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Point-variety incidences, unit distances and Zarankiewicz’s problem

for algebraic graphs

Aleksa Milojević∗, Benny Sudakov∗, István Tomon†

Abstract

In this paper we study the number of incidences between m points and n varieties in Fd,
where F is an arbitrary field, assuming the incidence graph contains no copy of Ks,s. We also
consider the analogous problem for algebraically defined graphs and unit distance graphs.

First, we prove that if P is a set of m points and V is a set of n varieties in FD, each of
dimension d and degree at most ∆, and in addition the incidence graph is Ks,s-free, then the
number of incidences satisfies

I(P ,V) ≤ Od,∆,s(m
d

d+1n+m).

This bound is tight when s,∆ are sufficiently large with respect to d, with an appropriate choice
of F = F(m,n). We give two proofs of this upper bound, one based on the framework of the
induced Turán problems and the other based on VC-dimension theory. In the second proof, we
extend the celebrated result of Rónyai, Babai and Ganapathy on the number of zero-patterns of
polynomials to the context of varieties, which might be of independent interest.

We also resolve the problem of finding the maximum number of unit distances which can be
spanned by a set of n points P in Fd whose unit-distance graph is Ks,s-free, showing that it is

Θd,s(n
2−

1

⌈d/2⌉+1 ).

Finally, we obtain tight bounds on the maximum number of edges of a Ks,s-free algebraic
graph defined over a finite field, thus resolving the Zarankiewicz problem for this class of graphs.

1 Introduction

In a recent work [19], we established sharp bounds on the maximum number of incidences between
m points and n hyperplanes in a d-dimensional space Fd for an arbitrary field F, under the standard
non-degeneracy condition that the incidence graph contains no copy of the complete bipartite graph
Ks,s. In this paper, we continue this line of research by establishing sharp bounds on the maximum
number of edges in incidence graphs between points and varieties, algebraic graphs, and unit distance
graphs, under the same non-degeneracy condition.

1.1 Point-Variety incidences

Given a set of points P and a family of sets V, the incidence graph of (P,V) is the bipartite graph
G(P,V) with vertex classes P and V in which an edge is drawn between x ∈ P and V ∈ V if x ∈ V .
The number of incidences in (P,V) is the number of edges of G(P,V), and it is denoted by I(P,V).
First, we consider the case when the elements of V are algebraic varieties, which are defined as
common zero sets of a collection of polynomials, see Section 2 for precise definitions.

The number of incidences between points and varieties in real space have been extensively
studied. Pach and Sharir [21, 22] proved that if P is a set of m points and V is a set of n algebraic
curves of degree at most ∆ in R2 such that G(P,V) is Ks,t-free, then

I(P,V) = Os,t,∆

(
m

s
2s−1n

2s−2
2s−1 +m+ n

)
.
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Zahl [28] and Basu and Sombra [2] extended this bound to dimension 3 and 4, respectively. Subse-
quently, Fox, Pach, Sheffer, Suk, and Zahl [13] established the following general bound in RD: if P
is a set of m points and V is a set of n varieties in RD of degree at most ∆, and G(P,V) is Ks,t-free,
then

I(P,V) = OD,s,t,∆,ε

(
m

(D−1)s
Ds−1

+εn
D(s−1)
Ds−1 +m+ n

)
, (1)

for every ε > 0. However, this bound is only known to be tight in the special case when s = 2 and
t is sufficiently large, see [24].

Here, we consider a similar problem over arbitrary fields. That is, we consider the problem of
bounding the number of incidences between points and varieties in FD, where F is an arbitrary field,
under the assumption that the incidence graph is Ks,s-free (our proofs and results remain essentially
the same if we consider the more general problem of forbidding Ks,t for t ≥ s, so we assume s = t
to simplify notation). We obtain the following theorem.

Theorem 1.1. Let P be a set of m points and let V be a set of n varieties in FD, each of dimension
d and degree at most ∆. If the incidence graph G(P,V) is Ks,s-free, then

I(P,V) ≤ Od,∆,s(m
d

d+1n+m).

Let us compare our bound with (1). As s → ∞, the bound in (1) approaches the shape

m
D−1
D n + m + n, which matches the one in Theorem 1.1 in case d = D − 1. For smaller d,

Theorem 1.1 provides even better bounds. Curiously, our bound does not depend on the dimension
D of the ambient space, it only depends on the degree and the dimension of the varieties. Moreover,
our bounds are essentially tight, as the next theorem shows.

Theorem 1.2. Let d < D be positive integers, α > 0, and m,n be positive integers such that
n = ⌊mα⌋, and m,n are sufficiently large with respect to D and α. Then there exist a prime p,
a set of m points P ⊆ FD

p and a set V of n varieties in FD
p of dimension d and degree at most

∆ = ⌈(1 + α)(d + 1)⌉2 such that G(P,V) does not contain Ks,s with s = ∆1/2, and

I(P,V) ≥ Ωd,α(m
d

d+1n).

The proof of Theorem 1.1 uses the framework of induced Turán problems, as introduced in
[16, 19]. Namely, we construct a bipartite graph Hd,∆ such that incidence graphs of points and
varieties in FD of dimension d and degree at most ∆ avoid Hd,∆ as an induced subgraph, and every
vertex of Hd,∆ in one of the parts has degree at most d + 1. Then, we adapt the ideas of [16] to
prove bounds on the number of edges of induced Hd,∆-free and Ks,s-free bipartite graphs.

Furthermore, we provide an alternative proof of Theorem 1.1 by establishing a bound on the
VC-dimension of incidence graphs and the rate of growth of their shatter functions. To do this we
bound the number of incidence-patterns between points and lower-dimensional varieties, extend-
ing the celebrated result of Rónyai, Babai and Ganapathy [23] on the number of zero-patterns of
polynomials.

We remark that graphs with bounded VC-dimension avoid induced copies of a certain forbidden
bipartite subgraph with similar properties as Hd,∆, but we think that our explicit construction of
Hd,∆ is more straightforward. Moreover, in certain situations, like the unit-distance problem for
instance, finding specific forbidden bipartite graphs leads to better bounds compared to the ones
which follow from VC-dimension.

Finally, in order to prove Theorem 1.2 as well as other constructions in this paper, we use the
results from [26], which are based on the random algebraic method originally introduced by [4].

1.2 Algebraic graphs

Fox, Pach, Sheffer, Suk, and Zahl [13] considered the classical Zarankiewicz’s problem for semi-
algebraic graphs. This type of problems comes from an old question of Zarankiewicz, who asked
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what is the largest number of edges that an n-vertex graph can have without containing a copy of
Ks,s. In this setting, we say that a bipartite graph G = (A,B,E) is semi-algebraic of description
complexity t in (RD1 ,RD2), if A ⊂ RD1 , B ⊂ RD2 , and the edges are defined by the sign-patterns
of t polynomials f1, . . . , ft : R

D1 × RD2 → R, each of degree at most t. The authors of [13] showed
that if such a graph G is Ks,s-free with |A| = m and |B| = n, then

|E(G)| = OD1,D2,t,s,ε

(
m

D2(D1−1)
D1D2−1

+ε
n

D1(D2−1)
D1D2−1 +m+ n

)

for every ε > 0. In the special case of interest D = D1 = D2, this gives

|E(G)| = OD,t,s,ε

(
(mn)

D
D+1

+ε +m+ n
)
. (2)

This bound is only known to be tight for D = 2. Furthermore, it is worth highlighting that
this upper bound matches (up to the ε error term) the best known upper bound on the number
of incidences between m points and n hyperplanes in RD, originally proved by Apfelbaum and
Sharir [1].

We consider the analogous problem for algebraic graphs, that is, graphs that are defined with
respect to zero-patterns of polynomials over arbitrary fields. Given two sets of points P ⊆ FD1 ,Q ⊆
FD2 , a collection of t polynomials f1, . . . , ft : F

D1 × FD2 → F, and a boolean formula Φ, we define
the bipartite graph G on the vertex set P ∪ Q, where x ∈ P and y ∈ Q are adjacent if and only if

Φ([f1(x, y) = 0], . . . , [ft(x, y) = 0]) = 1.

We say that G is an algebraic graph of description complexity t if it can be described by t polynomials
f1, . . . , ft, each of which has degree at most t.

Theorem 1.3. Let G be an algebraic graph of description complexity at most t on the vertex set
P ∪ Q, where P ⊆ FD1 , Q ⊆ FD2 and |P| = m, |Q| = n. If G is Ks,s-free, the number of edges in
G is at most

OD1,D2,t,s(min{m1−1/D1n,mn1−1/D2}).
Moreover, this bound is tight, for every D1,D2, there exists t such that if m,n are sufficiently
large and s ≥ D1 + D2, the following holds. There exist a field F and a Ks,s-free algebraic
graph G of description complexity at most t in (FD1 ,FD2) with parts of size m,n and at least
Ω(min{m1−1/D1n,mn1−1/D2}) edges.

1.3 Unit distances in finite fields

The celebrated Erdős unit distance problem [8, 9] is one of the most notorious open problems
in combinatorial geometry, asking to estimate the function fd(n), the maximum number of unit
distances spanned by n points in Rd. The cases d = 2, 3 are the most difficult ones, with still a large
a gap between the best known lower and upper bounds. The state-of-the-art is n1+Ω(1/ log logn) <
f2(n) < O(n4/3), where the lower bound is due to Erdős [9], and the upper bound is due to
Spencer, Szemerédi and Trotter [25]. Furthermore, Ω(n4/3 log log n) < f3(n) < n1.498 by [9] and
[29], respectively. On the other hand, for d ≥ 4, it is not difficult to construct a set of points
achieving fd(n) = Θd(n

2) [17]. Indeed, if d ≥ 4, one can take two orthogonal linear subspaces V1

and V2, each of dimension at least 2. Then, placing n/2 points on the origin centered sphere Si ⊂ Vi

of radius 1/
√
2 for i = 1, 2, we get at least n2/4 unit distances. However, as it is shown in [13],

in some sense this construction is the only way one can get a quadratic number of unit distances.
More precisely, if we assume that no s points are contained in a (d − 3)-dimensional sphere, then
the maximum number of unit distances is at most

Od,s,ε(n
2− 2

d+1
+ε)

for every ε > 0. The key observation is that such unit distance graphs are semi-algebraic of
complexity at most 2 containing no copy of Ks,s, in which case the previous bound follows simply
from (2). See also Frankl and Kupavskii [11] for further strengthening.
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Here, we completely resolve the analogous problem of bounding the number of unit distances
over arbitrary fields, assuming the unit distance graph is Ks,s-free. A unit sphere in Fd with center
a = (a1, . . . , ad) ∈ Fd is defined as the set of points (x1, . . . , xd) ∈ Fd which satisfy

(x1 − a1)
2 + · · · + (xd − ad)

2 = 1.

Furthermore, points a and b are at unit distance if b is contained in the unit sphere with center a.
Using Theorem 1.3 and noting that unit distance graphs are algebraic of complexity 2 in (Fd,Fd),

we immediately get that the maximum number of unit distances spanned by n points in Fd such
that the unit distance graph contains no copy of Ks,s is Od,s(n

2−1/d). However, as we show in the
next theorem, this can be significantly improved.

Theorem 1.4. Let P be a set of n points in Fd. If the unit distance graph of P does not contain

Ks,s, then the number of unit distances spanned by P is at most Od,s(n
2− 1

⌈d/2⌉+1 ).

Furthermore, this bound is sharp in the following sense.

Theorem 1.5. Let n, d be positive integers. There exists a constant s = s(d), a finite field Fq and
a set of n points P ⊆ Fd

q such that the unit distance graph on P does not contain Ks,s and P spans

Ωd(n
2− 1

⌈d/2⌉+1 ) unit distances.

Organization. For the reader’s convenience, we begin by introducing the definitions and basics
of algebraic geometry in Section 2. Then, in Section 3, we present two proofs of Theorem 1.1, one
based on extremal graph theory and another slightly weaker variant using shatter functions and VC
dimension. We postpone the constructions showing tightness of these bounds to Section 4, where
we also prove Theorem 1.3. Finally, in Section 5, we address the unit-distance problem and prove
Theorems 1.4 and 1.5.

2 Preliminaries from algebraic geometry

Much of the following material is based on the Appendix of [6] and the excellent book of Cox, Little
and O’Shea [5].

Let F be the algebraic closure of the field F. We denote by F[x1, . . . , xD] the set of polynomials
in variables x1, . . . , xD with coefficients in F. An affine algebraic set V is a set of common zeros of

polynomials f1, . . . , fk ∈ F[x1, . . . , xD] in F
D
, and this set is denoted by V (f1, . . . , fk). Formally,

V (f1, . . . , fk) =
{
(a1, . . . , ad) ∈ F

D
: fi(a1, . . . , ad) = 0 for all i ∈ [k]

}
.

In a similar way, one can define projective algebraic sets. In this case, the ambient projective

space PD(F) over the field F is defined as the set of equivalence classes of points in F
D+1\{(0, . . . , 0)},

where (a0, . . . , aD) ∼ (b0, . . . , bD) if ai = λbi for every i for some λ ∈ F. Note that for every
homogeneous polynomial f ∈ F[x0, . . . , xD] and every λ 6= 0, we have f(a0, . . . , aD) = 0 if and only
if f(λa0, . . . , λaD) = 0. Hence, the set of zeros of a homogeneous polynomial in PD(F) is well-
defined. Thus, we can define a projective algebraic set determined by homogeneous polynomials
f1, . . . , fk ∈ F[x0, . . . , xD] as the common zero set of these polynomials.

One should think of the projective space as the “completion” of the affine space, in which one
adds certain points at infinity. Hence, to every affine algebraic set one can uniquely associate a
projective variety which extends it. Formally, one can define a homogenization fh of the degree d
polynomial f ∈ F[x1, . . . , xD] by setting fh(x0, . . . , xD) = xd0f(x1/x0, . . . , xD/x0). Then, an affine

algebraic set V (f1, . . . , fk) ⊆ F
D

extends to the projective algebraic set defined by polynomials
fh
1 , . . . , f

h
k .

Finite unions and arbitrary intersections of algebraic sets are also algebraic. An algebraic set
V is irreducible if there are no algebraic sets V1, V2 ( V for which V1 ∪ V2 = V , and an irreducible
algebraic set is called a variety. The decomposition theorem for algebraic sets states that there is
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a unique way to express an algebraic set as the finite union of varieties, which are then called the
components of the algebraic set (see Section 6 of Chapter 4 in [5]).

Given an affine algebraic set Y ⊂ F
D
, the ideal of Y , denoted by I(Y ), is defined as the set of

polynomials f ∈ F[x1, . . . , xD] that vanish on Y . Clearly, if g, h ∈ F[x1, . . . , xD] are polynomials,
then the restrictions of g and h on Y are identical if and only if g− h ∈ I(Y ). Therefore, the space
of polynomial functions on Y is isomorphic to the quotient F[x1, . . . , xD]/I(Y ). The same definition
works for projective algebraic sets Y ⊆ PD(F), where I(Y ) stands for the set of all homogeneous
polynomials in F[x0, . . . , xD] vanishing on Y .

Next, we define the dimension and the degree of a variety. We give two definitions of the
dimension of a variety (for the proof of their equivalence, see Theorem I.7.5 in [14]). Both of these
definitions will be useful in our proofs. According to the first definition, the dimension of the
variety V is the maximum value of r for which there exists a chain of varieties V0, V1, . . . , Vr such
that ∅ = V0 ( V1 ( · · · ( Vr ( V .

Next, we give a definition the dimension based on the ideal. Fix a projective variety V ⊆ PD(F)
and let Ft[x0, x1, . . . , xD] be the space of homogeneous polynomials of degree t, which is a finite-
dimensional vector space over F. Furthermore, let It = I(V )∩Ft[x0, x1, . . . , xD] be the space of those
homogeneous polynomials in I(V ) which have degree t. Since It is a subspace of Ft[x0, x1, . . . , xD],
one may consider the dimension of the quotient dim

(
Ft[x0, x1, . . . , xD]/It

)
, which is called the

Hilbert function of I. By Hilbert’s theorem, the integer function t 7→ dim
(
Ft[x0, . . . , xD]/It

)
is a

polynomial for t sufficiently large and it is called the Hilbert polynomial of I(V ) (see e.g. Proposition
3 on p. 487. in [5]). The dimension of the variety V , denoted by dim(V ), is then the degree of the
Hilbert polynomial associated to I(V ). Furthermore, the degree of the variety, denoted by degV ,
is defined as (dimV )! times the leading coefficient of this polynomials. Finally, the dimension and
the degree of the affine variety are simply the dimension and the degree of the associated projective
variety.

To get some intuition for these concepts, we remark that if V = V (f) is a variety in D-
dimensional space defined by a single irreducible polynomial f , then the dimension of V is D − 1
and the degree of V is deg f .

To conclude this section, let us mention two important results that we use in our proofs. The
first one concerns the intersections of varieties whose degree and dimension are known and holds
for affine and projective varieties alike (for a reference, see Example 8.4.6 in [10]).

Theorem 2.1. Let V1 and V2 be algebraic varieties of dimensions d1 ≤ d2 in a projective or affine
ambient space of dimension D such that V1 6⊆ V2. If Z1, . . . , Zk are the irreducible components of
V1 ∩ V2, then dim(Zi) ≤ d1 − 1 for all i and

∑k
i=1 deg(Zi) ≤ degV1 · degV2.

The second statement we use is a uniform version of Hilbert’s theorem, which can be used to
bound the Hilbert function (for a reference, see e.g. Chapter 9 of [20]).

Theorem 2.2. Let V be a projective variety and let I = I(V ) be the associated ideal. Then, for
every positive integer t, dim

(
Ft[x0, x1, . . . , xD]/It

)
≤ deg(V )tdimV + dimV.

3 Point-variety incidences

3.1 Upper bounds via extremal graph theory

In this section, we prove Theorem 1.1 through the following approach. We construct a bipartite
graph Hd,∆ with the property that G(P,V) does not contain an induced copy of Hd,∆. Then, we
show that any Ks,s-free bipartite graph with sides of size m,n which does not contain an induced

copy of Hd,∆ has at most O(m
d

d+1n) edges.
Let us begin by describing the forbidden induced bipartite subgraph H = Hd,∆. Let A and B be

the parts of Hd,∆, and k = 2∆
d
+1. Part B consists of d+1 “layers” of vertices, which we describe

as follows. The first two layers contain one vertex each, denoted by v1 and v2, respectively. For

3 ≤ ℓ ≤ d+ 1, the ℓ-th layer has kℓ−2 vertices, denoted by v
(i3,...,iℓ)
ℓ , where i3, . . . , iℓ ∈ [k].
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Next, we describe part A. For each 3 ≤ ℓ ≤ d+1 and each sequence (i3, . . . , iℓ) ∈ [k]ℓ−2, we add

k vertices w
(i3,...,iℓ)
ℓ,1 , . . . , w

(i3,...,iℓ)
ℓ,k to A whose neighbours are v1, v2, v

(i3)
3 , v

(i3,i4)
4 , . . . , v

(i3,...,iℓ)
ℓ . Note

that every vertex of A has degree at most d + 1. Furthermore, observe that vertices v
(i3,...,it)
t and

v
(j3,...,jr)
r have a common neighbour if and only if one of the sequences (i3, . . . , it) and (j3, . . . , jr) is
a prefix of the other.

Proposition 3.1. If P is a set of points and V is a set of d-dimensional varieties of degree at most
∆, the incidence graph G(P,V) does not contain Hd,∆ as an induced subgraph, where the vertices
of A correspond to points and the vertices of B correspond to varieties.

Proof. Assume that G(P,V) contains an induced copy of Hd,∆ and let V
(i3,...,iℓ)
ℓ be the variety

corresponding to the vertex v
(i3,...,iℓ)
ℓ . We show by induction on 2 ≤ ℓ ≤ d+ 1 that one can choose

a sequence i3, . . . , iℓ with the following property. Let Z1, . . . , Zt be the irreducible components of

the intersection V1 ∩ V2 ∩ · · · ∩ V
(i3,...,iℓ)
ℓ that satisfy dim(Zi) ≤ d− ℓ+ 1. Then the union

⋃t
i=1 Zi

contains all points corresponding to the common neighbours of v1, . . . , v
(i3,...,iℓ)
ℓ in A.

For ℓ = 2, this statement is obvious, since all components of V1 ∩ V2 have dimension at most
d − 1 by Theorem 2.1, noting that V1 and V2 are distinct varieties of dimension d. To show the
inductive step, suppose we found a sequence i3, . . . , iℓ satisfying the above property. Let Z1, . . . , Zt

be the irreducible components of the intersection of these varieties satisfying dim(Zi) ≤ d − ℓ+ 1.
By iterated application of Theorem 2.1, one can deduce that t ≤ ∆ℓ.

For each variety V
(i3,...,iℓ,j)
ℓ+1 , j ∈ {1, . . . , k}, let us denote by Tj the set of components among

Z1, . . . , Zt which are fully contained in V
(i3,...,iℓ,j)
ℓ+1 . As k = 2∆

d
> 2t, there exist two sets Tj and Tj′

which are identical. In other words, the varieties V
(i3,...,iℓ,j)
ℓ+1 and V

(i3,...,iℓ,j
′)

ℓ+1 contain the exact same
components Zi. We claim that the sequence i3, . . . , iℓ, j then satisfies the required conditions and
suffices to perform the inductive step.

To see this, note that V
(i3,...,iℓ,j)
ℓ+1 intersects all components Zi /∈ Tj in subvarieties of dimension

at most d − ℓ (or in the empty set). Thus, to complete the inductive step, it suffices to show

that all common neighbours of v1, . . . , v
(i3,...,iℓ,j)
ℓ+1 are contained in the components Zi /∈ Tj . If there

is a common neighbour P of these vertices in a component Zi ∈ Tj , it belongs to the variety

V
(i3,...,iℓ,j

′)
ℓ+1 , and thus it is connected to the vertex v

(i3,...,iℓ,j
′)

ℓ+1 . But this is impossible, since v
(i3,...,iℓ,j)
ℓ+1

and v
(i3,...,iℓ,j

′)
ℓ+1 have no common neighbours in Hd,∆.

Taking ℓ = d+ 1, we get a sequence i3, . . . , id+1 such that V1, . . . , V
(i3,...,id+1)
d+1 has the following

property. If Z1, . . . , Zt are the 0-dimensional components of V1 ∩ · · · ∩ V
(i3,...,id+1)
d+1 , then

⋃t
i=1 Zi

contains k points, corresponding to the common neighbours of v1, . . . , v
(i3,...,id+1)
d+1 . However, note that

an iterated application of Theorem 2.1 implies t ≤ ∆d+1 and so t < k. But this is a contradiction,
since each Zi is a single point.

Next, given a bipartite graph H, we prove a general upper bound on the number of edges in a
Ks,s-free and induced H-free bipartite graph. A similar statement was proved recently by Hunter
and the authors of this paper [16], but their result is not directly applicable in case the host graph
is bipartite with parts of unequal sizes. Fortunately, we can reuse most of the key auxiliary lemmas
to adapt to this scenario.

Let H = (A,B,E) be a bipartite graph such that every vertex in A has degree at most k. Given
a graph G, we say that a set of vertices S ⊂ V (G) is (H, k, s)-rich if for every T ⊂ S, |T | ≤ k, we
have

|{v ∈ V (G)\S : N(v) ∩ S = T}| ≥ (4|A|s)|A|.

We need the following two results from [16].

Lemma 3.2 (Lemma 2.3 in [16]). Let G be a graph not containing Ks,s. If G contains an (H, k, s)-
rich independent set S of size |B|, then G contains H as an induced subgraph in which B is embedded
into S.
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Proposition 3.3 (Proposition 2.4 in [16]). Let G be a Ks,s-free graph and X ⊆ V (G) a set of
at least (4|A||B|s)4|B|+10 vertices in which every k-tuple of vertices has at least (4|A||B|s)2|V (H)|

common neighbours. Then X contains an (H, k, s)-rich independent set of size |B|.

Furthermore, we use the following simple statement about independent sets in hypergraphs.

Proposition 3.4. Let H be a k-uniform hypergraph with N vertices and M edges. Then H contains

an independent set of size at least N
k

k−1/(4(M +N)1/(k−1)).

Proof. Let p = (N/2(M +N))1/(k−1). Let X ⊆ V (H) be a random sample in which each vertex is
included independently with probability p. Then H[X] contains an independent set of size at least
|X| − e(H[X]), as we can remove a single vertex from every edge to get an independent set. But
E(|X| − e(H[X])) = pN − pkM ≥ pN

2 , so there is a choice for X such that |X| − e(H[X]) ≥ pN/2 ≥
N

k
k−1/(4(M +N)1/(k−1)).

Now we are ready to prove our bound, which is a simple combination of the previous two results
and the dependant random choice method [12].

Lemma 3.5. Let G = (U, V ;E) be a bipartite graph, |U | = m and |V | = n, and let H = (A,B;E)
be a bipartite graph such that every vertex in A has degree at most k ≥ 2. If G contains no induced
copy of H in which A is embedded to U , and G is Ks,s-free, then

E(G) = OH,s

(
m

k−1
k n+m

)
.

Proof. Assume e(G) ≥ K(m
k−1
k n+m), whereK = K(H, s) is specified later. Let t = (4|A||B|s)2|V (H)|

and z = (4|A||B|s)4|B|+10 be constants depending only on H and s. We show that if G contains no
Ks,s, then G contains an induced copy of H in which A is embedded to U .

Let u be a vertex in U , and let X0 = NG(u). Define the k-uniform hypergraph H on vertex set
X0 such that a k-element set D ⊂ X0 is an edge if D has at most t common neighbours in G. First,
we show that there is a choice for u such that H contains an independent set of size at least z. By

Proposition 3.4, there is independent set of size at least |X0|
k

k−1 /(4(|X0| + e(H))
1

k−1 ). Hence, it is
enough to show that there exists a choice of u ∈ U for which |X0|k > (4z)k−1(|X0|+ e(H)).

Choose u uniformly at random from U . Then E[|X0|] = e(G)
m ≥ K n

m1/k +K. On the other hand,

for any fixed k element set D ⊂ V with less than t common neighbours, we have P(D ⊂ X0) ≤ t
m .

Since there are at most nk such k element sets in V , we conclude that E[e(H)] ≤ tnk

m . By Jensen’s

inequality, we have E[|X0|k] ≥ E[|X0|]k ≥ Kk nk

m +Kk, and therefore

E[|X0|k − (4z)k−1(e(H) + |X0|)] > 0

when K is sufficiently large. Hence, there exists a choice of u for which H contains an independent
set of size z. Fix such a choice, and let X ⊂ X0 be such an independent set.

As every k element subset of X has at least t common neighbors, we can apply Proposition 3.3
to find an (H, k, s)-rich set S ⊂ X of size |B|. But then, by Lemma 3.2, there is an embedding of
H in which B is embedded to S, finishing the proof.

Proof of Theorem 1.1. By Proposition 3.1, the incidence graph G(P,V) does not contain an induced
copy of the bipartite graph Hd,∆, where part A is corresponds to points. Also, every vertex of A
has degree at most d + 1, so applying Lemma 3.5 with k = d + 1 and H = Hd,∆ gives the desired
bound.

3.2 Varieties containment patterns and dual shatter functions

In this section, we show a variant of Theorem 1.1 using a different approach. Note that we use
a slightly stronger assumption that the varieties have bounded description complexity, instead of
just bounded degree. However, since the description complexity can be bounded by a function of
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the degree and the ambient dimension, this assumption does not make a big difference (see e.g.
Theorem 2.1.16 in [27]).

We say that the variety V has description complexity at most t if it can be defined using at most
t polynomials f1, . . . , ft ∈ F[x1, . . . , xD] of degree at most t.

Theorem 3.6. Let P be a set of m points in FD and let V be a set of n varieties in FD, each of
dimension d and description complexity at most t. If the incidence graph G(P,V) is Ks,s-free, then

I(P,V) ≤ OD,t,s(m
d

d+1n+m).

Let us prepare the proof of this theorem. First, we recall some basic notions from the theory of
VC-dimesion. Let X be a ground set and let F be a family of subsets of X. The shatter function
of the system F , denoted by πF (k), is defined as the maximum number of distinct intersections of
a k-element set with members of F . Formally,

πF (k) = max
A⊂X,|A|=k

|{A ∩B : B ∈ F}|.

For a sequence of varieties V1, . . . , Vk and a point x in FD, we define the containment pattern of
V1, . . . , Vk at x as the set of indices I ⊆ [k] of those varieties Vi which contain x, that is I = {i ∈ [k] :
x ∈ Vi}. Our first key lemma is an extension of a celebrated result of Rónyai, Babai and Ganapathy
[23] on the number of zero-patterns of polynomials. This statement, which might be of independent
interest, implies that the family of possible containment-patterns has a polynomial shatter function.

Lemma 3.7. Let V1, . . . , Vk be a sequence of varieties in FD, each of dimension d and descrip-
tion complexity at most t. The number of distinct containment patterns of V1, . . . , Vk is at most
OD,t(k

d+1).

The proof of Lemma 3.7 combines the ideas from [23] with Hilbert’s theorem. Hence, before
presenting the proof, let us recall the result of Rónyai, Babai and Ganapathy [23]. Using our
terminology, given sequence of polynomials f1, . . . , fk ∈ F[x1, . . . , xD] and point x ∈ FD, the zero-
pattern of f1, . . . , fk at x is the set of indices I ⊂ [k] defined as I = {i ∈ [k] : fi(x) = 0}. If
Z(f1, . . . , fk) is the set of all zero-patterns of f1, . . . , fk and f1, . . . , fk are polynomials of degree at
most ∆, then the number of distinct zero-patterns is at most

|Z(f1, . . . , fk)| ≤
(
k∆

D

)
. (3)

Note that (3) can be used as a black box to derive a weaker version of Lemma 3.7, since every
containment patterns of V1, . . . , Vk corresponds to a zero-patterns of their defining polynomials.
However, this argument would lead to the weaker upper bound Ot(k

D) in Lemma 3.7.

Proof of Lemma 3.7. We work in the algebraic closure F of the field F, which can only increase
the number of containment patterns. We show that for every a ∈ [k], the number of containment
patterns I ⊂ [k] with a ∈ I, i.e. the patterns coming from points x ∈ Va, is at most Ot,D(k

d). Then
we are clearly done. Without loss of generality, let a = 1, and let M be the number of containment
patterns I ⊆ [k] with 1 ∈ I.

For i = 2, . . . , k, let the defining polynomials of the variety Vi be fi,1, . . . , fi,t ∈ F[x1, . . . , xD],
where we may repeat some of the polynomials to ensure that we have exactly t polynomials. Since
every containment pattern corresponds to a unique zero-pattern of polynomials f2,1, . . . , fk,t, we

have M ≤ N , where N is the number of zero-patterns of f2,1, . . . , fk,t on the variety V1. Let f̃i,j be

the polynomial function induced on V1 by the polynomial fi,j, i.e. f̃i,j = fi,j mod I(V1), where we
recall that I(V1) is the ideal of the variety V1 (see the Preliminaries).

Let x1, . . . , xN ∈ V1 be points witnessing the N distinct zero-patterns, and for j ∈ [N ], let
Sj ⊂ {f̃2,1, . . . , f̃k,t} be the set of polynomial f̃ for which f̃(xj) 6= 0. Define the polynomial

gj(x) =
∏

f̃∈Sj

f̃(x).
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Clearly, we have gj(xj) 6= 0, and

deg gj ≤
∑

i,ℓ

deg f̃i,ℓ ≤ kt2.

Furthermore, note that gj(xℓ) = 0 if Sj 6⊂ Sℓ, since for every f̃ ∈ Sj \ Sℓ, we have f̃(xℓ) = 0.
We now argue that the polynomials g1, . . . , gN are linearly independent. Otherwise, there exist

scalars λ1, . . . , λN ∈ F, not all zero, for which

n∑

j=1

λjgj = 0.

Choose ℓ such that λℓ 6= 0 and |Sℓ| is minimal. If we plug x = xℓ into the above equation, all
terms except gℓ(xℓ) vanish. Indeed, for all j 6= ℓ we either have λj = 0 or Sj 6⊂ Sℓ, meaning that
gj(xℓ) = 0. But gℓ(xℓ) 6= 0, which is a contradiction. Thus, the polynomials g1, . . . , gN are linearly
independent. But the dimension of the space of polynomials of degree at most kt2 on the variety
V1 is bounded by Ot,D(k

d) by Theorem 2.2, and so M ≤ N ≤ Ot,D(k
d).

In the proof of Theorem 3.6, we also use the following result of [13], whose proof follows from
the Haussler packing lemma [15].

Theorem 3.8 (Theorem 2.1 from [13]). Let c > 0 and r, s ∈ N, then there exists c1 = c1(c,D, s) > 0
such that the following holds. Let G = (A,B,E) be a bipartite graph with |A| = m and |B| = n such
that the set system F1 = {N(q) : q ∈ A} satisfies πF1(k) ≤ ckr for every positive integer k. Then,
if G is Ks,s-free, we have

|E(G)| ≤ c1(nm
1−1/r +m).

Proof of Theorem 3.6. Let V = {V1, . . . , Vn}, and let F be the set of containment patterns of
V1, . . . , Vn. Then πF (k) = OD,t(k

d+1) by Lemma 3.7. For every x ∈ P, the neighborhood N(x)
corresponds to the containment pattern Ix = {i ∈ [n] : x ∈ Vi}. Therefore, if F1 = {N(x) : x ∈ P},
then πF1(k) ≤ πF (k) = OD,t(k

d+1). Applying Theorem 3.8 with r = d+ 1, we get

I(P,V) = OD,t,s(nm
d

d+1 +m).

4 Algebraic Zarankiewicz’s problem

In this section, we present the proof of our bound on Zarankiewicz’s problem in algebraic graphs of
bounded complexity. We will prove the upper and lower bounds separately, and we will then use
the lower bound to show Theorem 1.2. In the proof of the upper bound, we combine Theorem 3.8
with the estimate (3).

For the lower bounds, we use the random polynomial method, which was pioneered by Bukh [4].
The main idea is to choose the polynomial defining the algebraic graph to be a random low-degree
polynomial, chosen uniformly among all polynomials of degree at most ∆ in F[x1, . . . , xD], where F
is a finite field of appropriate size. The key observation is that for any fixed x1, . . . , xs ∈ FD and
random polynomial f of degree at most ∆, the random variables {f(xj)|j ∈ [s]} are independent
and uniform in F as long as s ≤ min{∆, |F|1/2} (see Claims 3.3 and 3.4 in [26]).

Theorem 4.1. Let G be an algebraic graph of description complexity at most t on the vertex set
P ∪ Q, where P ⊆ FD1 , Q ⊆ FD2 and |P| = m, |Q| = n. If G is Ks,s-free, the number of edges in
G is at most

OD1,D2,t,s(min{m1−1/D1n,mn1−1/D2}).
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Proof. Let the graph G be defined by the polynomials f1, . . . , ft : F
D1 × FD2 → F and a boolean

formula Φ, where deg fi ≤ t for i = 1, . . . , t.
Since the roles of m and n are symmetric, it suffices to show that any Ks,s-free algebraic graph

G in (FD1 ,FD2) has at most Ot,s(mn1−1/D2 +n) edges. To do this, we use Theorem 3.8. Define the
set system F = {N(v) : v ∈ Q} on the ground set P. Our main goal is to show πF (k) ≤ Ot,D2(k

D2)
for all k, since in this case Theorem 3.8 shows that e(G) ≤ Ot,s(mn1−1/D2 + n). To this end, we
fix k points x1, . . . , xk ∈ P and bound the number of possible intersections {x1, . . . , xk} ∩N(v) for
v ∈ Q. For every i ∈ [k] and j ∈ [t], consider the polynomial y 7→ fj(xi, y) over FD2 Let F be the
set of these kt polynomials.

The number of distinct intersections {x1, . . . , xk} ∩ N(v) is bounded by the number of zero-
patterns of polynomials in F , since the zero-pattern of polynomials in F at a point v ∈ F can be
used to determine which xi is adjacent to v. Since F is a set of kt polynomials of degree at most

t, by (3) we have that the number of zero-patterns of the polynomials in F is bounded by
(kt2
D2

)
.

Therefore, πF (k) ≤
(
kt2

D2

)
= Ot,D2(k

D2), finishing the proof.

To show the lower bounds, we will need the following simple lemma.

Lemma 4.2. Let ∆,D ≥ 3 be fixed integers and let p ≥ 4 be a prime. Let f ∈ Fp[x1, . . . , xD] be
chosen uniformly at random among polynomials of degree at most ∆, then f has at least pD−1/2
zeros in FD

p with probability at least 3
4 .

Proof. Since f(x) is a uniformly distributed in Fp for any fixed x ∈ FD
p , the expected number of

zeros of f is E
[
|V (f)|

]
= pD−1. On the other hand, using the second moment method, one can also

show that the random variable |V (f)| is concentrated around its mean. More precisely, if we denote
by 1x the indicator random variable of f(x) = 0, we have

Var
(
|V (f)|

)
=

∑

x,y∈FD

Cov
(
1x,1y

)
.

Claim 3.4 of [26] states that f(x) and f(y) are independent random variables when x 6= y, if
p ≥ 4 and ∆ ≥ 2. Moreover, for x = y, we have Cov

(
1x,1x

)
≤ P[f(x) = 0] = p−1. Hence,

Var
(
|V (f)|

)
≤ pD−1. By Chebyshev’s inequality, we have P[|V (f)| < pD−1−λ

√
pD−1] ≤ 1

λ2 , which

for λ = 1
2

√
pD−1 gives

P

[
|V (f)| < pD−1

2

]
≤ 4

pD−1
≤ 1

4
.

Proposition 4.3. For any D1,D2 and sufficiently large integers m,n, there exists a field F, sets
of points P ⊆ FD1 ,Q ⊆ FD2, |P| = m, |Q| = n and a polynomial f : FD1 × FD2 → F of degree at
most ∆ = (D1 +D2)

2 with the following property. The algebraic graph G defined on P ∪ Q by the
equation f(x, y) = 0 is Ks,s-free, where s = D1+D2, and has Ω(min{m1−1/D1n,mn1−1/D2}) edges.

Observe that the graph G has description complexity at most (D1 +D2)
2 and therefore Propo-

sition 4.3 suffices to show the second part of Theorem 1.3.

Proof. By symmetry, we may assume that mn1−1/D2 < m1−1/D1n, which is equivalent to m ≤
nD1/D2 . Let p be the smallest prime larger than n1/D2 , which satisfies p < 2n1/D2 by Bertrand’s
postulate.

We define an algebraic graph G0 in (FD1
p ,FD2

p ) as follows. Let P0 = FD1
p and Q0 = FD2

p .

Furthermore, let f : FD1
p ×FD2

p → Fp be a polynomial chosen randomly from the uniform distribution
on all polynomials of degree at most ∆ = (D1+D2)

2. Finally, set x ∈ P0 and y ∈ Q0 to be adjacent
in G0 if and only if f(x, y) = 0.

We begin by showing that the probability G0 contains Ks,s is at most 1
4 . Given 2s points

x(1), . . . , x(s) ∈ P0, y
(1), . . . , y(s) ∈ Q0, the s2 points (x(i), y(j)) are independent uniform random
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variables as long as s2 ≤ min{∆, p1/2}, see [4]. Therefore, the probability that f(x(i), y(j)) = 0 for
all i, j ∈ [s] is exactly p−s2 . Hence, we can apply the union bound over all subsets of P0 and Q0 of
size s to deduce

P[Ks,s ⊆ G] ≤
(
pD1

s

)(
pD2

s

)
p−s2 ≤ pD1s

s!

pD2s

s!
p−s2 ≤ 1

(s!)2
≤ 1

4
.

On the other hand, Lemma 4.2 shows that with probability at least 3/4, the polynomial f has
at least pD1+D2−1/2 zeros, which means that G0 has at least pD1+D2−1/2 edges with probability at
least 3/4. Therefore, there exists a polynomial f such that the graph G0 is Ks,s-free and has at
least 1

2p |P0||Q0| edges. Let us fix this graph G0.
Then we get our final graph G by sampling an m element subset P of P0, and an n element

subset Q of Q0. Then, the expected number of edges of G is |P|
|P0|

|Q|
|Q0|

e(G0) ≥ mn
2p . Hence, there

exists a choice of P,Q for which e(G) ≥ mn
2p , let us fix this choice. This graph G is clearly

algebraic and Ks,s-free, since it is an induced subgraph of a Ks,s-free algebraic graph. Furthermore,
e(G) ≥ mn

2p ≥ mn
2 (2n)−1/D2 = Ω(mn1−1/D2). This completes the proof.

We conclude the section by proving Theorem 1.2, which demonstrates that our upper bounds
on point-variety incidences are tight.

Proof of Theorem 1.2. Consider the case d = D − 1. The general case follows by embedding Fd+1
p

into a higher dimensional space. Let p be a prime between m1/D and 2m1/D, which exists by
Bertrand’s postulate. Further, let D′ = ⌈αD⌉, and let G be an algebraic graph in (FD

p ,F
D′

p ) with
parts P,Q of size m,n obtained through Proposition 4.3.

We construct a set of hypersurfaces V from the set of points Q. For each point q ∈ Q, we
consider the polynomial fq : F

D
p → Fp given by fq(x) = f(x, q). Since fq(x) may not be irreducible,

let gq(x) be an irreducible factor of fq(x) with the largest number of roots in P. Finally, define
the algebraic set Vq = {x ∈ FD

p |gq(x) = 0}. We show that the point set P and the collection
V = {Vq|q ∈ Q} satisfy all conditions of the theorem.

Since gq(x) is an irreducible polynomial, the ideal 〈gq(x)〉 ⊆ Fp[x1, . . . , xD] is a prime ideal,
and therefore by Proposition 3, page 207 of [5], the algebraic set defined by gq(x) is irreducible
and therefore a variety. Furthermore, the dimension of the variety Vq = {x ∈ FD

p |gq(x) = 0} is
D − 1 = d. Hence, V is indeed a collection of varieties of required dimension.

Let us now argue that there are no disctinct varieties Vq1 , . . . , Vqs ∈ V with at least s points of
P in common, where s = (D+D′)2. If such s varieties exist, the common neighbourhood of points
q1, . . . , qs in the graph G contains at least s points, which is not possible since G is Ks,s-free. Hence,
the incidence graph G(P,V) is Ks,s-free.

Finally, we argue that there are many incidences between P and V, i.e. that I(P,V) ≥
ΩD,α(m

D−1
D n). The main observation is that the polynomials fq(x) have at most (D + D′)2 ir-

reducible factors, since deg fq(x) ≤ (D +D′)2. Hence, the number of roots of gq(x) in P is at least
1

(D+D′)2
times the number of roots of fq(x) in P. But the number of roots of fq(x) in P summed

over all q ∈ Q is the number of edges of G and therefore we have:

I(P,V) =
∑

q∈Q

|Vq ∩ P| ≥
∑

q∈Q

|{fq(x) = 0} ∩ P|
(D +D′)2

≥ e(G)

(D + ⌈αD⌉)2 ≥ ΩD,α

(
min{mD−1

D n,mn
D′−1
D′ }

)
.

It is not hard to see that m−1/D ≤ n−1/D′
since mD′

= m⌈αD⌉ ≥ mαD = nD. Therefore, I(P,V) ≥
ΩD,α

(
m

D−1
D n

)
, which suffices to complete the proof.

5 Unit distances

5.1 Geometry of spheres

In this section, we discuss basic properties of spheres in finite fields, highlighting some differences
with the real space. Throughout this section, we consider a non-degenerate bilinear form 〈·, ·〉 :
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Fd → F, with respect to which we define the notions of orthogonality and distance. The form
is non-degenerate if for every v 6= 0 there exists some w such that 〈v,w〉 6= 0. It is standard to
associate a norm to a bilinear form by defining ‖v‖2 = 〈v, v〉. In what follows, a unit sphere with
center w is defined to be the set of points x ∈ Fd for which ‖x− w‖2 = 1.

Furthermore, we say that vectors u, v ∈ Fd are orthogonal if 〈u, v〉 = 0. One can generalize the
notion to affine flats and say that U, V ⊆ Fd are orthogonal if for all points u, u′ ∈ U and v, v′ ∈ V
one has 〈u − u′, v − v′〉 = 0. A key property of orthogonal subspaces we use is that they satisfy
dimU+dimV ≤ d. Furthermore, for vectors v1, . . . , vk ∈ Fd, we denote the affine span of v1, . . . , vk
by Aff{v1, . . . , vk}. More formally, we have Aff{v1, . . . , vk} = {∑d

i=1 λivi|λi ∈ Fq, λ1+ · · ·+λd = 1}.
Finally, we define a specific bilinear form 〈u, v〉d and the associated norm ‖v‖d on the space Fd

q

as follows. When d 6≡ 1 mod 4, we let 〈u, v〉d be the standard inner product defined by 〈u, v〉d =
u1v1 + · · ·+ udvd, while for d ≡ 1 mod 4 we define 〈u, v〉d = u1v1 + · · ·+ ud−1vd−1 − udvd. In both
cases, we define the norm ‖v‖2d = 〈v, v〉d.

Lemma 5.1. Let 〈·, ·〉 be a nondegenerate bilinear form on Fd and S1, . . . , Sk be unit spheres in Fd,
defined with respect to 〈·, ·〉. Then there exists an affine subspace U ⊆ Fd such that S1 ∩ · · · ∩ Sk =
S1 ∩ U . Moreover, U is orthogonal to the affine flat spanned by the centers of S1, . . . , Sk.

Proof. We prove the statement by induction on k. Let us denote the centers of the spheres S1, . . . , Sk

by w1, . . . , wk.
When k = 1, we may take U = Fd. For k > 1, we assume by our induction hypothesis that

S1∩· · ·∩Sk−1 = S1∩U for some affine subspace U ⊆ Fd, which is orthogonal to Aff{w1, . . . , wk−1}.
Hence, we have S1 ∩ · · · ∩ Sk−1 ∩ Sk = S1 ∩ Sk ∩ U . Consider the defining equations for S1 and Sk,
which are

〈x− w1, x− w1〉 = 1 and 〈x−wk, x− wk〉 = 1.

By subtracting these two equations, we have 2〈x,wk − w1〉 + 〈w1, w1〉 − 〈wk, wk〉 = 0 for any
x ∈ S1 ∩ Sk. Note that this equation is linear in x and hence it defines a hyperplane H, whose
normal vector is w1 − wk. We conclude that S1 ∩ Sk = S1 ∩ H and therefore S1 ∩ · · · ∩ Sk =
S1 ∩ Sk ∩ U = S1 ∩ (U ∩H), where U ∩H is an affine space.

Let us now argue that U ∩H is orthogonal to Aff{w1, . . . , wk}. Let u, u′ ∈ U ∩H and v, v′ ∈
Aff{w1, . . . , wk} be arbitrary vectors. One may write v − v′ =

∑k
i=2 λi(wi − w1) with suitable

λ2, . . . , λk ∈ F. Therefore, we have

〈u− u′, v − v′〉 =
〈
u− u′,

k−1∑

i=2

λi(wi −w1)
〉
+

〈
u− u′, λk(wk − w1)

〉
.

Note that the first term is zero since u, u′ ∈ U , while the second term is zero because u, u′ ∈ H.
Hence, U ∩H and Aff{w1 . . . , wk} are orthogonal.

One counter-intuitive feature of spheres over finite fields is that they can contain flats. In the
next lemma, we study some properties of such flats.

Lemma 5.2. Let F be a field of characteristic different from 2, let V be a flat, and let S be a
unit sphere in Fd centered at w. If V ⊆ S, then for any x, y ∈ V we have 〈x − y, x − y〉 = 0 and
〈x− w, x− y〉 = 0.

Proof. If x, y ∈ V , then x+ λ(y − x) ∈ V for every λ ∈ F. Since S = {v ∈ Fd : 〈v − w, v − w〉 = 1}
and V ⊆ S, we must have

1 = 〈x+ λ(y − x)− w, x+ λ(y − x)− w〉 = 〈x−w, x −w〉 + 2λ〈x− w, y − x〉+ λ2〈y − x, y − x〉.

Since 〈x−w, x−w〉 = 1, we obtain λ2〈y − x, y − x〉+ 2λ〈x−w, y − x〉 = 0 for all λ, implying that
〈y − x, y − x〉 = 0 and 〈x− w, y − x〉 = 0, just as claimed.

A flat V for which 〈x− y, x− y〉 = 0 for all x, y ∈ V is called totally isotropic.
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Lemma 5.3. Let F be a field containing no roots of the equation x2 = −1 and let d = 2k + 1.
Furthermore, consider the bilinear form 〈·, ·〉d on Fd. Then Fd does not contain a pair (V,w), where
V is a totally isotropic flat of dimension k, and w is a vector of norm 1 orthogonal to V .

Proof. Assume that Fd contains such a pair (V,w). After translation, we may assume that V
contains the origin. Let v1, . . . , vk be a basis of the subspace V which satisfies 〈vi, ej〉d = δij for all
i, j ∈ [k], where e1, . . . , ed are the standard basis vectors. Here, δij is defined to be 1 when i = j and
0 otherwise. After possibly rearranging the coordinates, Gaussian elimination shows that it always
possible to find such a basis. Furthermore, since V is totally isotropic, any vector w′ = w + v with
v ∈ V is also of unit norm and orthogonal to V . Therefore, we may subtract an appropriate linear
combination of v1, . . . , vk from w and assume that 〈w,w〉d = 1 and 〈w, ej〉d = 0 for all j ∈ [k].

To derive a contradiction, we compute the Gram matrix G of the vectors v′1 = v1 − e1, . . . , v
′
k =

vk − ek, w. Note that the first k coordinates of each of these k + 1 vectors are equal to 0 and
therefore one might consider v′1, . . . , v

′
k, w as vectors in Fk+1 without changing their Gram matrix.

Hence, we have G(i, j) = 〈v′i, v′j〉d = 〈vi, vj〉d − 〈ei, vj〉d − 〈vi, ej〉d + 〈ei, ej〉d = −δij for all i, j ∈ [k].
Similarly, one can compute G(i, k + 1) = G(k + 1, i) = 〈v′i, w〉d = 〈vi, w〉d − 〈ei, w〉d = 0 and
G(k + 1, k + 1) = 〈w,w〉d = 1. In conclusion, G = diag[−1, . . . ,−1, 1].

On the other hand, let A be a (k + 1) × (k + 1) the matrix whose columns are the vectors
v′1, . . . , v

′
k, w (recall that we may consider these vectors as elements of Fk+1). Recalling the definition

of the the bilinear form 〈v′i, v′j〉d, we note that we can rewrite it as 〈v′i, v′j〉d = (v′i)
TMv′j , where

M = Ik+1 if d ≡ 3 mod 4 and M = diag[1, . . . , 1,−1] if d ≡ 1 mod 4. Hence, one can express the
Gram matrix as G = ATMA and so ATMA = diag[−1, . . . ,−1, 1]. By taking determinants, we see
that det(A)2 det(M) = det(diag[−1, . . . ,−1, 1]) = (−1)k.

The final observation is that det(M) = −1 when d ≡ 1 mod 4 and det(M) = 1 otherwise,
meaning that det(M) = (−1)k−1. Hence, no matter the parity of k, we have det(A)2 = −1. But
this is impossible, since the equation x2 = −1 has no solution in F.

5.2 Upper bounds

In this section, we prove Theorem 1.4. In particular, we prove the following incidence bound between
points and unit spheres defined with respect to any nondegenerate bilinear form, from which the
theorem immediately follows.

Proposition 5.4. Let P be a set of n points and let S be a collection of n unit spheres in Fd. If
the incidence graph G(P,S) is Ks,s-free, then the number of incidences between P and S is at most

Od,s(n
2− 1

⌈d/2⌉+1 ).

Following the ideas of [19], we prove that there exists a simple family Fd of graphs with the
property that an incidence graph of points and spheres in Fd−1 does not contain any member of
Fd as an induced subgraph. The family Fd is defined to contain all bipartite graphs on vertex
classes {a1, . . . , ad} and {b1, . . . , bd}, where aibj is an edge for i ≥ j − 1, and aibi+2 is a non-edge
for i = 1, . . . , d− 2.

A simpler way to visualise this family is through the notion of a pattern. A pattern is an edge
labeling of a complete bipartite graph, where every edge is labeled 0, 1 or ∗. A pattern Π corresponds
to a family of graphs FΠ on the same vertex set, which contains the graphs F such that all edges
of the pattern labeled by 0 do not appear in F , all edges labeled by 1 appear in F , while the edges
labeled by ∗ may or may not appear. Finally, we say that a graph G contains a pattern Π if it
contains an induced copy of some graph in the family FΠ.

One can express the condition that the incidence graph does not contain an induced member
of the family Fd by forbidding the following pattern. Namely, let Πd be 2d vertices a1, . . . , ad,
b1, . . . , bd where aibj is labeled by 1 for i ≥ j − 1 and aibi+2 is labeled by 0, while all other edges
are labeled by ∗. See Figure 1 for an illustration.

We begin by presenting the basic geometric lemma which shows that incidence graphs of points
and unit spheres in Fd avoid the pattern Πd+1.
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a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

Figure 1: The pattern Π5, where black edges are labeled 1, and the red dashed edges are labeled 0.

Lemma 5.5. Let P be a set of n points and let S be a set of n spheres in Fd. The incidence graph
G(P,S) does not contain the pattern Πd+1 defined above.

Proof. For contradiction, let us assume that G(P,S) does contain Πd+1, whose vertices a1, . . . , ad+1

correspond to points P1, . . . , Pd+1 and b1, . . . , bd+1 correspond to unit spheres S1, . . . , Sd+1.
We show by induction that S1 ∩ · · · ∩ Sk = S1 ∩ U for a affine flat U of dimension at most

d − k + 1, for all k ≤ d + 1. For k = 1 this statement is trivial. For k ≥ 2, we may assume that
S1∩· · ·∩Sk−1 = S1∩U for some flat U of dimension at most d−k+2. By Lemma 5.1, there exists a flat
H for which S1∩Sk = S1∩H. Let V = U∩H. Then S1∩· · ·∩Sk = S1∩U∩Sk = S1∩(U∩H) = S1∩V .
The point Pk−2 is contained in the spheres S1, . . . , Sk−1, but not in Sk. Therefore, Pk−2 is a point
of U not contained in V , implying that dim(V ) ≤ dim(U)− 1 ≤ d− k + 1.

Applying this claim with k = d+ 1, we conclude that there exists a 0-dimensional affine space
U for which S1 ∩ · · · ∩ Sd+1 = S1 ∩ U . In other words, S1 ∩ · · · ∩ Sd+1 is a single point. Then, it is
not possible for both Pd and Pd+1 to be contained in S1∩ · · ·∩Sd+1, presenting a contradiction.

Proposition 5.6. Let G be a bipartite graph on 2n vertices which does not contain Ks,s or the

pattern Πd+1. Then, G has at most Od,s

(
n
2− 1

⌈d/2⌉+1

)
edges.

Proof. In [19], Lemma 3.2, it is proved that a balanced bipartite graph on 2n vertices containing

no Ks,s or Πd+1 has at most Od,s

(
n
2− 1

⌈(d+2)/2⌉

)
.

5.3 Constructions with many unit distances

In this section, our goal is to prove Theorem 1.5. More precisely, for every n and d, we construct
a set P of n points in Fd

q , where q = pr is some prime power, with the properties that P spans

Ω(n
2− 1

⌈d/2⌉+1 ) unit distances and that the unit distance graph does not contain Ks,s.
Our construction is based on so called variety-evasive sets. For fixed parameters 1 ≤ k ≤ d and

∆, s > 0, we say that a set U is (k, s)-variety-evasive if every variety V ⊆ Fd
q of dimension k and

degree at most ∆ intersects U in less than s points. Here we only consider varieties of degree at
most 2 and therefore we fix ∆ = 2. Dvir, Kollár and Lovett constructed large variety-evasive sets
and in particular the following theorem is a special case of Corollary 6.1 from [7].

Theorem 5.7. For every positive integer d and prime power q, there exist a constant s = s(d) and
set U of qd−k points in Fd

q such that any k-dimensional variety of degree at most 2 intersects U in
less than s points.

Let us now explain the idea behind our constructions. We set k = ⌊d/2⌋ and choose p to be a

prime with p ≡ 3 mod 4 and p ≈ n
1

⌈d/2⌉+1 . Then, we use Theorem 5.7 to find a (k − 1, s)-variety
evasive set U ⊆ Fd

p of size p
d−k+1 = p⌈d/2⌉+1. Since U is (k−1, s)-variety evasive, we are able to show

that the unit distance graph does not contain Ks,s as a subgraph. However, in order to ensure many
unit distances, we need to take the union of U with a random shift, i.e. we set Px = U ∪ (U + x)
where x ∈ Fd

p is chosen uniformly at random.

Proposition 5.8. There exists x ∈ Fd
p for which Px spans Ω

(
|Px|2−

1
⌈d/2⌉+1

)
unit distances with

respect to the norm ‖ · ‖d.
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Proof. Choose x form the uniform distribution on Fd
p. The number of unit distances spanned by

Px is at least the number of pairs u, v ∈ U such that ‖u− (v + x)‖d = 1. For a fixed pair u, v ∈ U ,
the equation ‖u − v − x‖d = 1 is quadratic in x and therefore it has (1 + o(1))pd−1 solutions (see
e.g. Theorems 6.26 and 6.27 in [18]). Hence, for fixed u, v ∈ U we have P[‖u − (v + x)‖d =
1] = (1 + o(1))p−1 and so the expected number of pairs u, v ∈ U with ‖u − (v + x)‖d = 1 is
(1+ o(1))|U |2/p. Therefore, x can be chosen such that the number of unit distances spanned by Px

is Ω(|U |2/p) = Ω
(
|Px|2−

1
⌈d/2⌉+1

)
.

Let us fix the value x from Proposition 5.8 from now on and write P = Px. Note that the set P
is (k − 1, 2s)-variety evasive, since no variety of dimension k − 1 and degree at most 2 can contain
more than s points of either U or U + x.

Proposition 5.9. The unit distance graph of P with respect to the norm ‖ · ‖d does not contain
K4s,4s as a subgraph.

Proof. We argue by contradiction, assuming that there exist points v1, . . . , v4s, w1, . . . , w4s ∈ P such
that ‖vi −wj‖d = 1 for all i, j ∈ [4s]. Let V = Aff{v1, . . . , v4s} and W = Aff{w1, . . . , w4s}.

We claim that the flats V and W are orthogonal, with respect to the bilinear form 〈·, ·〉d. If
we denote by S1, . . . , S4s the unit spheres centered at w1, . . . , w4s, the assumption implies that
v1, . . . , v4s ∈ ⋂4s

i=1 Si. By Lemma 5.1, there exists an affine flat V ′, orthogonal to W , such that⋂4s
j=1 Sj = S1 ∩ V ′. Since V ⊆ V ′, we conclude V and W are orthogonal, which implies that

dimV + dimW ≤ d.
Since P is (k − 1, 2s)-variety evasive, no (k − 1)-dimensional flat contains 2s points of P (note

that an affine flat is a variety of degree 1). In particular, this means that dimV ≥ k and dimW ≥ k.
Combining this with dimV + dimW ≤ d = 2k + 1, we conclude that dimV = k or dimW = k. By
symmetry, we may assume that dimV = k.

We claim that V ⊆ Sj , for every j ∈ [4s]. Suppose this was not the case, i.e. that there was
some j for which V 6⊆ Sj. Since V is a variety of dimension k and degree 1 and Sj is a variety of
dimension d−1 and degree 2, Theorem 2.1 implies that if V ∩Sj is a union of irreducible components
Z1, . . . , Zt, then

∑t
i=1 degZi ≤ 2. Hence, V ∩Sj consists either of one (k−1)-dimensional component

of degree 2 or of at most two (k − 1)-dimensional components of degree 1. However, recall that
v1, . . . , v4s ∈ Sj ∩ V and that every (k − 1)-dimensional variety of degree at most 2 contains less
than 2s points of P. Hence, in both cases we have a contradiction and so we must have V ⊆ Sj .
Therefore, by Lemma 5.2, V must be a totally isotropic flat and we have 〈wj − y, z− y〉d = 0 for all
y, z ∈ V .

Since 〈wj − vi, wj − vi〉d = 1, the point wj does not lie in the flat V . Also, Aff({wj} ∪ V ) is
orthogonal to V , since 〈wj−x, y−x〉d = 0 for all x, y ∈ V . Hence, dimAff({wj}∪V ) = dimV +1 =
k + 1. If d is even, this is a contradiction since dimV + dimAff({wj} ∪ V ) = 2k + 1 > d.

If d is odd, we found a totally isotropic k-flat with a vector wj − vi which has norm 1 and is
orthogonal to this k-flat. But this is impossible by Lemma 5.3.

Let us now put all the ingredients together and show the general construction.

Proof of Theorem 1.5. Let p be the smallest prime such that p ≡ 3 mod 4 and p > n
1

⌈d/2⌉+1 . By a

theorem of Breusch [3], we have p ≤ 2n
1

⌈d/2⌉+1 , as long as n
1

⌈d/2⌉+1 ≥ 7. Let P be the set of at least
p⌈d/2⌉+1 ≥ n points constructed in this section. For d 6≡ 1 mod 4, taking a random n element subset
of P gives the desired set. However, for d ≡ 1 mod 4 the standard norm and the norm ‖ · ‖d are
different as we need one final step to complete the construction.

If d ≡ 1 mod 4, we let q = p2, we choose α ∈ Fq to be a solution of α2 = −1, and consider
the map ϕ : Fd

p → Fd
q given by ϕ((x1, . . . , xd)) = (x1, . . . , xd−1, αxd). Note that ϕ(u) and ϕ(v) are

at unit distance measured with respect to the standard inner product if and only if ‖u − v‖d = 1.

Hence, we conclude that the set {ϕ(u)|u ∈ P} ⊆ Fd
q spans Ω

(
|P|2−

1
⌈d/2⌉+1

)
unit distances and has

no Ks,s in the unit distance graph, where unit distances are measured with respect to the standard
inner product. Now taking a random n element subset of P completes the proof.
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