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Power saving for the Brown-Erdős-Sós problem

Oliver Janzer∗ Abhishek Methuku† Aleksa Milojević† Benny Sudakov†

Abstract

Let f(n, v, e) denote the maximum number of edges in a 3-uniform hypergraph on n vertices
which does not contain v vertices spanning at least e edges. A central problem in extremal
combinatorics, famously posed by Brown, Erdős and Sós in 1973, asks whether f(n, e + 3, e) =
o(n2) for every e ≥ 3. A classical result of Sárközy and Selkow states that f(n, e+⌊log

2
e⌋+2, e) =

o(n2) for every e ≥ 3. This bound was recently improved by Conlon, Gishboliner, Levanzov and
Shapira.

Motivated by applications to other problems, Gowers and Long made the striking conjecture
that f(n, e+4, e) = O(n2−ε) for some ε = ε(e) > 0. Conlon, Gishboliner, Levanzov and Shapira,
and later, Shapira and Tyomkyn reiterated the following approximate version of this problem.
What is the smallest d(e) for which f(n, e + d(e), e) = O(n2−ε) for some ε = ε(e) > 0? In this
paper, we prove that for each e ≥ 3 we have f(n, e+ ⌊log

2
e⌋+ 38, e) = O(n2−ε) for some ε > 0.

This shows that one can already obtain power saving near the Sárközy-Selkow bound at the cost
of a small additive constant.

1 Introduction

Much of extremal combinatorics is concerned with determining which global properties force the
appearance of certain local substructures. One of the most important questions of this kind is the
Turán problem, which asks how many edges an n-vertex graph (or hypergraph) can have without
containing a given graph (or hypergraph) as a subgraph. The subject of this paper is another very
central and closely related problem. A (v, e)-configuration is a hypergraph with at most v vertices
and at least e edges. Estimating the maximum number of edges an n-vertex r-uniform hypergraph
can have without containing a (v, e)-configuration is an important topic in extremal graph theory.
For example, when e =

(

v
r

)

, the problem becomes equivalent to determining the maximum possible

number of edges without containing K
(r)
v , which is a notoriously difficult open problem for r > 2.

Let us write f(n, v, e) for the maximum number of edges in a 3-uniform hypergraph on n vertices
which does not contain a (v, e)-configuration. In 1973, Brown, Erdős and Sós [1, 2] initiated the
study of this function for various values of v and e. The following conjecture, named after them, is
one of the most famous open problems in extremal combinatorics.

Conjecture 1.1 (Brown–Erdős–Sós conjecture [1, 2]). For every e ≥ 3, we have f(n, e + 3, e) =
o(n2).

The first result in this direction was the famous (6, 3)-theorem shown by Ruzsa and Szemerédi
[13], who proved that f(n, 6, 3) = o(n2), thus establishing Conjecture 1.1 in the case e = 3. This
result has important implications in number theory. For instance, it implies Roth’s theorem which
states that any dense subset of first n integers contains a three term arithmetic progression. To this
day, e = 3 is the only instance of the Brown-Erdős-Sós conjecture which has been resolved.

Therefore, a large amount of work has been put into proving approximate versions of Conjec-
ture 1.1. For instance, a classical result of Sárközy and Selkow [14] from 2004 is the following.

Theorem 1.2 (Sárközy and Selkow [14]). For every e ≥ 3, we have f(n, e+⌊log2 e⌋+2, e) = o(n2).
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For many years this result has been the state-of-the-art before Solymosi and Solymosi [16] showed
that f(n, 14, 10) = o(n2), thus improving the Sárközy-Selkow theorem for e = 10 which only gave
f(n, 15, 10) = o(n2). In a recent breakthrough, Conlon, Gishboliner, Levanzov and Shapira [4] ex-
tended the ideas of Solymosi and Solymosi significantly to show that f(n, e+O(log e/ log log e), e) =
o(n2).

An important feature of all of the above proofs is their heavy use of the regularity lemma, both
in the graph and the hypergraph setting. This means that the bounds they obtain on f(n, v, e) are
barely below quadratic.

Motivated by various applications, Gowers and Long [9] asked to obtain a power-type im-
provement for the Brown–Erdős–Sós problem. They had made the surprising conjecture that
f(n, e + 4, e) = O(n2−ε) for all e ≥ 3 and some ε > 0 potentially depending on e. They showed
that even proving the special case f(n, 9, 5) = O(n2−ε) of this conjecture would answer a question
of Ruzsa [12] on sets of integers avoiding solutions to a certain linear equation. One cannot expect
to strengthen Conjecture 1.1 to state f(n, e + 3, e) = O(n2−ε) since there are n-vertex 3-uniform
hypergraphs with n2−o(1) edges avoiding (e + 3, e)-configurations, for e ∈ {3, 4, 5, 7, 8}. More pre-
cisely, Ruzsa and Szemerédi [13] constructed a graph with n vertices and n2−o(1) edges avoiding
(6, 3)-configurations. Moreover, it is not hard to see that every (7, 4)- and (8, 5)-configuration con-
tains a (6, 3)-configuration as a subhypergraph, and hence the Ruzsa-Szemerédi construction also
shows that f(n, 7, 4) ≥ n2−o(1) and f(n, 8, 5) ≥ n2−o(1). Recently, lower bounds of the same type
for f(n, 10, 7) and f(n, 11, 8) were also found by Ge and Shangguan [7]. Hence, in some sense, the
conjecture of Gowers and Long is the strongest possible.

Conlon, Gishboliner, Levanzov and Shapira [4], and later, Shapira and Tyomkyn [15] reiterated
the following approximate version of the Gowers-Long conjecture. What is the smallest function
d = d(e) for which f(n, e + d, e) = O(n2−ε) for some ε = ε(e) > 0? In this paper we prove the
following, which can be thought of as a version of the Sárközy-Selkow theorem with power saving.

Theorem 1.3. For every e ≥ 3, there exists some ε > 0 such that f(n, e+⌊log2 e⌋+38, e) = O(n2−ε).

We remark that the weaker bound f(n, e+O(log2 e), e) = O(n2−ε) was independently proved by
different groups of authors. Indeed, a bound of this form was obtained by Conlon [3], by Gishboliner,
Levanzov and Shapira [8] and by Gao et. al. [6], using different techniques from one another. The
purpose of our paper is to show that we obtain power saving already near the Sárközy-Selkow
bound, at the cost of a small additive constant. Note that in order to obtain power saving in the
Sárközy-Selkow bound when e = 3, an additive constant is necessary because, as remarked earlier,
there exist n-vertex 3-uniform hypergraphs with n2−o(1) edges avoiding a (6, 3)-configuration.

The value of our small additive constant comes from the fact that while our methods allow us
to construct large configurations whose number of edges is not much smaller than the number of
vertices, they do not allow us to control the exact number of edges easily. Hence, we have to perform
a final cleaning step in which we take edges out of our configuration until exactly e edges remain,
and this is where the constant 38 comes from.

1.1 Proof overview and notation

A natural way to think about the Brown-Erdős-Sós conjecture is in terms of the deficiency. Namely,
for a 3-uniform hypergraph F , we define the deficiency of F , denoted by ∆(F ), as the difference
between the number of vertices and edges of F , i.e. ∆(F ) = v(F ) − e(F ). Throughout the paper,
we will often consider deficiencies of subgraphs of F . So for a set of vertices U ⊂ V (F ), we define
the deficiency of U as the deficiency of the subgraph of F induced by U and write ∆(U) = ∆(F [U ]).
In this language, Conjecture 1.1 asks to show that in a 3-uniform hypergraph H with Ω(n2) edges
one can always find a subhypergraph F ⊆ H with e(F ) = e and ∆(F ) = 3.

Before we explain how the proof of Theorem 1.3 works, let us present a toy version of our
proof which shows that any hypergraph H with n vertices and ω(n7/4) edges contains a (13, 8)-
configuration. This proof would have two steps - the first would be to find many copies of a given

2



x1 y1

x2y2

z1

z2

z3

z4

x1 y1

x2y2

x′1 y′1

x′2y′2

z1 = z′1

z2 = z′2

z3 = z′3

z4 z′4

Figure 1: (8, 4)- and (13, 8)-configurations

(8, 4)-configuration and then to glue two of them together to obtain a (13, 8)-configuration. Using
standard arguments, we may assume that H is linear and tripartite with parts X,Y, and Z.

We define a bipartite graph between X and Y where (x, y) ∈ X × Y is an edge precisely when
there is a vertex z ∈ Z such that xyz ∈ E(H). This graph contains ω(n7/4) edges and thus it contains
ω(n3) four-cycles. Each of these four-cycles corresponds to a homomorphic copy of the hypergraph
F in H, where F has 8 vertices x1, x2, y1, y2, z1, z2, z3, z4 and 4 edges x1y1z1, x2y1z2, x2y2z3, x1y2z4.
In fact, it is not hard to see that most copies of F are non-degenerate, thus showing that we have
ω(n3) actual copies of F in H.

We may further randomly partition X = X1 ∪ X2, Y = Y1 ∪ Y2 and Z = Z1 ∪ Z2 ∪ Z3 ∪ Z4

such that the number of copies of F with xi ∈ Xi, yi ∈ Yi for each 1 ≤ i ≤ 2 and zi ∈ Zi for each
1 ≤ i ≤ 4 is still ω(n3). Thus, we must have two different copies of F with vertex-sets {x1, . . . , z4}
and {x′1, . . . , z′4}, which satisfy z1 = z′1, z2 = z′2 and z3 = z′3 (see Figure 1). Note that the sets
{x1, x2, y1, y2} and {x′1, x′2, y′1, y′2} are disjoint since H is linear. Indeed, suppose x1 = x′1 (note that
x1 may coincide only with x′1 because of our partition into sets X1, . . . , Z4). Then, since z1 = z′1,
the linearity of H implies y1 = y′1. Similarly, since z2 = z′2, we must also have x2 = x′2. Further,
we also get y2 = y′2 and so z4 = z′4, demonstrating that the two copies of F we started with were
actually the same copy, a contradiction. An almost identical argument leads to a contradiction if
x2 = x′2, y1 = y′1 or y2 = y′2 instead.

This argument leaves us with only two cases - either there are many copies of F which overlap on
the four vertices z1, z2, z3, z4 or there are many pairs of copies of F which overlap only on z1, z2, z3,
in which case we obtain many non-degenerate copies of our (13, 8)-configuration. We will see this
dichotomy in the main proof as well, where starting with many copies of the small hypergraph F
in H, we will either be able to find many copies of F glued along a set of deficiency at least ∆(F )
(in which case, by taking the union of many such copies we obtain a hypergraph with many edges
but with deficiency still at most ∆(F )) or we will be able to find many pairs of copies of F which
are glued in a non-degenerate way along an independent set of size ∆(F )− 1. This produces many
copies of a new hypergraph F ′, which allows us to try to repeat the above argument with F ′ replaced
by F . The main difficulty lies in controlling the overlaps which may arise, so that we can continue
the iteration and obtain the required bound on the deficiency.

Let us now briefly sketch how the ideas from this toy proof can be extended to show Theorem 1.3.
On a very high level, the idea is to glue together smaller hypergraphs without increasing their
deficiency too much in order to construct large structures with small deficiency. The first step of
our proof will be to construct a sequence of hypergraphs F0, F1, . . . , Fℓ such that e(Fj) = 2je(F0) and
∆(Fj) = ∆(F0)+ j, where for every 0 ≤ j ≤ ℓ−1, Fj+1 is obtained by gluing two copies of Fj over a
set of deficiency ∆(Fj)−1. More precisely, the hypergraph Fj will have a designated independent set
Aj of size ∆(Fj)−1 and the hypergraph Fj+1 will consist of two copies of Fj which overlap precisely
on this independent set Aj. Thus, we have e(Fj+1) = 2e(Fj) and v(Fj+1) = 2v(Fj) − ∆(Fj) + 1,
giving ∆(Fj+1) = ∆(Fj) + 1.
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Then, the hope would be to show by induction that there are at least n∆(Fj)−O(ε) copies of Fj

in H for every 0 ≤ j ≤ ℓ. If this statement holds for the hypergraph Fj , then for each of its copies
in H we mark the set of ∆(Fj)− 1 vertices of H corresponding to the independent set Aj ⊂ V (Fj).
A typical set of ∆(Fj)− 1 vertices of H is then marked at least n1−O(ε) times, so there are at least
n∆(Fj)−1(n1−O(ε))2 pairs of copies of Fj overlapping on the set of vertices corresponding to Aj . If
most of these pairs produce actual copies of Fj+1, i.e. if they do not have additional overlaps outside
the set Aj , then H contains Ω(n∆(Fj)+1−O(ε)) = Ω(n∆(Fj+1)−O(ε)) copies of Fj+1, which is sufficient
to prove our induction step and continue our iteration. However, it is possible that most of these
pairs will not give actual copies of Fj+1 and in this case we will show that there exist many copies
of Fj overlapping over the exact same set of vertices U ⊂ V (Fj) with the property that Aj ( U ,
thus forming a sunflower-like structure. If we define the independent set Aj carefully, we will be
able to show that for any U ⊂ V (Fj) with Aj ⊂ U and Aj 6= U , we have ∆(U) ≥ ∆(Fj). In
particular, this means that if Aj ⊂ U and Aj 6= U , then every new copy of Fj glued over the set
U contributes at least as many edges as it contributes vertices. This means that we can grow our
structure arbitrarily without increasing its deficiency, which is precisely what we want.

One feature of our proof is that we are not able to control the configuration that we get exactly.
This is because we can only show that H either contains hypergraphs Fj (up to a certain value of
j) or a sunflower-like structure whose petals do not add any deficiency. Since our argument will
not necessarily produce a (v, e)-configuration for some pre-specified e ≥ 3, a final stage of cleaning
is needed in order to turn the configuration we obtain into a configuration with exactly e edges. In
order to do this, we inductively maintain the property that most of the vertices in Fj have degree 1
(for each j). Thus, if we find a configuration with many more edges and vertices than we need, we
can remove several vertices of degree 1 from the configuration without changing its deficiency until
the number of edges is exactly e.

Organisation of the paper. In Section 2.1 we formally define the conditions we require the
hypergraphs F0, . . . , Fℓ to satisfy and show how to construct Fj+1 from Fj so that all of these
properties are maintained. We will also define F0 and show how to find many copies of F0 in any
linear hypergraph with Ω(n2−ε) edges. Then, in Section 2.2 we show how to use the fact that
H contains many copies of Fj to either find many copies of Fj+1 in H or to find a sunflower-like
structure. We then use this, along with a procedure which shows how to remove the degree 1
vertices from a sunflower-like structure to obtain a (v, e)-configuration for suitable values of v and
e, to complete the proof of Theorem 1.3.

2 Proof of Theorem 1.3

2.1 Construction of eligible hypergraphs

As discussed in the proof overview, our aim is to construct a sequence of hypergraphs F0, . . . , Fℓ

satisfying certain properties. In this section we will state these properties precisely. In particular,
we will show how to construct Fj+1 from Fj while making sure that all the necessary properties are
maintained. To be able to state these properties, we need to introduce a special kind of independent
set in a hypergraph, which is particularly suited for gluing along it.

Definition 2.1. Let F be a 3-uniform hypergraph. We say that an independent set A ⊆ V (F ) is
good if for any set U ) A, we have ∆(U) ≥ |A|+ 1.

Note that the collection of good sets is closed under taking subsets. To see this, suppose that we
have a good set A ⊂ V (F ) and A′ ⊂ A. To show that A′ is good, we need to verify that for any
U ) A′ one has ∆(U) ≥ |A′| + 1. If U ⊂ A, this is clear since U must be an independent set and
hence ∆(U) = |U | ≥ |A′| + 1. Otherwise, by using that A is good and that A ( U ∪ A we obtain
∆(U ∪A) ≥ |A|+ 1. This allows us to show the desired bound on ∆(U) as follows.

∆(U) = v(F [U ])− e(F [U ]) ≥ v(F [U ∪A])− |A\U | − e(F [U ∪A])

≥ ∆(U ∪A)− |A\A′| ≥ |A| − |A\A′|+ 1 = |A′|+ 1.

4



This discussion allows us to conclude that for any good set A and any set U ⊆ V (F ) not fully
contained in A, the set A ∩ U is also a good set and therefore ∆(U) ≥ |A ∩ U |+ 1.

Our definition of good sets vaguely resembles Definition 2.3 in the paper of Conlon, Gishboliner,
Levanzov and Shapira [4]. Namely, they consider independent sets A of size ∆(F ) + 1 with the
property that the deficiency of any set U ⊂ V (F ) is roughly controlled by |A ∩ U |. However, their
definition is more complex than ours, because their gluing procedure (relying on the hypergraph
regularity lemma) glues several copies of the hypergraph at a time instead of 2 as in our paper.

Definition 2.2. A 3-uniform hypergraph F with ∆(F ) = k ≥ 1 is eligible if it satisfies the following
properties:

(i) there are two disjoint good sets A,B ⊂ V (F ) of size |A| = |B| = k − 1,

(ii) there exist distinct vertices u, v ∈ V (F ) \ (A ∪B),

(iii) there are at most e(F )/4− k vertices of F with degree more than 1. Moreover, every edge of
F contains at most one vertex of degree 1, F has no isolated vertices, and

(iv) every U ⊆ V (F ) of size |U | ≥ 2 satisfies ∆(U) ≥ 2.

The following lemma shows how to construct the hypergraph Fj+1 based on Fj and shows that the
eligibility is maintained under this construction.

Lemma 2.3. Let F be an eligible hypergraph with ∆(F ) = k. Suppose F ′ is the hypergraph obtained
by taking two vertex-disjoint copies of F and only identifying the vertices of the sets A in both copies.
Then F ′ is an eligible hypergraph with ∆(F ′) = k + 1 and e(F ′) = 2e(F ).

Proof. Let us denote the two copies of F by F1 and F2. Since A is an independent set, no edges of
F1 and F2 are identified and hence we have e(F ′) = 2e(F ). Moreover, since exactly k − 1 vertices
are identified, we have v(F ′) = 2v(F ) − (k − 1) and therefore

∆(F ′) = v(F ′)− e(F ′) = 2v(F ) − (k − 1)− 2e(F ) = 2k − (k − 1) = k + 1.

F1 F2

v1

u1

B1 v2

u2

B2

U ′

A

Figure 2: Illustration of the proof of Lemma 2.3.

It remains to show that F ′ is an eligible hypergraph. We begin by introducing some notation
and defining the sets A′, B′ and vertices u′, v′ satisfying the conditions (i) and (ii) of Definition 2.2.

For i ∈ {1, 2}, since Fi is eligible, it contains a good set Bi disjoint from A, and additional
vertices ui, vi ∈ V (Fi) \ (A ∪ Bi). To show that F ′ is eligible we define two sets A′ := B1 ∪ {v2},
B′ := B2∪{v1}, along with additional vertices u′ := u1 and v′ := u2. Note that u

′ and v′ are distinct
and u′, v′ ∈ V (F ′) \ (A′ ∪B′), verifying the second condition in Definition 2.2. Finally, for every set
U ′ ⊂ V (F ′), we define the sets U (1) = U ′ ∩ V (F1) and U (2) = U ′ ∩ V (F2).

Let us now show that A′, B′ ⊂ V (F ′) are good sets with respect to F ′. Since the definitions of
A′ and B′ are completely symmetric, it suffices to verify the conditions for only one of these sets, say
A′. Note that |A′| = |B1|+1 = k = ∆(F ′)− 1, which shows that A′ has the required size. Further,
A′ is an independent set since there are no edges between F1\A and F2\A, and so, in particular,
there are no edges between B1 and v2. To show that A′ is a good set we need to show that for any

5



set U ′ with A′ ( U ′ ⊆ V (F ′) one has ∆(U ′) ≥ |A′|+1 = k+1. We will establish this inequality by
using the properties of good sets B1 ⊆ V (F1) and A ⊆ V (F1). We have two cases: either U (1) ) B1

or U (1) = B1 (since A′ = B1 ∪ {v2} ⊂ U ′, we must have B1 ⊆ U (1)).
In the case that U (1) ) B1, we use the assumption that B1 is a good set in F1 to conclude

∆(U (1)) ≥ |B1| + 1. Furthermore, we know that A ∩ U (2) is a good set in F2 and A ∩ U (2) ( U (2)

since v2 ∈ U (2). Thus, we have ∆(U (2)) ≥ |A ∩ U (2)| + 1 = |A ∩ U ′| + 1. These two bounds on
∆(U (1)) and ∆(U (2)) are sufficient to bound the deficiency of U ′ in F ′ as follows.

∆(U ′) = v(F ′[U ′])− e(F ′[U ′])

= v(F1[U
(1)]) + v(F2[U

(2)])− |U (1) ∩ U (2)| − e(F1[U
(1)])− e(F2[U

(2)])

= ∆(U (1)) + ∆(U (2))− |A ∩ U ′| ≥ |B1|+ 1 + |A ∩ U ′|+ 1− |A ∩ U ′| = |B1|+ 2 = k + 1.

In the case that U (1) = B1, there are no vertices in U (1) ∩U (2) = U (1) ∩A and there are at least
two vertices in U (2) since B1 ∪ {v2} ( U ′. Hence, ∆(U (1)) = |B1| since B1 is an independent set,
and ∆(U (2)) ≥ 2 since F2 satisfies condition (iv) of Definition 2.2. Hence,

∆(U ′) = v(F1[U
(1)]) + v(F2[U

(2)])− e(F1[U
(1)])− e(F2[U

(2)])

= ∆(U (1)) + ∆(U (2)) ≥ |B1|+ 2 = k + 1.

This completes the proof that A′ is a good set, thus verifying the first condition (of Definition 2.2)
for F ′ to be eligible. Further, to show that F ′ satisfies the third condition, note that any vertex
of F ′ having degree more than 1 is either in A or it already had degree more than 1 in F1 or F2.
Hence, there are at most 2(e(F )/4− k) + k− 1 = e(F ′)/4− k− 1 vertices of degree more than 1 in
F ′. Moreover, it is clear that every edge of F ′ has at most one vertex of degree 1, since any vertex
with degree 1 in F ′ must also have degree 1 in F1 or F2. It is also clear that F ′ has no isolated
vertex, since F1 and F2 do not have an isolated vertex.

Finally, to show that F ′ satisfies the fourth condition, we now verify that every set U ′ ⊆ V (F ′)
of size |U ′| ≥ 2 satisfies ∆(U ′) ≥ 2. Suppose for a contradiction that there is a set U ′ ⊆ V (F ′)
of size |U ′| ≥ 2 such that ∆(U ′) ≤ 1. Then, the assumption that F1 and F2 are eligible implies
that we cannot have U (1) = U ′ or U (2) = U ′. This means that both U (1) and U (2) contain vertices
outside A. Since A∩U ′ is a good set for both F1 and F2, we know that ∆(U (1)) ≥ |A∩U ′|+1 and
∆(U (2)) ≥ |A ∩ U ′|+ 1. Thus,

∆(U ′) = v(F1[U
(1)]) + v(F2[U

(2)])− |U (1) ∩ U (2)| − e(F1[U
(1)])− e(F2[U

(2)])

= ∆(U (1)) + ∆(U (2))− |A ∩ U ′| ≥ |A ∩ U ′|+ 2 ≥ 2,

completing the proof of the lemma.

To start the iteration, we need to show how to find eligible graphs. The following lemma shows how
to construct an eligible hypergraph F0 and find many copies of it in H.

Lemma 2.4. Let 1 ≤ s ≤ t be positive integers. Let K+
s,t be the hypergraph obtained by adding a

single vertex ve to every edge e ∈ E(Ks,t) of the complete bipartite graph Ks,t. For any 0 < ε < 1/s3t
and sufficiently large n, every linear hypergraph H with n vertices and Ω(n2−ε) edges contains
Ω(ns+t−s3tε) copies of K+

s,t. Moreover, if 8(s + t) ≤ st, the hypergraph K+
s,t is eligible and satisfies

∆(K+
s,t) = s+ t and e(K+

s,t) = st.

Proof. To show that every linear hypergraph H with Ω(n2−ε) edges contains many copies of K+
s,t,

we take a tripartite subgraph H′ ⊆ H containing Ω(e(H)) edges and whose parts all have size at
least n/4 (which can be done by randomly partitioning the vertex set). Let us denote the three
parts by X,Y,Z, and consider an auxiliary colored graph G on the vertex set X ∪ Y . Vertices
x ∈ X, y ∈ Y are adjacent in G precisely when there exists a vertex z ∈ Z such that xyz is an edge
of H. In this case, the edge xy receives color z. Since H is linear, each edge of G is assigned a
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unique color. Furthermore, the coloring is proper for the same reason. Finally, G contains Ω(n2−ε)
edges and Θ(n) vertices.

The reason behind defining the graph G is the simple observation that every rainbow copy of
Ks,t in G corresponds to a copy of K+

s,t in H. Hence, it suffices to show that there are Ω(ns+t−s3tε)
rainbow copies of Ks,t in G. To do this, we use a simple lemma from the paper of Keevash,
Mubayi, Sudakov and Verstraëte [10] which states that in any properly colored copy of Ks,t′ , for
t′ > (s(s − 1) + 1)(t − 1) one can find a rainbow copy of Ks,t. Let us fix t′ = s2t and use the
supersaturation of Ks,t′ in G to obtain at least Ω(ns+t′−st′ε) copies of Ks,t′ in G (see e.g., the
Kővári-Sós-Turán theorem [11]). Then, using Lemma 2.3 from [10], in each of these copies one can
find a rainbow copy of Ks,t. Since each copy of Ks,t is contained in at most nt′−t copies of Ks,t′ , we

conclude that we have at least Ω(n
s+t′−st′ε

nt′−t
) = Ω(ns+t−st′ε) = Ω(ns+t−s3tε) rainbow copies of Ks,t,

as desired.
The number of edges of K+

s,t is equal to the number of edges of Ks,t and so e(K+
s,t) = st.

Further, since we add a new vertex to Ks,t for every edge, the total number of vertices of K+
s,t is

v(K+
s,t) = s+ t+ st and so ∆(K+

s,t) = s+ t.

Finally, if 8(s + t) ≤ st, then we will show that K+
s,t is eligible. Note that if T is a spanning

tree of Ks,t, then the set AT = {ve|e ∈ T} is a good set of size s + t − 1 = ∆(K+
s,t) − 1. To verify

this observation, let us take an arbitrary set U ) AT and show that ∆(U) ≥ |AT | + 1. First,
observe that the statement is trivial if U ∩ V (Ks,t) = ∅ since in this case U is an independent
set and ∆(U) = |U |. Hence, assume that U ∩ V (Ks,t) 6= ∅. Now note that it suffices to show
∆(U) ≥ |AT |+ 1 only for sets U completely contained within AT ∪ V (Ks,t). Once the statement is
shown for such sets U , adding vertices outside AT ∪V (Ks,t), which all have degree exactly 1 in K+

s,t,
cannot decrease the deficiency of U . Hence, we focus on sets U with AT ( U ⊆ AT ∪ V (Ks,t). The
number of edges of K+

s,t spanned by such a set U is precisely the number of edges of T spanned by

the intersection U ∩ V (Ks,t), i.e. e(K+
s,t[U ]) = e(T [U ∩ V (Ks,t)]). Since T is a tree, we must have

e(T [U ∩ V (Ks,t)]) ≤ |U ∩ V (Ks,t)| − 1 and so

∆(U) = |AT |+ |U ∩ V (Ks,t)| − e(K+
s,t[U ]) ≥ |AT |+ |U ∩ V (Ks,t)| − |U ∩ V (Ks,t)|+ 1 = |AT |+ 1.

Hence, to construct two disjoint good sets in K+
s,t of size ∆(K+

s,t)−1 = s+t−1, it suffices to take
two edge-disjoint spanning trees of Ks,t, which is certainly possible as the condition st ≥ 8(s + t)
implies s, t ≥ 9 (verifying (i) of Definition 2.2). Of course, K+

s,t contains two distinct additional
vertices besides these good sets (verifying (ii) of Definition 2.2). Further, the vertices of degree more
than 1 in K+

s,t are precisely the initial vertices of Ks,t and we have at most s + t ≤ st/4 −∆(K+
s,t)

such vertices by the assumption that st ≥ 8(s + t). Moreover, every edge of K+
s,t contains exactly

one vertex of degree 1 and K+
s,t has no isolated vertex (verifying (iii) of Definition 2.2). Finally,

since every edge of K+
s,t contains a distinct vertex of degree 1 and two vertices of V (Ks,t), any set

of e edges of K+
s,t must contain at least e + 2 distinct vertices. This shows that there are no sets

U ⊂ V (K+
s,t) of deficiency ∆(U) ≤ 1 and size |U | ≥ 2 (verifying (iv) of Definition 2.2). Hence, K+

s,t

is eligible.

2.2 Iteration

We begin this section by showing that if we have many copies of a smaller hypergraph Fj in H, then
we can either glue them together to produce many copies of a larger hypergraph Fj+1 or we find an
alternative structure in H (as mentioned in the proof overview). We now define this structure.

Definition 2.5. Let F be a hypergraph and let r be a positive integer. A hypergraph F̃ is an
(r, F )-sunflower if there exists a set U ( V (F ) with ∆(U) ≥ ∆(F ) and r embeddings ϕ1, . . . , ϕr :
V (F ) → V (F̃ ) satisfying the following two conditions:

(i) the embeddings ϕ1, . . . , ϕr cover F̃ , i.e.
⋃r

i=1 ϕi(V (F )) = V (F̃ ), and
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(ii) for different indices 1 ≤ i < j ≤ r we have ϕi(u) = ϕj(v) if and only if u = v ∈ U . In
particular, the sets ϕi(V (F )\U) and ϕj(V (F )\U) are disjoint when i 6= j.

The main reason sunflowers are useful for us is that the deficiency of F̃ is bounded by the
deficiency of F . Indeed, v(F̃ ) = |U |+ r(v(F )−|U |) and e(F̃ ) = e(F [U ])+ r(e(F )− e(F [U ])), so the
deficiency of F̃ can be bounded as follows. ∆(F̃ ) = v(F̃ )− e(F̃ ) = ∆(F )+ (r− 1)(∆(F )−∆(U)) ≤
∆(F ).

The following lemma, whose proof uses ideas from the proof of Lemma 3.1 in [4], shows that
any hypergraph H with many copies of F contains either an (r, F )-sunflower or many copies of F ′

(obtained by gluing copies of F ). In the proof of Theorem 1.3 we will mostly use this lemma with
m = 2.

Lemma 2.6. Let r,m ≥ 2 be fixed integers and let F be an eligible hypergraph with deficiency
∆(F ) = k. Then, there exists a hypergraph F ′ satisfying ∆(F ′) = k +m− 1, e(F ′) = m · e(F ) and
a positive constant n0 = n0(r,m,F ) with the following property: for all ε ≤ 1/2 and all hypergraphs
H on n > n0 vertices containing Ω(nk−ε) copies of F , either

• H contains an (r, F )-sunflower, or

• H contains Ω(nk+m−1−mε) copies of F ′.

Moreover, if m = 2, the resulting graph F ′ is also eligible.

Proof. We take F ′ to be the hypergraph obtained by gluing m copies of F along a good set
A ⊂ V (F ) of size k− 1. In other words, to obtain F we start from m disjoint copies F (1), . . . , F (m)

and for each vertex v ∈ A we identify them instances of that vertex with each other. For m = 2, this
construction is identical to the construction from Lemma 2.3 and therefore the resulting hypergraph
F ′ is indeed eligible.

We now focus on proving the main statement of the lemma. Throughout the proof, we identify
the vertex set of F with [v(F )], where the set A ⊂ V (F ) is identified with [k − 1], and we think of
copies of F in H as embeddings ϕ : V (F ) → V (H). As a first step, we randomly partition vertices
of H into v(F ) parts S1, . . . , Sv(F ). We call a copy of F proper if the corresponding embedding
ϕ : [v(F )] → V (H) satisfies ϕ(i) ∈ Si for all i ∈ V (F ). The expected number of proper copies of F
is v(F )−v(F ) times the total number of copies of F in H. Hence, we can fix a partition S1, . . . , Sv(F )

with Ω(nk−ε) proper copies of F . Let us denote the collection of these copies by F . For two
embeddings ϕ1, ϕ2 ∈ F , we define their intersection U(ϕ1, ϕ2) = {i ∈ V (F ) : ϕ1(i) = ϕ2(i)}. The
random partitioning we performed ensures that any overlap between two copies ϕ1, ϕ2 ∈ F can only
happen on the vertices playing the same role in both copies, i.e. we can never have ϕ1(i) = ϕ2(j)
for i 6= j. Formally, for any ϕ1, ϕ2 ∈ F we have ϕ1(V (F )) ∩ ϕ2(V (F )) = ϕ1(U(ϕ1, ϕ2)).

We now define an auxiliary graph G whose set of vertices is F . We define two copies ϕ1, ϕ2 ∈ F
to be adjacent in G if A ( U(ϕ1, ϕ2). We now have two cases - either the auxiliary graph G has a
vertex of degree at least v(F )!(2r)v(F ) or all vertices of G have degree less than v(F )!(2r)v(F ).

Suppose we are in the first case and we have an embedding ϕ0 : V (F ) → V (H) with at least
v(F )!(2r)v(F ) neighbours in G. Then, by the pigeonhole principle one can find a set U0 such that
at least v(F )!rv(F ) embeddings ϕ ∈ NG(ϕ0) satisfy U(ϕ,ϕ0) = U0. We denote the set of these
embeddings by F0. Let us now recall the Erdős-Rado sunflower lemma, which we plan to apply to
the vertex sets of the copies of F in F0.

Theorem (Erdős-Rado sunflower lemma, [5]). Let S be a family of sets, where each set has cardinal-
ity k. If |S| ≥ k!(r−1)k, there exist r distinct sets S1, . . . , Sr ∈ S which satisfy Si∩Sj = S1∩· · ·∩Sr

for any 1 ≤ i < j ≤ r.

We apply the Erdős-Rado sunflower lemma to the family S = {ϕ(V (F ))|ϕ ∈ F0}. Note that each set
in this family has cardinality v(F ). Since |S| ≥ v(F )!rv(F ), we obtain a set of r different embeddings
ϕ1, . . . , ϕr and a set U ( V (F ) such that U(ϕi, ϕj) = U for all i, j ∈ [r], i 6= j. We claim that the
union of these r copies of F forms an (r, F )-sunflower contained in H. Since U(ϕ0, ϕi)∩U(ϕ0, ϕj) ⊆
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U(ϕi, ϕj) for all i, j ∈ [r], we see that U0 ⊆ U . By the definition of the adjacency relation in G,
we have A ( U0 ⊂ U and therefore the set U has deficiency ∆(U) ≥ |A| + 1 = ∆(F ). Hence,
⋃r

i=1 ϕi(F ) really is an (r, F )-sunflower.
Now, we consider the second case, in which all vertices of G have degree less than v(F )!(2r)v(F ) .

In this case, G contains an independent set I of size at least |V (G)|
v(F )!(2r)v(F ) = Ω(nk−ε). For each

(k − 1)-tuple v = (v1, . . . , vk−1) ∈ S1 × · · · × Sk−1 representing the vertices of A, we define Fv to
be the set of embeddings ϕ ∈ I having ϕ(i) = vi for all i ∈ [k − 1]. Note that any two embeddings
ϕ1, ϕ2 ∈ Fv have U(ϕ1, ϕ2) = A = [k−1] since they are not adjacent in the graph G. Therefore, for
any m distinct embeddings ϕ1, ϕ2, . . . , ϕm ∈ Fv, the subgraph ϕ1(F ) ∪ . . . ∪ ϕm(F ) of H is a copy

of F ′. In particular, this shows that there are Ω
(

(|Fv|
m

)

)

copies of F ′ containing the (k − 1)-tuple

v. Since the copies of F ′ corresponding to different (k − 1)-tuples v are different, the number of
copies of F ′ in H is at least

∑

v∈S1×···×Sk−1

|Fv|≥m

(|Fv|
m

)

. Since x 7→
(

x
m

)

is a convex function when x ≥ m,

applying Jensen’s inequality gives

∑

v∈S1×···×Sk−1

|Fv|≥m

(|Fv|
m

)

≥
k−1
∏

i=1

|Si|
(

(
∏k−1

i=1 |Si|)−1
∑

|Fv|≥m |Fv|
m

)

≥
(
∑

v
|Fv| −mnk−1

)m

mm(
∏k−1

i=1 |Si|)m−1
≥ Ω

(

nmk−mε

n(m−1)(k−1)

)

= Ω
(

nm+k−1−mε
)

,

where the last inequality comes from the fact that the sum
∑

v
|Fv| simply counts the number of

proper copies of F in H and that each of the sets S1, S2, . . . , Sk has size at most n. Therefore, H
contains Ω(nk+m−1−mε) copies of F ′, as needed. This completes the proof of the lemma.

Lemma 2.7. Suppose that F is an eligible hypergraph and suppose that a hypergraph H contains an
(r, F )-sunflower (for some r) with at least e edges. If e(F ) ≤ e/2, then H contains an (e+∆(F ), e)-
configuration.

Proof. By our assumption, H contains an (r, F )-sunflower with at least e edges. Since it is a
sunflower, it has deficiency at most ∆(F ). However, this sunflower may have too many edges and
vertices, so it does not immediately give us an (e + ∆(F ), e) configuration. Thus, the idea is to
remove some vertices of degree 1 from the copies of F forming this sunflower and thus reduce the
number of edges and vertices of the sunflower, without changing the deficiency in the process.

Suppose the copies of F forming this sunflower correspond to embeddings ϕ1, . . . , ϕr and suppose
that these copies are glued over a set U ⊂ V (F ) with ∆(U) ≥ ∆(F ). We call the set U the core
and for each copy of F forming this sunflower, we call the set P = V (F )\U a petal. Further, let
eU = e(F [U ]) denote the number of edges of F completely contained in the core and let eP =
e(F ) − e(F [U ]) denote the number of edges incident to a vertex in the petal P . The assumption
that ∆(U) ≥ ∆(F ) implies that eP ≥ |P |, which means that every petal adds at least as many
edges as vertices. Note that the sunflower constructed using only the copies ϕ1, . . . , ϕp would have
p|P |+ |U | vertices and peP + eU edges. Let us fix p to be the smallest number of petals one needs
to attach to the core to get at least e edges in the sunflower, i.e. p = ⌈e−eU

eP
⌉. Note that we may

assume that p ≥ 3 since p = 2 implies that the sunflower has exactly e edges (because we assumed
e(F ) ≤ e/2) and hence it represents an (e+∆(F ), e)-configuration.

The total number of vertices in this sunflower is p|P |+ |U | and thus if p|P | + |U | ≤ e+∆(F ),
we are done since we have found an (e+∆(F ), e)-configuration. Otherwise, p|P |+ |U | > e+∆(F ),
in which case our goal is to remove some vertices of degree 1 to obtain exactly e + ∆(F ) vertices.
Then, since the deficiency is still at most ∆(F ), this gives us the desired (e+∆(F ), e)-configuration.
We claim that it is always sufficient to remove at most |P | vertices of degree 1 in order to bring the
number of vertices to e+∆(F ). Indeed, note that although the number of vertices of the sunflower
formed by ϕ1, . . . , ϕp is larger than e+∆(F ), it cannot be much larger. Namely, by the minimality
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of p we have (p− 1)eP + eU ≤ e and so

p|P |+ |U | = (p− 1)|P | + v(F ) ≤ (p− 2)eP + |P |+ e(F ) + ∆(F )

= (p− 1)eP + eU + |P |+∆(F ) ≤ e+∆(F ) + |P |.

Thus, it suffices to show that the sunflower consisting of ϕ1, . . . , ϕp has at least |P | vertices of
degree 1. Let vU denote the number of vertices v of U such that v has degree 1 in F and the edge
incident to v does not contain any vertices of P , and let vP be the number of vertices of P which
have degree 1. Then the number of vertices of degree 1 in the sunflower consisting of ϕ1, . . . , ϕp is
equal to vU + pvP . Our goal is to show that vU + pvP ≥ |P |. Suppose this is not the case and we
have vU + pvP < |P |. Since F is eligible, at most e(F )/4 vertices in the hypergraph F can have
degree more than 1, so we have vP ≥ |P | − e(F )/4. We know that p ≥ 3, so vU < |P | − 3vP .

Since F is eligible, at least 3e(F )/4 vertices in F have degree 1 and moreover, every edge of
F contains at most one vertex of degree 1. So there are at least 3e(F )/4 edges in F incident to a
vertex of degree 1. Out of these, only vU are completely contained in U . Thus, the number of edges
incident to P is at least

eP ≥ 3e(F )/4 − vU ≥ 3e(F )/4 − |P |+ 3vP ≥ 3e(F )/4 − |P |+ 3(|P | − e(F )/4) = 2|P |.

In other words, every petal adds twice as many edges as vertices. We will show that this
contradicts our assumption that p|P |+ |U | > e+∆(F ). More precisely, we have

p|P |+ |U | ≤
(

e− eU
eP

+ 1

)

|P |+ |U | ≤ e

eP
|P |+ |P |+ |U |

≤ e

eP
|P |+ v(F ) ≤ e

2
+ e(F ) + ∆(F ) ≤ e+∆(F ),

since e(F ) ≤ e/2. This completes the proof of the lemma.

Now we have all the necessary ingredients to prove Theorem 1.3.

Proof of Theorem 1.3. Throughout the proof, we will assume that we have a linear hypergraph
H with Ω(n2−ε) edges, where ε < e−5 and e is the required number of edges in the final configuration.
Note that the assumption that H is linear is without any loss of generality, since if any of the pairs
(x, y) ∈ V (H)2 was in at least e edges then we would have an (e + 2, e)-configuration. Hence, one
can keep a positive constant (dependent only on e) fraction of all edges in H while ensuring that
no pair (x, y) ∈ V (H)2 appears in more than one edge.

In case e is small, say e < 512, we can use Lemma 2.4 to find many copies of K+
⌈√e⌉,⌈√e⌉ in H.

The deficiency of this hypergraph is 2⌈√e⌉ ≤ ⌊log2 e⌋+38 as long as e < 512, which is sufficient for
the proof of our theorem in this case.

For e ≥ 512, we apply Lemma 2.4 with s = t = 16 to find an eligible hypergraph F0 such that
H contains Ω(nk0−s3tε) copies of F0, where k0 = ∆(F0) = 32. Note that e(F0) = 256. Let us now
fix the parameters r = e and ℓ = ⌊log2 e/e(F0)⌋ − 1 (where ℓ ≥ 0 since e ≥ 512). Observe that the
parameters were chosen so that 2ℓs3tε ≤ 1/2. Having fixed these parameters, we will show how to
find a (v, e)-configuration in H with v − e ≤ ⌊log2 e⌋+ 26.

The idea is to iteratively apply Lemma 2.6 with m = 2 to construct a sequence of eligible
hypergraphs F0, F1, F2, . . . , Fℓ with the property that either H contains an (r, Fj)-sunflower for

some 0 ≤ j ≤ ℓ or H contains Ω(nk0+j−2jε′) copies of Fj for each hypergraph Fj in this sequence,
where ε′ = s3tε. Indeed, the construction of this sequence is given by Lemma 2.6, where we set
Fj+1 = F ′

j for every 0 ≤ j ≤ ℓ− 1. Since e(F ′
j) = 2e(Fj) and ∆(F ′

j) = ∆(Fj) + 1, this construction

satisfies e(Fj) = 2je(F0) and ∆(Fj) = ∆(F0) + j for all 0 ≤ j ≤ ℓ. If we assume that H does not
contain an (r, Fj)-sunflower for any 0 ≤ j ≤ ℓ, one can show by induction on j that H contains

Ω(nk0+j−2jε′) copies of Fj for each 0 ≤ j ≤ ℓ. The base case is given by Lemma 2.4, since H contains

Ω(nk0−ε′) copies of F0. For j ≥ 1, from the assumption that H contains Ω(nk0+j−1−2j−1ε′) copies of
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Fj−1 and that H contains no (r, Fj−1)-sunflower, Lemma 2.6 allows us to deduce that H contains

Ω(nk0+j−2jε′) copies of Fj , allowing us to continue the induction. Recall that the parameters were
set such that 2jε′ ≤ 2ℓs3tε ≤ 1

2 and hence Lemma 2.6 can be applied for all j ≤ ℓ.
If H contains an (r, Fj)-sunflower for some 0 ≤ j ≤ ℓ, then Lemma 2.7 shows that H contains

an (e + ∆(Fj), e)-configuration. Indeed, the assumptions of Lemma 2.7 are satisfied since e(Fj) ≤
2ℓe(F0) ≤ e

2e(F0)
e(F0) = e/2 and r = e (which implies that the sunflower has at least e edges, since

Fj has no isolated vertex). Moreover, note that finding an (e+∆(Fj), e)-configuration in H would
indeed suffice to prove Theorem 1.3 since

∆(Fj) = ∆(F0) + j ≤ 32 + ℓ ≤ 32 + ⌊log2 e/e(F0)⌋ − 1 = ⌊log2 e⌋+ 23.

The only case left to consider is when H does not contain an (r, Fj)-sunflower for any 0 ≤ j ≤ ℓ.
Applying Lemma 2.6 to Fℓ with m = 4 and using the fact we have no (r, Fℓ)-sunflower, we arrive at
the conclusion that H contains a hypergraph F ′

ℓ obtained by gluing 4 copies of Fℓ along a good set
A ⊂ V (Fℓ) of size ∆(Fℓ)− 1. The hypergraph F ′

ℓ satisfies ∆(F ′
ℓ) = ∆(Fℓ) + 3 and e(F ′

ℓ) = 4e(Fℓ) ∈
[e, 2e]. Since F ′

ℓ is formed by gluing 4 copies of Fℓ along a set of size ∆(Fℓ)−1 and Fℓ is eligible, the
number of vertices of degree more than 1 in F ′

ℓ is at most 4(e(Fℓ)/4−∆(Fℓ))+∆(Fℓ)−1 ≤ e(F ′
ℓ)/4.

Hence, F ′
ℓ contains at least v(F

′
ℓ)−e(F ′

ℓ)/4 = e(F ′
ℓ)+∆(F ′

ℓ)−e(F ′
ℓ)/4 ≥ e(F ′

ℓ)/2 vertices of degree 1,
so one can remove e(F ′

ℓ)− e ≤ e(F ′
ℓ)/2 vertices of degree 1 from F ′

ℓ without changing the deficiency
of the configuration. In this way, for any e ≥ 512, one also obtains an (e +∆(F ′

ℓ), e)-configuration
with

∆(F ′
ℓ) ≤ ℓ+ 3 +∆(F0) ≤ 32 + ⌊log2 e/e(F0)⌋+ 2 = ⌊log2 e⌋+ 26.

This completes the proof of Theorem 1.3.

3 Concluding remarks

In order to improve the coefficient of log2 e in Theorem 1.3 (or to replace it with o(log2 e)), it seems
that new ideas are needed. Our strategy was to find many copies of each of F0, F1, . . . , Fℓ, where Fi+1

is obtained by gluing two copies of Fi along an independent set of size ∆(Fi)−1. Another approach,
whose natural limit also seems to be deficiency log2 e, is as follows. Similarly to our approach in this
paper, we define a sequence H0,H1, . . . ,Hℓ of hypergraphs such that each of them has relatively
low deficiency and we can find many copies of each of them in our host hypergraph. Also, Hi+1 is
built from Hi recursively, but differently from the way we built Fi+1. To be more precise, we fix
an independent set I of size k := ∆(Hi) in Hi and a complete k-partite k-uniform hypergraph K,
and we attach a copy of Hi to K for each e ∈ E(K) by identifying I with e (in a way that all other
vertices in the copies of Hi are distinct). Let us explain why we may expect to find many copies of
these hypergraphs in our host hypergraph. Assume that we have already shown that the number
of copies of Hi in our host hypergraph is at least roughly n∆(Hi)−e(Hi)ε = nk−e(Hi)ε (which is the
expected number of copies in a random 3-uniform hypergraph with n2−ε edges). Define an auxiliary
k-uniform hypergraph K in which hyperedges are the k-sets corresponding to I in the copies of
Hi in our host graph. We expect at least nk−e(Hi)ε edges in this hypergraph, so if ε is sufficiently
small, then we indeed expect to find many copies of K in this auxiliary hypergraph, giving many
(homomorphic) copies of Hi+1. This also shows why we cannot take K to be an arbitrary k-uniform
hypergraph: this number of edges is only enough to find k-partite subgraphs. It is not hard to see
that this approach will not lead to deficiency fewer than log2 e for configurations with e edges.
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