that the i-th edge of this path has color χ(kt−1 + i− 1), and

by also attaching a directed path P ′
t starting at the vertex φ−1

0 (yt) of length kt − kt−1 − s− 1, such
that the i-th edge of this path has color χ(kt − i). This is illustrated in Figure 1.

Claim 2.8. For each 1 ≤ t ≤ h, there is an (A,m,D)-good embedding φt of Ft extending φt−1, with
the property that the endpoints of Pt−1 and P ′

t are two vertices connected by an edge in G′
χ(kt−1+logn)

Proving this claim is sufficient to finish the proof. Namely, the forest Fh is a union of paths
covering X, and it is ensured that in the embedding φh, these paths can be joined into a χ-colored
path covering the whole of X. Furthermore, v1 ∈ L′ \X ′ and by a simple application of Lemma 2.2,
we get that we can ensure that also the other endpoint is in L′ \X ′. So, let us justify the claim then.

Proof of Claim 2.8. Let us use Lemma 2.2 to embed all but the last s = log n− 6 vertices of the
path P ′

t into L
′ extending the embedding φt−1, thus arriving at a good embedding φ′ (ensuring that

the edges are appropriately colored, of course). Now, we consider a forest F ′
t , in which binary trees

of depth s directed away from the root are attached to yt−1 and the last embedded vertices of P ′
t ,

where all edges of the same depth receive the same color, so that any path from yt−1 to any leaf has
the same coloring as Pt−1 (and similar for yt). This is illustrated in Figure 2.

yt−1 yt· · ·

kt − kt−1 − 2s− 1

Figure 2: Illustration of the proof of Claim 2.8.
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Again, by Lemma 2.2, we can embed the forest F ′
t arriving at an (m,D,A)-good embedding φ′′

which extends φ′. Observe that Lemma 2.2 applies since F ′
t has at most 2 ·n/26+17εn ≤ n/20 ≤ mD

vertices (which is actually the inequality which constrains ε and requires, say, ε ≤ 10−4).
Here, the key ingredient is the property (C) - there is an edge of color χ(kt−1+logn) between two

leaves from the two constructed trees. Having fixed these two leaves, we can delete all vertices other
than their ancestors from the embedding using Lemma 2.5, thus arriving at required embedding of
the forest Ft. ⊡

□

3 Concluding remarks

In this paper, we determined the threshold probability p for an n-tuple of independent random graphs
(G1, . . . , Gn) sampled from G(n, p) to be Hamilton-universal. As we explained in the introduction,
this result is a variant of a theorem by Bowtell, Morris, Pehova and Staden, who showed that any
n-tuple of graphs (G1, . . . , Gn) with δ(Gi) ≥ (1/2 + o(1))n is Hamilton-universal. The fact that the
Gi are sampled independently in the random setting could lead to some intriguing differences.

For example, since the classical Dirac’s condition for the containment of Hamilton cycle (δ(G) ≥
n/2) is tight, we must require at least the same condition from all graphs of the n-tuple in the
deterministic setting. The reason for this is simple - if G does not contain a Hamilton cycle, then
(G, . . . , G) does not contain a transversal Hamilton cycle either. Hence, in the transversal setting, the
conditions for containment of a given structure cannot be weaker than the corresponding condition
in the classical setting.

Once randomness is introduced, this behavior changes dramatically. For example, Anastos and
Chakraborti [3] showed that if (G1, . . . , Gn) is an n-tuple of independent graphs, where Gi ∼ G(n, p)
with p ≫ log n/n2, then (G1, . . . , Gn) contains a transversal Hamilton cycle with high proba-
bility. This differs starkly from the threshold probability for Hamiltonicity in G(n, p) at p =
(1 + o(1)) log n/n. Therefore, the n-tuple (G1, . . . , Gn) contains a transversal Hamilton cycle even
when no Gi is expected to be Hamiltonian. This shows that looking for transversal structures in the
random setting, as opposed to the deterministic setting, can be interesting even when none of the
graphs Gi have the required subgraph themselves.

We wonder if we can observe a similar effect in questions regarding universality as well. Though
Theorem 1.1 is tight in the stated version, we can not rule out that it can be improved when only
considering rainbow Hamilton cycles. More precisely, we say that a tuple (G1, . . . , Gn) of graphs on
the same vertex set of size n is rainbow Hamilton-universal if it contains a χ-colored Hamilton cycle
for every bijection χ : [n] → [n]. Note the subtle difference to Hamilton-universality, where χ is not
required to be bijective.

Question 3.1. What is the threshold probability p such that the following holds with high probability?
If (G1, . . . , Gn) is an n-tuple of independent random graphs on the same vertex set sampled from
G(n, p), then (G1, . . . , Gn) is rainbow Hamilton-universal.

The best lower bound we can prove is of the form p ≥ c/n, for which we have two different
arguments. Firstly, if c < e, then the expected number of copies of a Hamilton cycle with a specific
rainbow color-pattern is n!pn = (1 + o(1))

√
2πn

(
n
e

)n( c
n

)n
= o(1). Secondly, if c < log(2) then with

high probability there exists a vertex v which is isolated in more than half of the Gi. In this case, there
exists a bijection χ : [n] → [n] such that v is isolated in Gχ(i) or Gχ(i+1) for all i ∈ [n] and therefore,
(G1, . . . , Gn) does not contain a χ-colored Hamilton cycle. Curiously, the first lower bound has a
better constant than the second, so that the expectation gives a better bound than the threshold for
a specific vertex being bad. This is different from the usual behavior of Hamilton cycles in random
graphs, where we can expect to find a Hamilton cycle as soon as every vertex has degree at least 2.

It would also be interesting to develop a universal analog to the results of [3].

Problem 3.2. Show that there exists C such that for p ≥ C log n/n the following holds with high
probability. Let (G1, . . . , Gn) be a tuple of graphs on the same vertex set of size n such that δ(Gi) ≥
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(1/2+o(1))n. For every i, let Fi ⊆ Gi be obtained by keeping every edge independently with probability
p. Then, (F1, . . . , Fn) is Hamilton-universal.
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[7] N. Draganić, R. Montgomery, D. M. Correia, A. Pokrovskiy, and B. Sudakov. Hamiltonicity of
expanders: optimal bounds and applications. arXiv preprint arXiv:2402.06603, 2024.
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