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Point-hyperplane incidences via extremal graph theory

Aleksa Milojević∗, Benny Sudakov∗, István Tomon†

Abstract

The study of counting point-hyperplane incidences in the d-dimensional space was initiated
in the 1990’s by Chazelle and became one of the central problems in discrete geometry. It has
interesting connections to many other topics, such as additive combinatorics and theoretical
computer science. Assuming a standard nondegeneracy condition, i.e., that no s points are
contained in the intersection of s hyperplanes, the currently best known upper bound on the
number of incidences of n points and m hyperplanes in Rd is

Od,s((mn)1−1/(d+1) +m+ n).

This bound by Apfelbaum and Sharir is based on geometrical space partitioning techniques.
In this paper, we propose a novel combinatorial approach to estimate the number of point-

hyperplane incidences over arbitrary fields using forbidden induced patterns in incidence graphs.
Perhaps surprisingly, this approach matches the best known bounds in Rd for many interesting
values of m,n, d, e.g. when m = n and d is odd. Moreover, in finite fields our bounds are sharp
as a function of m and n in every dimension. We also study the size of the largest complete
bipartite graph in point-hyperplane incidence graphs with a given number of edges and obtain
optimal bounds as well.

1 Introduction

The Szemerédi-Trotter theorem [30] is a fundamental result in combinatorial geometry, giving a
sharp upper bound on the number of incidences in point-line configurations. It states that n points
andm lines on the real plane determine at most O((mn)2/3+m+n) incidences, and as Erdős showed
(see e.g. [11]), this bound is the best possible. This deep result found numerous applications and
inspired a large number of generalizations and extensions over the last decades. For example, the
problem of counting point-line incidences in R3 under certain non-degeneracy conditions has been
studied by Guth and Katz [17] in their solution to the Erdős distinct distances problem. The
Szemerédi-Trotter theorem has also been applied by Elekes [12] to derive sum-product estimates
over the reals. For these and other applications of incidence theorems, we refer the reader to the
survey [9].

Extending incidence results to finite fields is more tricky, since standard space partitioning
techniques do not apply anymore. The importance of incidence bounds in F2

p stems from their close
connection to sum-product estimates, as shown in the pioneering work of Bourgain, Katz and Tao
[4]. Following this work, point-line incidence bounds over finite fields have been extensively studied,
see e.g. [18, 22, 27].

In this paper, we consider one of the most natural incidence questions in higher dimensions,
which is to find the maximum number of incidences between n points and m hyperplanes in Fd,
for an arbitrary field F. In dimension 3 and above, it is possible that all m hyperplanes contain
all n points: take n points on a line, and m hyperplanes containing this line. In order to avoid
such trivialities, it is standard to impose the further condition that the incidence graph is Ks,s-free,
where Ks,s denotes the complete bipartite graph with vertex classes of size s. Here, we think of s as
a large constant, which may depend on d, but no other parameters. Given a set of points P and set
of hyperplanes H, the incidence graph of (P,H) is the bipartite graph G(P,H) with vertex classes
P and H, and {x,H} ⊂ P ∪H is an edge if x ∈ H. We denote by I(P,H) the number of edges of
the incidence graph, i.e. I(P,H) is the number of incidences between P and H.
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1.1 Incidence bounds in higher dimensions

The problem of bounding the number of edges in Ks,s-free incidence graphs has a long history,
with the initial motivation coming from computational geometry. How compactly can one record
the incidences in a configuration of points and hyperplanes? Instead of writing down whether each
of the mn pairs (x,H) ∈ P × H forms an incidence, one can compress the incidence graph by
representing it as the union of few complete balanced bipartite subgraphs. Although this cannot
be done very efficiently in general graphs (i.e., one needs Ω( n2

logn) complete balanced bipartite
subgraphs to represent a random balanced bipartite graph on 2n vertices with high probability),
for incidence graphs Chazelle [6] developed a space partitioning technique which can be used to

show that Od,s

(

n2− 2

d+1 log n
)

complete bipartite graphs suffice. Another motivation comes from
the counting version of Hopcroft’s problem, which asks, given n points and m hyperplanes in Rd,
how fast can one determine the number of incidences. The work of Chazelle [6] achieved the first
subquadratic algorithm for this problem and Erickson [13] gave a lower bound for the running time
of algorithms classified as partitioning algorithms. He showed that particularly hard instances for
determining the number of incidences are configurations (P,H) without a compact representation,
i.e. a configuration without a large complete bipartite graph in the incidence graph.

Improving the works of Chazelle [6] and Brass and Knauer [5], Apfelbaum and Sharir [2] proved
that if P is a set of n points and H is a set of m hyperplanes in Rd, whose incidence graph contains
no Ks,s, then

I(P,H) ≤ Od,s

(

(mn)1−
1

d+1 +m+ n
)

. (1)

This upper bound has not been improved in the past twenty years, however, matching lower bounds
are only known for d = 2, which coincides with the Szemerédi-Trotter theorem. The currently best
known lower bound for d ≥ 3 was recently achieved by Sudakov and Tomon [29], improving on the
constructions of Brass and Knauer [5] and Balko, Cibulka, and Valtr [3]: if s is sufficiently large
with respect to d, then there exist a set of n points P and a set of m hyperplanes H in Rd whose
incidence graph is Ks,s-free and

I(P,H) ≥
{

Ωd

(

(mn)1−(2d+3)/(d+2)(d+3)
)

if d is odd,

Ωd

(

(mn)1−(2d2+d−2)/(d+2)(d2+2d−2)
)

if d is even.

Generalizations of the upper bound in (1) are also established (with an extra o(1) term in the
exponent) for incidences of points and semi-algebraic sets in Rd, see [14]. The common feature in
all of the proofs of (1) and related results is that they rely on certain space partitioning results such
as cuttings [6, 7] or polynomial partitioning [17, 26]. These techniques are highly geometric and
have no analogues over finite fields.

Another natural question asks about the maximum number of incidences between points and
hyperplanes in a d-dimensional space Fd for any field F. If d = 2 and p is a prime, taking every
point of F2

p and m < p2 arbitrary lines, we get n = p2 points, and mp = Θ(mn1/2) incidences,
beating the Szemerédi-Trotter bound as long as m ≫ p. On the other hand, a simple application of
the Kővári-Sós-Turán theorem [19] shows that one cannot have more than O(mn1/2+n) incidences
over any field, by noting that the incidence graph of points and lines is always K2,2-free. As we
mentioned already, the work of Bourgain, Katz, and Tao [4] shows that better upper bounds can
be obtained over Fp assuming m,n ≤ p2−δ.

However, point-hyperplane incidence bounds in higher dimensions turn out to be more elusive.
One such result in three dimensions was obtained by Rudnev [24] (see also de Zeeuw [31] for a shorter
proof). He proved that in F3

p, if no s points are on a line, then there are at most O(m
√
n + ms)

incidences, assuming n ≤ p2. This point-plane incidence bound in F3
p was later used to show various

improved sum-product estimates over finite fields in [1, 22, 23]. For d > 3, barely anything is known
about incidences of points and hyperplanes in Fd

p.
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1.2 Sparse incidence graphs in vector spaces

In this paper, we propose a novel approach to derive bounds on the maximal number of incidences
between n points and m hyperplanes in a d-dimensional vector space Fd, assuming the incidence
graph is Ks,s-free. We use almost purely graph-theoretic techniques and prove bounds which are
sharp for the whole range of parameters m and n with a suitable choice of field. Surprisingly, for
many interesting pairs of values (m,n), our upper bound matches the upper bound in (1). This is
fairly unexpected, as all proofs of (1) rely on highly geometric techniques, while we employ only
combinatorial ideas. To give a snippet of our most general result, we prove the following in the
special case m = n.

Theorem 1.1. Let d, s be positive integers and let F be a field. If P is a set of n points and H is
a set of n hyperplanes in Fd such that no s points lie on the intersection of s hyperplanes, then

I(P,H) ≤ O
(

(s + d3)n2−1/⌈ d+1

2
⌉
)

.

Note that this bound matches the best known bound (1) when d is odd. Before stating the general
bound, which depends on the relationship of m and n, let us introduce a piece of notation. Namely,
we define the quantities αt =

t
d+2−t for t ∈ {2, . . . , d} and βt =

t
d+1−t for t ∈ {1, . . . , d}. Now we

can state our main theorem in its full generality.

Theorem 1.2. Let d, s,m, n be positive integers and α > 0 such that m = nα, and let F be a field.
Let P be a set of n points and H be a set of m hyperplanes in Fd such that the incidence graph of
(P,H) is Ks,s-free. Then

I(P,H) ≤























Os,d(n) if α ∈ [0, β1],

Os,d(m
1− 1

t n) if α ∈ [αt, βt] for some t ∈ {2, . . . , d},
Os,d(mn1− 1

d+2−t ) if α ∈ [βt−1, αt] for some t ∈ {2, . . . , d},
Os,d(m) if α ∈ [βd,∞).

Moreover, these bounds are tight, i.e. for every d, there exist s = s(d) and c = c(d) such that the
following hold. For every α > 0 and sufficiently large integer n, there exist a field F = F(d, n, α),
a set of n points P and a set of m = ⌊nα⌋ hyperplanes H in Fd such that the incidence graph of
(P,H) is Ks,s-free and

I(P,H) ≥























n if α ∈ [0, β1],

cm1− 1

t n if α ∈ [αt, βt] for some t ∈ {2, . . . , d},
cmn1− 1

d+2−t if α ∈ [βt−1, αt] for some t ∈ {2, . . . , d},
m if α ∈ [βd,∞).

Let us compare our result with (1) in the non-trivial regime α ∈ [1/d, d]. Interestingly, in case
α = βt =

t
d+1−t for some integer t ∈ {1, . . . , d}, Theorem 1.2 shows that the number of incidences

is Os,d((mn)1−1/(d+1)), which exactly matches (1). The other extreme is when α = αt =
t

d+2−t for

some t ∈ {2, . . . , d}, in which case we get Os,d((mn)1−1/(d+2)). For other values of α, our upper
bound is Os,d((mn)1−γ) for some 1

d+2 ≤ γ ≤ 1
d+1 . However, as the second half of the theorem shows,

these upper bounds cannot be improved unless further assumptions on the field F are made.

1.3 Large complete bipartite graphs in dense incidence graphs

We also study another well-known problem of finding large complete bipartite graphs in dense
incidence graphs. The motivation behind studying this problem is the intuitive understanding that
a large number of incidences between points and hyperplanes is always explained by the existence
of large complete bipartite subgraphs in the incidence graph. To make things more precise, given a
set of points P and set of hyperplanes H, we define rs(P,H) as the maximum number of edges in

3



a complete bipartite subgraph of the incidence graph of (P,H), i.e. the maximum of r · s over all r
and s such that Kr,s is a subgraph of the incidence graph. We consider configurations of n points
and m hyperplanes with εmn incidences.

In the real d-dimensional space, Apfelbaum and Sharir [2] proved that rs(P,H) = Ωd(ε
d−1mn)

for ε > Ω(n−1/(d−1)). Also, if ε > Ω((mn)−
1

d−1 ), then there exist a set of points P and set of

hyperplanes H in Rd with rs(P,H) ≤ Od(ε
d+1

2 mn). Note that in case d = 3, the lower and upper
bounds match for ε > Ω(n−1/2). Do [8] improved the lower bound in R4 and R5 for a large range of
m,n, ε to match the upper bound up to logarithmic factors. One might be also interested how the
minimum of rs(P,H) depends on the dimension d as well, which is a question motivated by certain
variants of the celebrated log-rank conjecture of Lovász and Saks [20]. To this end, it follows from
Fox, Pach, and Suk [15] that rs(P,H) > εd+12−O(d log d)mn. For constant ε, this is improved by a
recent result of Singer and Sudan [25], who obtained an exponential dependence on d in the lower
bound rs(P,H) = Ω(ε2dmn/d). We refer the interested reader to [25] about the relationship of this
problem and the log-rank conjecture.

Here, we extend and improve some of these results by considering arbitrary fields, and obtain
tight bounds in all cases. Following Apfelbaum and Sharir [2], we define rsd(n,m, I) = min rs(P,H),
where the minimum is taken over all fields F, all sets P ⊂ Fd of at most n points, all sets H of at
most m hyperplanes in Fd, that satisfy I(P,H) ≥ I. Note that requiring that P is a set of at most
n points instead of exactly n points makes no crucial difference, since one can always add points to
the set P which are incident to no hyperplanes (if F is a finite field, one might need to pass to an
extension of F). A similar remark holds for hyperplanes.

Theorem 1.3. Let d and m ≥ n be positive integers, ε ∈ (0, 1) and I = εmn. Then

rsd(m,n, I), rsd(n,m, I) =

{

Θd(ε
d−1mn) if ε > 100max{m− 1

d , n− 1

d−1},
Θd(εm) if ε < 1

4 max{m− 1

d , n− 1

d−1}.

In the regime ε ≫ max{m− 1

d , n− 1

d−1 }, the implied constant of the lower bound is only exponential
in d. Therefore, our theorem matches the dependence on ε coming from the result of Apfelbaum
and Sharir [2], as well as the exponential dependence on the dimension obtained by Sudan and
Singer [25].

On the other hand, in case ε ≪ max{m− 1

d , n− 1

d−1 }, Theorem 1.3 tells us that the largest complete
bipartite subgraph might be just a star. Finally, observe that in case m = n, there is a large jump
around ǫ ≈ n−1/d, where rsd(n, n, I) suddenly jumps from ≈ n1−1/d to ≈ n1+1/d.

1.4 Forbidden induced patterns in incidence graphs

The key idea used to prove our theoretical bounds is that incidence graphs of points and hyperplanes
in Fd avoid a simple family Fd of graphs as induced subgraph. The family Fd includes all bipartite
graphs on vertex classes {a1, . . . , ad} and {b1, . . . , bd}, where aibj is an edge for i ≥ j−1, and aibi+2

is a non-edge for i = 1, . . . , d− 2.
An alternative and perhaps easier way to think about the family is through the notion of a

pattern. We define a pattern to be an edge labeling of a complete bipartite graph, in which every
edge receives one of the labels 0, 1 or ∗. Every such pattern Π defines a family of graphs FΠ on
the same vertex set, where a graph F is in the family if all edges of the pattern labeled by 0 do
not appear in F , all edges labeled by 1 appear in F , while the edges labeled by ∗ may or may not
appear. To simplify the terminology, we say that a graph G contains a pattern Π if it contains an
induced copy of some graph in the family FΠ.

The family Fd discussed above can be constructed in this way from the following pattern Πd.
Namely, Πd is a pattern on a balanced bipartite graph on vertices a1, . . . , ad, b1, . . . , bd where aibj
is labeled by 1 for i ≥ j − 1 and aibi+2 is labeled by 0, while all other edges are labeled by ∗. See
Figure 1 for an illustration.

The following lemma is the main geometric ingredient that we use, which allows us to reduce
the incidence bounds to a problem in extremal graph theory.

4



a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

Figure 1: The pattern Π5, where black edges are labeled 1, and the red dashed edges are labeled 0.

Lemma 1.4. Let d ≥ 3 be an integer and let P be a set of distinct points and H be a set of distinct
hyperplanes in Fd. Then, the incidence graph G(P,H) does not contain the pattern Πd.

Proof. Assume, for the sake of contradiction, that G = G(P,H) contains Πd. Since the pattern Πd

is symmetric, we may assume that the vertices a1, . . . , ad correspond to points x1, . . . , xd ∈ P, and
the vertices b1, . . . , bd correspond to hyperplanes H1, . . . ,Hd ∈ H. We will prove by induction that
dim

⋂k
i=1 Hi = d−k for all 2 ≤ k ≤ d. This will suffice to derive the contradiction by observing that

xd−1, xd ∈ ⋂d
i=1Hi, which is at most a 0-dimensional space, i.e. a single point. This contradicts the

assumption that x1, . . . , xd are distinct.
To show that dim

⋂k
i=1 Hi = d − k, we begin by observing that H1 ∩H2 must have dimension

d − 2, since H1,H2 are distinct hyperplanes with non-empty intersection. For any k ≥ 3, the
induction hypothesis implies that

⋂k−1
i=1 Hi is an affine space of dimension d− k + 1, which is not a

subspace of Hk since xk−2 ∈
⋂k−1

i=1 Hi and xk−2 /∈ Hk. Thus, Hk must intersect
⋂k−1

i=1 Hi in an affine

subspace of dimension dim
⋂k−1

i=1 Hi − 1 = d− k. This completes the proof.

For a linear algebraic perspective on the pattern Πd, one might consider the (d−2)×(d−2) matrix
whose rows and columns are indexed by a1, . . . , ad−2 and b3, . . . , bd, where the entry corresponding
to ai and bj equals 1 if the edge aibj is labeled 0 and equals 0 if the edge aibj is labeled 1 (entries
corresponding to the edges labeled by ∗ may be arbitrary). This defines an upper-triangular matrix
with non-zero diagonal entries, a condition which ensures full rank. A similar family of graphs
was also studied recently by Sudakov and Tomon [28] to establish Ramsey theoretic properties of
algebraically defined graphs. Using the above lemma, we can just focus on the hereditary family of
graphs that avoid the pattern Πd. Then, we use the dependent random choice technique [16] and
combinatorial methods to show that if G is a Πd-free graph with sufficiently many edges, then G
must contain a large complete bipartite graph.

In order to find configurations of points and hyperplanes matching our theoretical bounds, we
consider optimal constructions of so called subspace evasive sets [10, 29]. We follow the ideas of
[3, 5, 29] to transform large subspace evasive sets into point-hyperplane configuration with many
incidences and no large bipartite subgraphs.

2 Illustration of our techniques in dimension 3

The purpose of this section is to introduce the main ideas of our paper in a relatively simple and
concise way, while leaving the most general statements for later sections. We do this by focusing
on the case d = 3, and we begin by discussing the point-plane incidence bounds in case G(P,H)
does not contain Ks,s. We highlight that the forbidden pattern Π3 is quite simple, since containing
the pattern Π3 is equivalent to containing the bipartite graph K3,3 minus an edge as an induced
subgraph.

Throughout this paper, we use standard graph theoretic notation. Given a graph G and a vertex
v ∈ V (G), we denote by deg v the degree of v, and N(v) the neighbourhood of v. Also, if v1, . . . , vt ∈
V (G), we denote by N(v1, . . . , vt) the common neighbourhood of v1, . . . , vt, i.e. N(v1, . . . , vt) =
N(v1) ∩ · · · ∩N(vt).
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Lemma 2.1. Let s ≥ 2 be an integer, let P be a set of n points and H be a set of n hyperplanes in
F3. If G(P,H) does not contain Ks,s, then I(P,H) ≤ 2sn3/2.

Proof. Throughout the proof, we denote the bipartition of the incidence graph G = G(P,H) by
A ∪B, where A corresponds to the set of points and B to the set of hyperplanes. This will help to
separate the graph-theoretic arguments from the geometric ones.

We show that if G = G(P,H) satisfies e(G) ≥ 2sn3/2 and does not contain Ks,s, then it must
contain the pattern Π3. To do this, we use the method of dependent random choice. More precisely,
our goal is to find four vertices v1, v2 ∈ A, u1, u2 ∈ B forming a copy of K2,2 such that the common
neighbourhoods N(v1) ∩ N(v2) and N(u1) ∩ N(u2) have size at least s. Since the graph G does
not contain Ks,s, there will be an edge missing between these two common neighbourhoods, which
allows us to find the pattern Π3 in G.

Let us begin by picking a random two vertex subset {v1, v2} ⊂ A chosen from the uniform
distribution on all

(n
2

)

pairs, and consider the common neighbourhood X = N(v1) ∩ N(v2) in B.
The expected size of this common neighbourhood can be lower bounded by counting the number of
three element sets {v1, v2, u} with v1, v2 ∈ A, u ∈ B and v1u, v2u ∈ E(G) (such sets are sometimes
also called as cherries). If the number of such sets is denoted by T , we have

E
[

|X|
]

=
T
(n
2

) =
1
(n
2

)

∑

u∈B

(

deg u

2

)

≥ 2

n− 1

( 1
n

∑

u∈B degu

2

)

≥ e(G)2

4n3
≥ s2,

where the first inequality holds by the convexity of the function
(x
2

)

= x(x−1)
2 for x ≥ 1. On

the other hand, let us denote by Y the number of two element sets {u1, u2} ⊂ X with common
neighbourhood N(u1) ∩ N(u2) of size less than s. Then the expected value of Y can be bounded
as follows. For each two element set {u1, u2} ⊂ B, we have u1, u2 ∈ X if v1, v2 ∈ N(u1) ∩ N(u2).

Hence, if |N(u1) ∩N(u2)| < s, then the probability of u1, u2 ∈ X is less than
(s
2

)

/
(n
2

)

<
(

s
n

)2
, so

E [Y ] ≤
∑

{u1,u2}⊂B

( s

n

)2
≤
(

n

2

)

( s

n

)2
≤ s2

2
.

Since E[|X| − Y ] ≥ s2/2, there exists a pair of vertices v1, v2 satisfying |X| − Y ≥ s2/2. This
means that at least one pair u1, u2 ∈ X has a common neighbourhood of size at least s. Also,
since X ≥ s2/2 ≥ s, the vertices v1, v2 have common neighbourhood of size at least s. As G
does not contain Ks,s, there must be vertices v3 ∈ N(u1) ∩ N(u2), u3 ∈ N(v1) ∩ N(v2) for which
u3v3 /∈ E(G). But then v1, v2, v3, u1, u2, u3 form the pattern Π3, which is a contradiction. This
completes the proof.

In what follows, we give the proof of Theorem 1.3 in the case d = 3, with an additional assump-
tion that every point lies in many planes and every plane contains many points. This is mostly a
technical assumption, which we will remove in the proof of the general case.

Lemma 2.2. Let P be a set of n points and H be a set of m ≥ n hyperplanes in F3. Assume that
I(P,H) ≥ εmn for some ε satisfying ε ≥ 6max{n−1/2,m−1/3}. Furthermore, assume that every
point x ∈ P lies on at least εm/3 hyperplanes of H, and every hyperplane H ∈ H contains at least

εn/3 points of P. Then rs(P,H) ≥
(

ε
6

)2
mn.

Proof. Let A and B be the vertex classes of G(P,H) with |A| = n and |B| = m. Our proof relies
on a simple observation that if X = N(v1) ∩N(v2) for some two distinct vertices v1, v2 ∈ A, then
any vertex v3 ∈ A either satisfies |N(v3) ∩X| ≤ 1 or X ⊆ N(v3). Suppose this is not the case and
there exists a vertex v3 ∈ A with a non-neighbour u1 ∈ X and two neighbours u2, u3 ∈ X. Then,
the vertices v1, v2, v3, u1, u2, u3 form the pattern Π3, which is not possible due to Lemma 1.4.

Let us take vertices v1, v2 ∈ A with the largest possible common neighbourhood X = N(v1) ∩
N(v2). By a similar computation as in the proof of Lemma 2.1 we get that the average size of the
common neighbourhood of two vertices of A is

1
(n
2

)

∑

u∈B

(

deg u

2

)

≥ m
(n
2

)

( 1
m

∑

u∈B deg u

2

)

≥ ε2m

2
, (2)
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A

B

X B \X

v1 v2

V1 V2

Figure 2: An illustration for the proof of Lemma 2.2

thus we have |X| ≥ ε2m/2.
Let V1 be the set of vertices v3 ∈ A for which X ⊆ N(v3) and let V2 be the set of vertices

v3 ∈ A for which |N(v3) ∩X| ≤ 1. See Figure 2 for an illustration of these sets. By our previous
observation, A = V1 ∪ V2. Let us now count the edges incident to X. Since every vertex of X has
degree at least εn/3 by the conditions of our theorem, X is incident to at least εn|X|/3 edges. On
the other hand, there are |V1||X| edges between X and V1, and at most |V2| edges between X and
V2. Thus,

ε

3
n|X| ≤ e(A,X) = e(V1,X) + e(V2,X) ≤ |V1||X|+ |V2|.

Since ε > 6m−1/3, we have εn|X|/6 ≥ ε3nm/12 > n ≥ |V2|, and so |V1||X| ≥ εn|X|/6. Therefore,
|V1| ≥ εn/6. From this, we get the complete bipartite graph on the vertex set V1∪X with |X|·|V1| ≥
ε3mn/6 edges. This is weaker than our promised bound, so let us improve it as follows.

As X is the largest common neighbourhood of two vertices in A and any two vertices of V1

contain X in their common neighbourhood, this shows that no two vertices of V1 have a common
neighbour outside X. In particular, every vertex outside X sends at most 1 edge to V1, and so
e(V1, B) ≤ |X||V1| + m. On the other hand, every vertex of V1 has degree at least εm/3, and
therefore we have

|V1| ·
ε

3
m ≤ e(V1, B) ≤ |X||V1|+m.

Since ε > 6n−1/2, we have |V1| · εm/6 ≥ ε2n
36 m ≥ m and so |X||V1| ≥ |V1| · εm/6. Thus, we conclude

that |X| ≥ εm/6 and so G contains a complete bipartite subgraph between V1 and X, with at least
|V1||X| ≥ ε2mn/36 edges.

3 Point-hyperplane incidences with no Ks,s

In this section, we prove the upper bounds in Theorem 1.2. We prepare the proof with the following
lemma about finding the pattern Πd under some simple conditions. We recall that Πd is the pattern
on a balanced bipartite graph on vertices a1, . . . , ad, b1, . . . , bd where aibj is labeled by 1 for i ≥ j−1
and aibi+2 is labeled by 0, while all other edges are labeled by ∗.
Lemma 3.1. Let s and 2 ≤ t ≤ d be positive integers, and let G = (A,B;E) be a Ks,s-free bipartite
graph. Assume that v1, . . . , vt ∈ A satisfy the following conditions:

• N(v1, v2) ) N(v1, v2, v3) ) · · · ) N(v1, . . . , vt),

• there exists a set X ⊆ N(v1, . . . , vt) of size at least dd+1s such that every (d+ 1− t)-tuple of
elements in X has a common neighbourhood of size at least s.

Then G contains the pattern Πd.

7



Proof. The first condition implies that there exist vertices u1, . . . , ut−2 which satisfy

ui ∈ N(v1, . . . , vi+1)\N(vi+2).

To find vertices ut−1, . . . , ud and vt+1, . . . , vd, we define a (d+2−t)-uniform hypergraph F on the set
of vertices X. Let ≺ be an arbitrary total ordering on X, then the edges of the hypergraph F will be
those sets {ut−1, . . . , ud} with ut−1 ≺ · · · ≺ ud for which there exists an index i ∈ {t− 1, . . . , d− 1}
such that N(ui, . . . , ud) = N(ui+1, . . . , ud). We claim that F has at most

s(d+ 1− t)|X|d+1−t

edges. To this end, note that there are d + 1 − t choices for the index i at which the equality
N(ui, . . . , ud) = N(ui+1, . . . , ud) can occur. Furthermore, for each of these choices, there are at
most |X|d−i ways to choose {ui+1, . . . , ud}. Having fixed these vertices, which by assumption satisfy
|N(ui+1, . . . , ud)| ≥ s, we have less than s vertices ui for which N(ui) ⊇ N(ui+1, . . . , ud), otherwise
we have a Ks,s. Finally, there are at most |X|i−(t−1) ways to choose vertices ut−1, . . . , ui−1. Thus,
the total number of edges of the hypergraph F is at most

|E(F )| < (d+ 1− t)|X|d−i · s · |X|i−(t−1) = s(d+ 1− t)|X|d+1−t,

as claimed.
Observe that the inequality

( |X|
d+2−t

)

≥
( |X|
d+2−t

)d+2−t ≥ s(d + 1 − t)|X|d+1−t is satisfied by our

assumption that |X| ≥ sdd+1. Hence, there exist ut−1 ≺ · · · ≺ ud in X such that {ut−1, . . . , ud} is
not an edge of F , or equivalently, N(ui, . . . , ud) ( N(ui+1, . . . , ud) for all indices t− 1 ≤ i ≤ d− 1.
Picking vertices

vi+2 ∈ N(ui+1, . . . , ud)\N(ui, . . . , ud)

for all t− 1 ≤ i ≤ d− 1, the vertices v1, . . . , vd, u1, . . . , ud span a subgraph with pattern Πd.

The following is the main graph-theoretical lemma which allows us to prove the upper bounds on
the number of incidences of points and hyperplanes. Let us recall that we have defined αt =

t
d+2−t

for t ∈ {2, . . . , d} and βt =
t

d+1−t for t ∈ {1, . . . , d}.

Lemma 3.2. For integers d, s ≥ 2, there exists C = C(d, s) > 0 such that the following holds for
every sufficiently large n. Let G = (A,B;E) be a bipartite graph, |A| = n, |B| = m and m = nα. If
G contains no Ks,s as a subgraph and does not contain the pattern Πd, then

e(G) ≤























Cn if α ∈ [0, β1],

Cm1− 1

t n if α ∈ [αt, βt] for some t ∈ {2, . . . , d},
Cmn1− 1

d+2−t if α ∈ [βt−1, αt] for some t ∈ {2, . . . , d},
Cm if α ∈ [βd,∞).

Moreover, if α = 1, i.e. when m = n, the constant C = 8(s + d3) suffices.

Proof. Let us start by addressing the cases when α ∈ [αt, βt] for some t ∈ {2, . . . , d} or α ∈ [βd,∞).

In the latter case, we set t := d. Suppose that e(G) ≥ C(m1− 1

t n +m) for some large constant C,

and observe that m1− 1

t n ≥ m if α ∈ [αt, βt], and m ≥ m1− 1

t n if α ∈ [βd,∞). We show that there
exists a t-tuple of vertices v1, . . . , vt ∈ A which satisfies the assumptions of Lemma 3.1, which then
implies that G contains the pattern Πd, contradiction. To do this, we use a variant of the dependent
random choice method.

We call an ordered t-tuple of vertices (v1, . . . , vt) bad if N(v1, . . . , vt) ≥ s and N(v1, . . . , vi) =
N(v1, . . . , vi+1) for some i ∈ {1, . . . , t − 1}, and good otherwise. We choose a random good t-tuple
(v1, . . . , vt) with the following sampling procedure. We sample the vertices vi in order, starting from
v1 which is a uniformly random element of A. At step i, having chosen vertices v1, . . . , vi−1, we
have two cases.
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Case 1. |N(v1, . . . , vi−1)| < s. In this case, any t-tuple containing v1, . . . , vi−1 is good, and then all
subsequent vertices vj for j ≥ i can be sampled uniformly at random from A\{v1, . . . , vj−1}.

Case 2. |N(v1, . . . , vi−1)| ≥ s. Define the set Si = {v ∈ A : N(v) ⊇ N(v1, . . . , vi−1)}. Since
G(P,H) does not contain a copy of Ks,s, there are less than s vertices in the set Si. Sample
vi uniformly at random from A\(Si ∪ {v1, . . . , vi−1}).

Let us denote by X the size of the common neighbourhood of v1, . . . , vt, and let Y be the number of
(d+1− t)-tuples of vertices ut, . . . , ud ∈ N(v1, . . . , vt) which has less than s common neighbours. If
we show that E[X−Y ] ≥ dd+1s, then one can pick a good t-tuple v1, . . . , vt satisfying X−Y ≥ dd+1s
and delete one vertex from every (d + 1 − t)-tuple in N(v1, · · · , vt) which has less than s common
neighbours. Then, one is left with the t-tuple v1, . . . , vt and a subset of their common neighbourhood
which satisfy all conditions of Lemma 3.1.

Thus, the main objective is to show that E[X − Y ] ≥ dd+1s. By linearity of expectation, we
have E[X] =

∑

u∈B P[u ∈ N(v1, . . . , vt)]. Let us fix a vertex u ∈ B with deg u ≥ d+ s, and estimate
P[u ∈ N(v1, . . . , vt)]. We have

P[u ∈ N(v1, . . . , vt)] = P[v1, . . . , vt ∈ N(u)] =

t
∏

i=1

P
[

vi ∈ N(u)
∣

∣

∣
v1, . . . , vi−1 ∈ N(u)

]

≥
t
∏

i=1

degu− s− i+ 1

n− i+ 1
>

(

deg u− s− d

n

)t

.

Let B0 ⊆ B be the set of vertices u satisfying deg u ≥ 2(d+ s). Then, the number of edges incident
to B0 is

∑

u∈B0
deg u ≥ C(m1−1/tn+m)− 2(d+ s)m ≥ e(G)/2 for C ≥ 4(d+ s). Therefore,

E[X] ≥
∑

u∈B0

(

deg u− s− d

n

)t

≥
∑

u∈B0

(

degu

2n

)t

≥ |B0|
(

∑

u∈B0
deg u

2|B0|n

)t

≥ m

(

e(G)

4mn

)t

≥
(

e(G)

4m1−1/tn

)t

,

where the third inequality holds by convexity. On the other hand, the probability that a given (d+
1− t)-tuple of vertices ut, . . . , ud ∈ B which has less than s common neighbours lies in N(v1, . . . , vt)
can be bounded by

P[ut, . . . , ud ∈ N(v1, . . . , vt)] = P[v1, . . . , vt ∈ N(ut, . . . , ud)] ≤
( |N(ut, . . . , ud)|

n− s− d

)t

≤ (2s)tn−t,

assuming n is sufficiently large with respect to s and d. Thus, the expectation of Y can be bounded
as

E[Y ] ≤
∑

ut,...,ud∈B
|N(ut,...,ud)|<s

(

2s

n

)t

≤ md+1−t

(

2s

n

)t

.

When α ≤ d = βd, we have α ≤ βt =
t

d+1−t . Hence, for a sufficiently large value of C,

E[X − Y ] ≥
(

e(G)

4m1−1/tn

)t

−md+1−t

(

2s

n

)t

≥ (C/4)t − (2s)tnα(d+1−t)−t ≥ (C/4)t − (2s)t ≥ dd+1s.

On the other hand, when α ≥ d = βd, we have

E[X − Y ] ≥
( Cm

4m1−1/tn

)t
−m

(2s

n

)t
=
(

(C/4)d − (2s)d
)m

nd
≥ (C/4)d − (2s)d ≥ dd+1s,

for a sufficiently large value of C. Thus, we indeed have E[X − Y ] ≥ (C/4)t − (2s)t ≥ dd+1s in all
cases and therefore this completes the first case of the proof.
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Before we consider the rest of the cases, let us justify the assertion that when α = 1 one can
take C = 8(s+ d3). Namely, if α = 1 we have αt ≤ α ≤ βt for t = ⌈d+1

2 ⌉. Then, for the proof to go
through, one needs to verify that the inequality E[X − Y ] ≥ (C/4)t − (2s)t ≥ sdd+1 holds with the
proposed value of C, which is a consequence of a simple calculation.

Observe that the rest of the cases already follow by symmetry. Since 1/αt = αd+2−t and
1/βt−1 = βd+2−t, we have that if α ∈ [βt−1, αt] for some t ∈ {2, . . . , d}, then 1/α ∈ [αd+2−t, βd+2−t].
Also, if α ∈ [0, β1], then 1/α ∈ [βd,∞). Thus, if we reverse the roles of m and n, together with the
observation n = m1/α, we find ourselves in the setting of the cases already proved. This completes
the proof of the theorem.

Now we are ready to prove the upper bounds of Theorem 1.1 and Theorem 1.2, which we restate
as follows.

Theorem 3.3. Let d, s ≥ 2 be integers, then there exists C = C(d, s) > 0 such that the following
holds for every α > 0 and field F. Let P be a set of n points and H be a set of m = nα hyperplanes
in Fd such that the incidence graph of (P,H) is Ks,s-free. Then

I(P,H) ≤























Cn if α ∈ [0, β1],

Cm1− 1

t n if α ∈ [αt, βt] for some t ∈ {2, . . . , d},
Cmn1− 1

d+2−t if α ∈ [βt−1, αt] for some t ∈ {2, . . . , d},
Cm if α ∈ [βd,∞).

Moreover, if α = 1, the implied constant can be taken to be C = 8(s+ d3).

Proof. By Lemma 1.4, the graph G(P,H) does not contain the pattern Πd. Since the conclusion of
Lemma 3.2 does not hold, one of its assumptions must fail. Thus, we conclude that G(P,H) either
contains Ks,s as a subgraph or I(P,H) satisfies the required upper bound.

4 Large complete bipartite subgraphs in incidence graph

The main goal of this section is to prove our lower bounds on rsd(m,n, I) and rsd(n,m, I) for
m ≥ n, that is, to prove Theorem 1.3. As observed before, the lower bounds are only interesting

in the regime ε > 100max{n− 1

d−1 ,m− 1

d }, otherwise taking the maximum degree vertex with its
neighborhood gives a complete bipartite graph of the required size. Let us restate our theorem in
this case.

Theorem 4.1. Let m ≥ n be integers, ε > 0, and I = εmn. If ε > 100max{m− 1

d , n− 1

d−1}, then

rsd(m,n, I), rsd(n,m, I) ≥
( ε

100

)d−1
mn.

Let us prepare the proof with some definitions. For a bipartite graph G, we denote by rs(G) the
number of edges in the largest complete bipartite subgraph of G = (A,B;E). Also, we say that a
t-tuple of vertices v1, . . . , vt ∈ A is a good t-tuple if N(v1, v2) ) N(v1, v2, v3) ) · · · ) N(v1, . . . , vt)
and |N(v1, . . . , vt)| ≥ 2. The reason this definition is useful is the following lemma, which allows us
to embed the pattern Πd using good d-tuples. One can think of Lemma 4.2 as a simpler version of
Lemma 3.1 from Section 3.

Lemma 4.2. Suppose that G contains a good d-tuple v1, . . . , vd. Then G contains the pattern Πd.

Proof. Picking ui ∈ N(v1, . . . , vi+1)\N(v1, . . . , vi+2) for i ≤ d− 2 and ud−1, ud ∈ N(v1, . . . , vd), the
vertices v1, . . . , vd, u1, . . . , ud induce a subgraph with pattern Πd.

Let us reformulate Theorem 4.1 in terms of good d-tuples.
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Lemma 4.3. Let d ≥ 3 be a positive integer and let G = (A,B;E) be a bipartite graph with at

least εmn edges, where |A| = n, |B| = m and n ≤ m. If ε ≥ 100max{n− 1

d−1 ,m− 1

d }, then either A
contains a good d-tuple or

rs(G) ≥
( ε

100

)d−1
mn.

We prove this lemma after some preparations. The following lemma shows how to build good
t-tuples under the assumption that G does not contain large complete bipartite subgraphs.

Lemma 4.4. Let γ, ε > 0, and let G = (A,B;E) be a bipartite graph such that |A| = n, |B| = m,
and every vertex u ∈ B has degree at least deg u ≥ ε

3n. If rs(G) < ε
6γ ·mn, then for any set X ⊆ B

of size at least γm, there exists a vertex v ∈ A for which |N(v) ∩X| ≥ ε
6 |X| and N(v) ∩X 6= X.

Proof. Let X ⊆ B be a subset of size at least γm. The idea of this proof is to double count the
edges incident to X. Let V1 denote the set of vertices v ∈ A for which X ⊆ N(v) and let V2 denote
the set of vertices v ∈ A with |N(v) ∩X| < ε

6 |X|. To show the lemma, it suffices to find a vertex
v ∈ A belonging to neither V1 nor V2.

Suppose, for the sake of contradiction, that V1 ∪ V2 = A. Then, e(A,X) = e(V1,X) + e(V2,X).
Since the degree of every vertex in B is at least εn

3 , we have e(A,X) ≥ ε
3n|X|. On the other hand,

since the graph induced on V1∪X is complete bipartite, we have e(V1,X) ≤ rs(G) ≤ ε
6γ ·mn. Also,

by the definition of V2, we have e(V2,X) =
∑

v∈V2
|N(v) ∩X| < |V2| · ε

6 |X| ≤ ε
6n|X|. Hence,

ε

6
γ ·mn+

ε

6
n|X| > ε

3
n|X|.

Rearranging this inequality gives |X| < γm, which is a contradiction to our initial assumption.

Now, we explain how to build good (d− 1)-tuples in the graph G.

Lemma 4.5. Let d ≥ 3 be a positive integer and let G = (A,B;E) be a bipartite graph with
εmn edges, where |A| = n, |B| = m. If rs(G) ≤ ( ε6)

d−1mn, then G contains a good (d − 1)-tuple

v1, . . . , vd−1 ∈ A with common neighbourhood of size at least |N(v1, . . . , vd−1)| ≥ 2
(

ε
6

)d−1
m.

Proof. For t = 2, . . . , d−1, we prove that there is a good t-tuple v1, . . . , vt ∈ A with |N(v1, . . . , vt)| ≥
2
(

ε
6

)t
m. We prove this by induction on t. For t = 2, we simply need to find a pair of vertices

v1, v2 ∈ A whose common neighbourhood has size at least 2
(

ε
6

)2
m. In fact, the average size of the

common neighbourhood of two vertices of A is ε2

2 m, as shown by equation (2) in Section 2, and
therefore we are done.

For t > 2, the induction hypothesis implies that G contains a good (t−1)-tuple v1, . . . , vt−1 ∈ A

with the common neighbourhood of size |N(v1, . . . , vt−1)| ≥ 2
(

ε
6

)t−1
m. Let γ = ( ε6 )

t−1, then
rs(G) ≤ ( ε6 )

d−1mn ≤ ε
6γ · mn and |X| ≥ γm are satisfied, so we can apply Lemma 4.4 to X =

N(v1, . . . , vt−1). We get that there exists a vertex vt ∈ A for which |N(v1, . . . , vt)| ≥ ε
6 |X| ≥ ( ε6)

tm
and N(v1, . . . , vt−1) ) N(v1, . . . , vt). We conclude that v1, . . . , vt is a good t-tuple with sufficiently
large common neighbourhood, completing the proof.

Now, we are ready to prove Lemma 4.3.

Proof of the Lemma 4.3. We begin the proof by showing that we can assume large minimum degree,
more precisely that minv∈A deg v ≥

(

1− 2
d

)

ε|B| and minv∈B deg v ≥
(

1− 2
d

)

ε|A|. Then, we will
present the main argument, in which we strengthen Lemma 4.5 and show there exists a good (d−1)-

tuple with common neighbourhood of size
(

ε
6

)d−2
m, which allows us to apply Lemma 4.4 to find a

good d-tuple and complete the proof.
We will consider a proof by double induction, first on d and then on m + n. Note that if

min{m,n} = 1, then the statement of the lemma is trivial. Our first step will be, as mentioned
above, to show that if G has a vertex of low degree, then one can remove this vertex and obtain a
graph G′ with rs(G′) ≥ ( ε

100 )
d−1mn.
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Since A and B are symmetric, we will only discuss the case when G has a vertex v ∈ A with
degree deg v ≤

(

1− 2
d

)

ε|B|. Define the graph G′ = G−{v}, which has parts of size n′ = n− 1 and
m′ = m. Furthermore, G′ has ε′m′n′ edges, where ε′m′n′ ≥ εmn −

(

1− 2
d

)

εm. Thus, if G − {v}
does not contain the pattern Πd, we conclude

rs(G) ≥ rs(G′) ≥
(

ε′

100

)d−1

m′n′ ≥
(

εmn−
(

1− 2
d

)

εm

100(n − 1)m

)d−1

(n− 1)m

=

(

( ε

100

)d−1
mn

)

· n− 1

n

(

n− (1− 2
d )

n− 1

)d−1

≥
( ε

100

)d−1
mn.

The last inequality is true due to simple calculations. We should also verify that G′ satisfies the
conditions of Lemma 4.3 by showing that ε′d−1n′ ≥ 100d−1 and ε′dm′ ≥ 100d. But this also follows,
since we have already shown that ε′d−1n′m′ ≥ εd−1mn, which implies both ε′d−1n′ ≥ εd−1n ≥ 100d−1

and ε′dm′ ≥ εdm ≥ 100d (since ε′d−1n′m′ ≥ εd−1mn also implies ε′ ≥ ε). We conclude that
rs(G) ≥ (ε/100)d−1mn, as promised.

In what follows, we assume that G contains no vertex v ∈ A of degree less than
(

1− 2
d

)

εm and
no vertex v ∈ B of degree less than

(

1− 2
d

)

εn. Let us now focus on the main argument. Recall
that we proceed by induction on d, where the case d = 3 was discussed in Section 2 as Lemma 2.2.

We choose a good (d− 1)-tuple (v1, . . . , vd−1) with the maximal size of the common neighbour-
hood, which we denote by X = N(v1, . . . , vd−1). By Lemma 4.5, there must be a good (d− 1)-tuple

with |X| ≥
(

ε
6

)d−1 |B|. If A does not contain a good d-tuple in G, then any vertex v ∈ A either has

X ⊆ N(v) or |N(v) ∩ X| = 1. Lemma 4.4 applied with γ = ( ε6 )
d−2 shows that |X| ≤

(

ε
6

)d−2 |B|.
We conclude that one can partition A into two sets, V1 and V2, where V1 = {v ∈ A : X ⊆ N(v)}
and V2 = {v ∈ A : |X ∩N(v)| ≤ 1}.

Let us consider the edges incident to X. By our assumption on the minimum degree of vertices
of X, we have e(X,A) ≥ |X| ·

(

1− 2
d

)

εn ≥ ε
3n|X|. On the other hand,

ε

3
n|X| ≤ e(X,A) = e(X,V1) + e(X,V2) ≤ |X||V1|+ |V2| ≤ |X||V1|+ n.

Since |X| ≥
(

ε
6

)d−1
m and ( ε

100 )
dm ≥ 1, we have |X| ≥ 12

ε . Thus, ε
12n|X| ≥ n and so ε

4n|X| ≤
|X||V1|, showing that |V1| ≥ ε

4n.
Let us now consider the bipartite graph G′ = G[V1∪ (B\X)]. The number of edges of this graph

is at least

e(G′) = e(V1, B)− e(V1,X) ≥ |V1| ·
(

1− 2

d

)

ε|B| − |V1||X|

≥ |V1|
(

d− 2

d
ε|B| −

(ε

6

)d−2
|B|
)

≥
(

1− 5/2

d

)

ε|B||V1|,

since 6d−2 ≥ 2d for all d ≥ 3. Thus, the sizes of the vertex classes of G′ are n′ = |V1| ≥ εn
4 and m′ =

|B\X| ≥ (1− 5/2
d )m. Finally, the above computation shows that e(G′) = ε′m′n′ ≥ (1− 5/2

d )εm′n′.
Next, our plan is to apply the induction hypothesis for d − 1 on the graph G′ to find a large

complete bipartite subgraph. Let us first argue that G′ does not have a good (d−1)-tuple. Suppose
for contradiction that G′ contains a good (d−1)-tuple u1, . . . , ud−1. The vertices u1, . . . , ud−1 form a
good (d−1)-tuple in the graph G as well, and their common neighbourhood contains both X and at
least two vertices from B\X (since this is a good (d− 1)-tuple in G′). But this implies u1, . . . , ud−1

is a (d − 1)-tuple with a larger common neighbourhood in G than v1, . . . vd−1, contradicting the
maximality. Thus, we conclude that G′ cannot contain a good (d− 1)-tuple.

We also need to verify that ε′ is large enough so that we are able to apply the induction hypothesis
on d, i.e. we need to check that ε′d−2n′ ≥ 100d−2 and ε′d−1m′ ≥ 100d−1. This is a consequence of
an easy computation since

ε′d−2n′ ≥
(

1− 5/2

d

)d−2

εd−2 εn

4
≥ e−5/2

4
100d−1 ≥ 100d−2.
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In the above calculation, we have used that εd−1n ≥ 100d−1 and that
(

1− 5/2
d

)d−2 ≥ e−5/2, which

holds since
(

1 − 5/2
d

)d−2
is a decreasing function for d ≥ 3 with the limit e−5/2 when d → ∞. A

similar computation shows that ε′d−1m′ ≥
(

1 − 5/2
d

)d
εd−1m ≥ 100dε−1

(

1 − 5/2
4

)4 ≥ 100d−1, where

we have used that
(

1 − 5/2
d

)d
is an increasing function of d, when d ≥ 3. Having verified all the

assumptions, we apply the induction hypothesis to the graph G′ and conclude that

rs(G′) ≥
(

1− 5/2

d

)d−2
( ε

100

)d−2
|V1||B| ≥ e−5/2 εd−1

4 · 100d−2
mn ≥ εd−1

100d−1
mn.

Hence, we have rs(G) ≥ rs(G′) ≥ ( ε
100 )

d−1mn, which completes the proof.

Proof of the lower bounds in Theorem 4.1. Proving the lower bounds on rsd(m,n, I) and rsd(n,m, I)

is completely symmetric, so we just discuss rsd(m,n, I). If ε > 100max{m− 1

d , n− 1

d−1 }, let us con-
sider any sets of n points and m hyperplanes, say P and H. The incidence graph G = G(P,H)
avoids the pattern Πd by Lemma 1.4 and so G contains no good d-tuples. Since G has at least εmn

edges, Lemma 4.3 implies rs(G) ≥
(

ε
100

)d−1
mn.

5 Constructions and examples

The main goal of this section is to provide examples which show that the bounds given in Theo-
rem 1.2 and Theorem 1.3 are tight. The main building block of all constructions in this section are
subspace evasive sets. Throughout this section, we consider only finite fields F.

Definition 5.1. A set of points S ⊂ Fd is (k, s)-subspace evasive if every k-dimensional affine
subspace of Fd contains less than s elements of S.

It is clear that the size of a (k, s)-subspace evasive set is at most Os(|F|d−k), as one can partition
Fd into |F|d−k affine subspaces of dimension k. It was proved by Dvir and Lovett [10] that for
sufficiently large s, this trivial bound is optimal. Sudakov and Tomon [29] gave an alternative proof
using the random algebraic method.

Lemma 5.2 ([10]). For integers 1 ≤ k ≤ d, there exists s ≤ dd such that every finite space Fd

contains a (k, s)-subspace evasive set of size at least |F|d−k.

To be more precise, Dvir and Lovett [10] construct a (k, s)-subspace evasive set of size at least
1
3 |F|d−k. However, taking the union of four random translates of such a set results in a (k, 4s)-
subspace evasive set of size at least |F|d−k with high probability. Removing the factor 1/3 makes
our calculations a bit nicer, but other than that has no real effect.

5.1 Constructions without Ks,s

In this section, we prove the following equivalent formulation of the upper bounds in Theorem 1.2.

Theorem 5.3. For every dimension d, there exist s = s(d) and c = c(d) > 0 such that the following
holds. For every α > 0 and sufficiently large integer n, there exists a field F, a set of n points P
and a set of m = ⌊nα⌋ hyperplanes H in Fd such that the incidence graph of (P,H) is Ks,s-free and

I(P,H) ≥























n if α ∈ [0, β1],

cm1− 1

t n if α ∈ [αt, βt] for some t ∈ {2, . . . , d},
cmn1− 1

d+2−t if α ∈ [βt−1, αt] for some t ∈ {2, . . . , d},
m if α ∈ [βd,∞).

The main building block of the proof of this theorem is the following lemma.
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Lemma 5.4. Let 2 ≤ t ≤ d be integers, then there exists an integer s = s(d) > 0 such that for
every prime p the following holds. There exists a set of points P and a set of hyperplanes H in Fd

p

such that G(P,H) does not contain Ks,s, |P| ≥ pt, |H| ≥ pd−t+2/s, and

I(P,H) =
|P||H|

p
≥ Ωd

(

(|P||H|)1− 1

d+2

)

.

Proof. By Lemma 5.2, there exist a constant s = s(d) and sets P,N0 ⊂ Fd
p such that |P| ≥ pt,

|N0| ≥ pd−t+1, P is (d− t, s)-subspace evasive and N0 is (t− 1, s)-subspace evasive. In other words,
any s points of P span an affine subspace of dimension at least d − t + 1, and any s points of N0

span an affine subspace of dimension at least t.
In particular, no line through the origin contains more than s points of N0. Thus, by keeping

at most one point in each line through the origin, we get a subset N of N0 of size at least ≥ 1
s |N0|.

Let H be the set of all hyperplanes whose normal vectors are from N , i.e. all hyperplanes of the
form 〈w, x〉 = b for w ∈ N , b ∈ Fp. Since no line through the origin contains more than one point
of N , we observe that every pair (w, b) ∈ N × Fp yields a different hyperplane. Thus, the size of H
is |H| = p|N | ≥ pd−t+2/s.

To count the incidences between P and H, we observe that for every w ∈ N and every x ∈ P,
there is a unique b ∈ Fp such that 〈w, x〉 = b. This means that out of p hyperplanes of H with
normal vector w ∈ N , exactly one is incident to x. Hence, the number of incidences between P and

H is I(P,H) = |P||N | = 1
p |P||H| and so I(P,H) ≥ Ωd

(

(|P ||H|)1− 1

d+2

)

.

Finally, we argue that the incidence graph G(P,H) is Ks,s-free. Indeed, any s points of P
span an affine subspace of dimension at least d − t + 1. On the other hand, the intersection of s
hyperplanes is nonempty only when no two of them are parallel, meaning that their normal vectors
are distinct. If these s hyperplanes intersect in a (d − t + 1)-dimensional affine space, this means
that the s normal vectors lie in a (t− 1)-dimensional linear space orthogonal to it. But this is not
possible since N is (t − 1, s)-subspace evasive. Hence, the intersection of s hyperplanes can be at
most (d− t)-dimensional. As d− t < d− t+ 1, this shows that G(P,H) is Ks,s-free.

Observe that Lemma 5.4 implies the existence of P,H with |P| = n0 = Ωd(p
t), |H| = m0 =

Ωd(p
d+2−t) and I(P,H) = Ωd((m0n0)

1− 1

d+2 ). This only covers a sparse set of potential values of
m and n. However, by using an approximation and a subsampling trick, one can cover all possible
values of m and n.

Proof of Theorem 5.3. Let us first discuss the boundary cases, i.e. when α ∈ [0, β1] or α ∈ [βd,∞).
In this case, we show that there exist sets P and H with |P| = n, |H| = m = nα, I(P,H) ≥
max{m,n} and such that G(P,H) does not contain K2,2. In the case α ∈ [0, β1], it suffices to
choose p ≥ max{m,n} and take H to be m parallel hyperplanes in Fd

p and P to be n points on one
of the hyperplanes. On the other hand, when α ∈ [βd,∞), let P be n collinear points and H be a
set of m hyperplanes containing exactly one of these points.

Let us now present the main argument. The idea of the proof is to pick a configuration (P0,H0)
given by Lemma 5.4 and randomly sample a proportion of it to obtain the required values of m,n.

First, consider the case when αt ≤ α ≤ βt for some t ∈ {2, . . . , d}. Let p be the smallest prime
larger than 2(sm)1/t. By Bertrand’s postulate, we have p ≤ 4(sm)1/t. By applying Lemma 5.4
with d + 2 − t instead of t, we obtain a set of points P0 and a set of hyperplanes H0 in Fd

p with

|P0| = n0 ≥ pd+2−t, |H0| = m0 ≥ pt/s and I(P0,H0) =
1
p |P0||H0|. Moreover, G(P0,H0) does not

contain Ks,s as a subgraph.
Let P and H be random subsets of P0,H0 containing n and m elements, respectively. Observe

that m0 ≥ 1
sp

t ≥ m and n0 ≥ pd+2−t ≥ m
d+2−t

t ≥ m1/α = n, so it indeed makes sense to
consider such subsets of P0,H0. The expected number of incidences between P and H is simply
E[I(P,H)] = m

m0
· n
n0
I(P0,H0) ≥ 1

pmn. Since p ≤ 4(sm)−1/t, picking a pair (P,H) with at least as
many incidences as the expectation, we get

I(P,H) ≥ 1

p
mn ≥ 1

4s1/t
m− 1

t ·mn.
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In the case βt−1 ≤ α ≤ αt, we proceed similarly. We pick p to be the smallest prime larger

than 2s
1

t n
1

d+2−t , then p < 4s
1

t n
1

d+2−t . We apply Lemma 5.4 with d + 2 − t instead of t to find a
set of points P0 and a set of hyperplanes H0 in Fd

p with |P0| = n0 ≥ pd+2−t, |H0| = m0 ≥ pt/s and

I(P0,H0) = 1
p |P0||H0|. By an almost identical computation as before one can check that n0 ≥ n

and m0 ≥ nα ≥ m. Hence, if P ⊂ P0 is a random n-element subset and H ⊂ H0 is a random

m-element subset, they satisfy E(I(P,H)) ≥ 1
pmn ≥ 1

4s1/t
n− 1

d+2−t · mn. Therefore, we can pick a
pair (P,H) with at least as many incidences as the expectation, completing the proof.

5.2 Constructions with no large complete bipartite subgraphs

In this section, we prove the upper bounds of Theorem 1.3. However, instead of assuming m ≥ n
and giving bounds on both rsd(m,n, I) and rsd(n,m, I), as originally stated in Theorem 1.3, we
prefer to keep the notation consistent by always denoting the number of hyperplanes by m and the
number of points by n. Thus, we will give bounds on rsd(m,n, I) which depend on max{m,n} and
min{m,n}. With this notational change, Theorem 1.3 can be equivalently restated as follows.

Theorem 5.5. Let d,m, n be positive integers, ε ∈ (0, 1) and I = εmn.

• If ε ≥ 1
4 max{m,n}−1/d and ε ≥ 1

4 min{m,n}−1/(d−1), then rsd(m,n, I) ≤ Od(ε
d−1mn).

• If ε < 1
4 max{m,n}−1/d or ε < 1

4 min{m,n}−1/(d−1) then rsd(m,n, I) ≤ Od(εmax{m,n}).

The implied constant depending on the dimension in the above theorem is at most 2O(d log d).
The main geometric construction is contained in the following lemma, which can be thought of as
a strengthening of Lemma 5.4.

Lemma 5.6. Let p be a prime and let d, t, k, ℓ be positive integers satisfying t ≤ d−1 and k, ℓ ≤ pd−t.
Then, there exist an integer s = O(dd), a set of points P and a set of hyperplanes H in Fd

p satisfying
the following properties:

(i) kpt/2 ≤ |P| ≤ kpt, 1
4ℓp

t ≤ |H| ≤ ℓspt, and every point of P is contained in exactly |H|/p
hyperplanes of H. In particular, I(P,H) = |P|·|H|

p .

(ii) For a ∈ {1, . . . , t − 1} and any set A ⊆ P of size |A| ≥ skpa, A is not contained in a
(d− t+ a)-dimensional affine subspace.

(iii) For b ∈ {1, . . . , t− 2} and any set B ⊆ H of size |B| ≥ s2ℓpb, the intersection
⋂

Hi∈B Hi does
not contain a (t− 1− b)-dimensional affine subspace.

Proof. By Lemma 5.2, there exists s = O(dd) such that for every prime p there exists a (d − t, s)-
subspace evasive set P0 containing pt points of Fd

p. In other words, any s points of P0 span an affine
subspace of dimension at least d − t + 1. Furthermore, there exists a set of points Q0 containing
pt−1 points of Fd

p such that Q0 is (d− t+ 1, s)-subspace evasive, which means that any s points of
Q0 span an at least (d− t+ 2)-dimensional affine subspace.

The set P is constructed as the union of k random translates of P0. More precisely, we choose k
random vectors u1, . . . , uk ∈ Fd

p (with repetition) and set P =
⋃k

i=1(P0+ui). The set P constructed
in this way is (d − t, ks)-subspace evasive, since any affine space of dimension d − t containing ks
elements of P must contain at least s elements of one of the translates P0+ui. But this is impossible,
since P0 is a (d− t, s)-subspace evasive set.

Next, we compute the expected size of P and argue that u1, . . . , uk can be chosen such that
|P| ≥ 1

2kp
t. For a given point x ∈ Fd

p, the probability that x lies in P0 + ui is

P[x ∈ (P0 + ui)] = P[ui ∈ (x− P0)] =
1

pd
|P0|.
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Thus, the expected size of P is

E
[

|P|
]

=
∑

x∈Fd
p

P[x ∈ P] =
∑

x∈Fd
p

(

1−
k
∏

i=1

P[x /∈ (P0 + ui)]
)

=
∑

x∈Fd
p

(

1−
(

1− |P0|
pd

)k
)

≥ pd
(

1− exp
(

− k|P0|
pd

))

≥ pd
k|P0|
2pd

=
1

2
kpt.

In the above calculation, we have used the inequalities 1− x
2 ≥ e−x ≥ 1−x for x ∈ (0, 1). Therefore,

we conclude that u1, . . . , uk can be chosen such that P has size at least 1
2kp

t. On the other hand,
we always have |P| ≤ k|P0| = kpt.

Let us now explain how to process the set Q0 and how to construct from it the set of hyperplanes
H. Let U = {x ∈ Fd

p : x(d) = 0}. Since we may translate the set Q0 without altering its properties,

we may assume that at most |Q0|
p elements of Q0 lie in U . Then, we define the set Q1 = Q0\U ,

which is still (d− t+ 1, s)-subspace evasive and has size |Q1| ≥ |Q0|/2.
Pick sℓ uniformly random vectors v1, . . . , vsℓ ∈ U and define Q2 =

⋃sℓ
i=1(Q1 + vi). In a similar

manner as above, we observe that Q2 is a (d − t+ 1, ℓs2)-subspace evasive set. Our goal now is to
show that v1, . . . , vsℓ can be chosen in a way such that at least 1

4ℓp
t−1 lines through the origin contain

a point of Q2. If L ⊂ Fd
p is a fixed line through the origin, note that L intersects Q1+vi if and only if

the translate of L given by L−vi intersects Q1. Note that union of all the translates of L covers Q1.
Since Q1 is a (d− t+1, s)-subspace evasive set, each translate of L contains at most s points of Q1

and so at least |Q1|/s translates of L intersect Q1. Thus, we conclude P[L∩ (Q1+ vi) 6= ∅] ≥ |Q1|/s
pd−1 .

If we denote the number of lines through the origin intersecting Q2 by Y , by a similar calculation
as above we have

E[Y ] =
∑

L line through 0

1− P[L ∩ Q2 = ∅] ≥
∑

L line through 0

1−
(

1− |Q1|
spd−1

)sℓ

≥ pd−1 ℓ|Q1|
2pd−1

≥ 1

4
ℓpt−1.

We form the subset Q ⊆ Q2 by retaining at most one point on each line through the origin.
The above calculation implies that v1, . . . , vsℓ can be chosen such that |Q| ≥ 1

4ℓp
t−1. On the other

hand, the size of Q is bounded by |Q| ≤ |Q2| ≤ sℓ|Q0| ≤ sℓpt−1 and Q is a (d− t+1, ℓs2)-subspace
evasive set.

Finally, we choose H to be the set of hyperplanes given by the equations 〈q, x〉 = b, for q ∈ Q
and b ∈ Fp. We ensured that no two points q1, q2 ∈ Q lie on the same line through the origin,
meaning that the hyperplanes given by 〈q1, x〉 = b1, 〈q2, x〉 = b2 are distinct for all q1, q2 ∈ Q and
b1, b2 ∈ Fp.

All that is left is to show that the conditions of the theorem hold for the sets P,H. We have
already shown that |P| ∈ [kpt/2, kpt]. Furthermore, since every pair (q, b) ∈ Q×Fp yields a different
hyperplane of H, we conclude |H| = p|Q| ∈

[

1
4ℓp

t, sℓpt
]

. Finally, for every x ∈ P and every q ∈ Q,
there is a unique b for which 〈x, q〉 = b, and therefore the number of hyperplanes containing x is
precisely |Q| = |H|/p. This verifies (i).

Now, we prove that for any a ∈ {1, . . . , t−1}, no (d− t+a)-dimensional affine subspace contains
skpa points of A. Suppose this is not the case and there was a set A ⊆ P of size |A| ≥ skpa which
was contained in a (d − t+ a)-dimensional affine space V . Note that V can be partitioned into pa

translates of some (d− t)-dimensional affine subspace V ′ < V . But then there exists a translate of
V ′ containing at least ks points of P.This is a contradiction since P is a (d− t, ks)-subspace evasive
set, thus establishing (ii).

We proceed by a similar argument to prove (iii). Let B be a set of s2ℓpb hyperplanes, denoted
by H1, . . . ,Hs2ℓpb. Furthermore, we assume that the equation of Hi is given by 〈qi, x〉 = bi. Observe

that if the intersection of the hyperplanes Hi is nonempty, one must have qi 6= qj for all i, j ∈ [s2ℓpb],
since otherwise two parallel hyperplanes belong to B. Let us denote the set of all points qi for

i ∈ [s2ℓpb] by B′ ⊆ Q. Assume, for contradiction, that
⋂s2ℓpb

i=1 Hi contains a (t− 1− b)-dimensional
affine subspace. This affine subspace can be written as V + q for some q ∈ Fd

p and some (t− 1− b)-
dimensional linear subspace V . Then all points qi are contained in the orthogonal complement of
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V , which we denote by V ⊥. But V ⊥ is a (d − t + 1 + b)-dimensional linear space, which contains
s2ℓpb points of Q. By partitioning this space into pb translates of a (d − t + 1)-dimensional affine
space, and using that Q is a (d − t+ 1, ℓs2)-subspace evasive set, one arrives at a contradiction as
above.

In what follows, we prove Theorem 5.5 in a series of lemmas, addressing different regimes.

Lemma 5.7. Let ε ∈ (0, 1), and let d and n,m be integers which satisfy

ε ≤ 1

4
max{m,n}− 1

d .

Then there exists a prime p, a set P of n points and a set H of m hyperplanes in Fd
p such that

I(P,H) ≥ εmn and rs(P,H) ≤ (2s)4εmax{m,n}, where s is given by Lemma 5.6.

Proof. For notational convenience, we assume that max{m,n} = m, noting that the same argument
applies if max{m,n} = n. Let p be a prime satisfying ε−1/2 < p ≤ ε−1, and set t = ⌊logp 4m⌋
and ℓ = ⌈4mpt ⌉ ≤ p. Note that 4m ≤ ℓpt ≤ 8m. Since p > ε−1/2 ≥ 2m1/d, we have pd > 4m and
so t ≤ d − 1. Thus, Lemma 5.6 can be applied with k = ℓ to get a set of points P0 and a set of
hyperplanes H0 with n0 = |P0| ≥ ℓpt/2, m0 = |H0| ≥ ℓpt/4 and I(P0,H0) =

1
pm0n0, satisfying (i),

(ii) and (iii).
Let us now argue that rs(P0,H0) ≤ (2s)4εm. Let A ⊆ P0, B ⊆ H0 such that every point of

A lies on every hyperplane in B. We consider three cases: either |A| ≥ s2ℓpt−2, |B| ≥ s2ℓpt−2 or
max{|A|, |B|} < s2ℓpt−2. In all cases, we show that

|A| · |B| ≤ s4ℓpt−1 ≤ 2s4εℓpt ≤ 16s4εm.

If |A| ≥ s2ℓpt−2, then by (ii) of Lemma 5.6, the points of A span an affine subspace of dimension
at least d− t+ t−1 = d−1, which means that at most one of the hyperplanes contains them all. On
the other hand, again by (ii) of Lemma 5.6, any hyperplane can contain at most sℓpt−1 points of P0

and thus |A| ≤ sℓpt−1. In conclusion, we have |A| ≤ sℓpt−1 and |B| = 1, implying |A| · |B| ≤ sℓpt−1

as claimed.
The case |B| ≥ s2ℓpt−2 is very similar. By (iii) of Lemma 5.6, the intersection of hyperplanes of

B does not contain a line, meaning that
⋂

H∈B H is a single point. Furthermore, there are exactly
|H0|/p hyperplanes of H0 containing any point of P0. Since |H0| ≤ ℓspt, we have |B| ≤ |H0|/p ≤
sℓpt−1, and therefore |A| · |B| ≤ sℓpt−1.

Finally, if max{|A|, |B|} < s2ℓpt−2, we let a and b be the smallest integers for which s2ℓpa ≤
|A| < s2ℓpa+1 and s2ℓpb ≤ |B| < s2ℓpb+1. By property (ii) of Lemma 5.6, the points of A span
an at least (d − t+ a + 1)-dimensional affine space. Similarly, by property (iii) of Lemma 5.6, the
hyperplanes of B intersect in at most a (t− 2− b)-dimensional space. Since all points of A belong
to all hyperplanes of B, it must be that d− t+ a+ 1 ≤ t− 2− b, i.e. a+ b+ 2 ≤ 2t− d− 1. Thus,

|A| · |B| ≤ s4ℓ2pa+b+2 ≤ s4ℓp · p2t−d−1 ≤ s4ℓpt−1,

where the last inequality holds by noting that t ≤ d− 1. This completes the third case.
To finish the proof, let P be a random subset of P0 containing n points and H be a random

subset of H0 containing m hyperplanes. One should verify that n ≤ |P0| and m ≤ |H0|, but this
is clear since |P0|, |H0| ≥ 1

4ℓp
t ≥ m and m ≥ n. We also have rs(P,H) ≤ rs(P0,H0) ≤ (2s)4εm.

Furthermore, the expected number of incidences between P and H is

E
[

I(P,H)
]

=
n

n0

m

m0
I(P0,H0) =

1

p
mn ≥ εmn.

Thus, there exist subsets P,H of P0,H0 with at least εmn incidences and rs(P,H) ≤ (2s)4εm.
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Lemma 5.8. Let ε ∈ (0, 1), and let d and n ≤ m be positive integers which satisfy

ε ≤ 1

4
n− 1

d−1 .

Then there exists a prime power q, a set P of n points and a set H of m hyperplanes in Fd
q such

that I(P,H) ≥ εmn and rs(P,H) ≤ (4s)4εm, where s is given by Lemma 5.6.

Proof. The main idea of the proof is to take a symmetric (d−1)-dimensional construction described
in Lemma 5.7 and “blow it up” to obtain our desired configuration.

More precisely, we apply Lemma 5.7 to find a set of n points P0 and a set of n hyperplanes H0

in Fd−1
p for some prime p for which I(P0,H0) ≥ εn2 and rs(P0,H0) ≤ (2s)4εn. The hyperplanes and

points may be considered in the larger ambient space Fd−1
q , for any prime power q = pk. Passing

to Fd−1
q does not change the incidence graph. In the rest of the proof, we fix q to be a power of p

larger than m/n.
Now, for each x ∈ Fd−1

q , let x′ ∈ Fd
q be the point whose first d− 1 coordinates are the same as x,

and the last coordinate is 0. Set P = {x′|x ∈ P0}. Furthermore, we fix a set S = {s1, . . . , sℓ} ⊆ Fq

of size ℓ = ⌈m/n⌉. Then, for every hyperplane H ∈ H0, if H is given by the equation 〈a, x〉 =
a1x1 + · · · + ad−1xd−1 = b, we define hyperplanes H(1), . . . ,H(ℓ) in Fd

q , where H(i) is given by the

equations a1x1 + · · ·+ ad−1xd−1 + sixd = b. Then, we let H1 = {H(i)|i ∈ [ℓ],H ∈ H0}.
The sizes of the newly constructed sets are |P| = n, |H1| = n⌈mn ⌉ > m. Furthermore, if x ∈ P0

is incident to H ∈ H0, then x′ is incident to all of the hyperplanes H(1), . . . ,H(ℓ). Thus, the number
of incidences between P and H1 is I(P,H1) ≥ ℓI(P0,H0) ≥ εℓ|P0||H0| = ε|P||H1|. Finally, the size
of the largest complete bipartite graph is bounded by

rs(P,H1) ≤ ℓ · rs(P0,H0) ≤ ℓ · (2s)4εn ≤ (4s)4εm.

Taking a random m element subset H of H1, the expectation of I(P,H) is at least εmn, so there is
a choice for H such that (P,H) satisfies our desired conditions.

Lemma 5.9. Let ε ∈ (0, 1), and let d and n ≥ m be positive integers which satisfy

ε ≤ 1

4
m− 1

d−1 .

Then there exists a prime power q, a set P of n points and a set H of m hyperplanes in Fd
q such

that I(P,H) ≥ εmn and rs(P,H) ≤ (4s)4εn, where s is given by Lemma 5.6.

Proof. The proof is verbatim the same as the proof of Lemma 5.8, the only difference being that we
“blow up” points instead of hyperplanes. More precisely, we start from a set of m points P0 and a
set of m hyperplanes H0 in Fd−1

p for which I(P0,H0) ≥ εm2 and rs(P0,H0) ≤ (2s)4εm and consider

them in Fd−1
q , where q > n/m.

Then, we fix a set S = {s1, . . . , sℓ} ⊆ Fq of size ℓ = ⌈n/m⌉ and for each point x ∈ Fd−1
q we define

x(i) ∈ Fd
q be the point whose first d− 1 coordinates are the same as x, and the last coordinate is si.

Set P1 = {x(i)|x ∈ P0, i ∈ [ℓ]}. Then, for every hyperplane H ∈ H0, if H is given by the equation
〈a, x〉 = a1x1 + · · · + ad−1xd−1 = b, we define the hyperplane H ′ in Fd

q , given by the equation
a1x1 + · · ·+ ad−1xd−1 + 0 · xd = b. Then, we let H = {H ′|H ∈ H0}.

The sizes of the newly constructed sets are |H| = m, |P1| = m⌈ n
m⌉ > n. Thus, by choosing

a random subset P ⊆ P1 and performing the same calculation as in the proof of Lemma 5.8 one
arrives at the desired conclusion.

Lemma 5.10. Let ε ∈ (0, 1), and let d and n,m be positive integers which satisfy

4ε ≥ m− 1

d−2 and 4ε ≥ n− 1

d−2 .

Then there exists a prime power q, a set P of n points and a set H of m hyperplanes in Fd
q such

that I(P,H) ≥ εmn and rs(P,H) ≤ 26s4(4ε)d−1mn, where s is given by Lemma 5.6.
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Proof. The proof of this lemma is somewhat similar to the proofs of Lemmas 5.8 and 5.9, since
we use the idea of “blowing-up” a lower-dimensional construction. However, in this case we use a
(d−2)-dimensional configuration as a starting point and we “blow-up” both points and hyperplanes.

Let p be a prime between ε−1/2 and ε−1, and setN = (4ε)−(d−2). We remark that the inequalities
N ≤ m,n are satisfied. Note that the condition of Lemma 5.7 is also satisfied with d − 2 instead
of d, and N instead of m and n. Therefore, we can find sets P0,H0 of points and hyperplanes in
Fd−2
p , both of size N , and satisfying I(P0,H0) ≥ εN2 and rs(P0,H0) ≤ (2s)4εN .

As in the proof of Lemma 5.8, we consider P0,H0 in Fd−2
q instead of Fd−2

p , where q is the power
of p satisfying q > max{m

N , n
N }. Furthermore, we fix two sets S, T ⊆ Fq, such that S = {s1, . . . , sk}

and T = {t1, . . . , tℓ}, where k = ⌈ n
N ⌉, ℓ = ⌈mN ⌉. To every point x ∈ P0, we associate k points of Fd

q

as follows. For i ∈ [k], let x(i) ∈ Fd
q be equal to x on the first d− 2 coordinates, equal to si on the

coordinate d−1, and equal to 0 on the last coordinate. Similarly, for a hyperplane H ∈ H0 given by
the equation a1x1+ · · ·+ad−2xd−2 = b, we associate the hyperplanes H(j) in Fd

q for j ∈ [ℓ] defined by

the equations a1x1 + · · ·+ ad−2xd−2 +0 · xd−1 + tjxd = b. Finally, we set P1 = {x(i)|i ∈ [k], x ∈ P0}
and H1 = {H(j)|H ∈ H0, j ∈ [ℓ]}.

If x ∈ H, then it is easy to check that x(i) ∈ H(j) for all i ∈ [k], j ∈ [ℓ], and no other
type of incidences emerge in (P1,H1). Thus, I(P1,H1) ≥ kℓI(P0,H0) ≥ εk|P0|ℓ|H0| = ε|P1||H1|.
Furthermore,

rs(P1,H1) ≤ kℓ rs(P0,H0) ≤
4mn

N2
· (2s)4εN = 26s4ε

mn

N
.

Recalling that N = (4ε)−(d−2), we obtain rs(P1,H1) ≤ 26s4(4ε)d−1mn. Subsampling a random n
element subset P of P1, and a random m element subset H of H1, completes the proof.

Proof of Theorem 5.5. We claim that it suffices to take C = 4d+4s4 = O((4d)4d). Consider three
cases.

Case 1. ε ≥ 1
4 max{m,n}−1/d and ε ≥ 1

4 min{m,n}−1/(d−1).

Then 4ε > m−1/(d−2) and 4ε > n−1/(d−2) are also satisfied, so Lemma 5.10 applies. Therefore,
we have rsd(m,n, εmn) ≤ Cεd−1mn.

Case 2. ε ≤ 1
4 max{m,n}−1/d.

In this case, Lemma 5.7 shows that rsd(m,n, εmn) ≤ (2s)4εmax{m,n} ≤ Cεmax{m,n}.

Case 3. ε ≤ 1
4 min{m,n}−1/(d−1).

We apply either Lemma 5.8 or Lemma 5.9, depending on whether m ≥ n or n ≥ m. This
shows that rsd(m,n, εmn) ≤ (4s)4εmax{m,n} ≤ Cεmax{m,n}.

6 Concluding remarks

In this paper we proved tight bounds on the maximum number of incidences between n points
and m hyperplanes in a d-dimensional space Fd, assuming their incidence graph is Ks,s-free. More
precisely, for every (m,n), we can find a field F = F(d,m, n) for which our upper bounds can be
realized up to a constant factor depending only on d and s, for sufficiently large s ≥ s0(d). It would
be interesting to improve our upper bounds for a fixed finite field Fp and arbitrary m and n. In two
dimensions such estimates were obtained by Bourgain, Katz, and Tao [4].

Another interesting problem is to understand the size of the largest bipartite graph in dense
incidence graphs. Given a set of n points P and a set of m hyperplanes H in Rd with I(P,H) ≥ mn

2 ,
what are the optimal bounds on the minimum of rs(P,H)? Singer and Sudan [25] (based on
unpublished works of Lovett and Pálvölgyi and Fox, Wigderson) proved that there is a configuration
of n points P and n linear hyperplanes H such that the points and the normal vectors of the

hyperplanes have only 0-1 coordinates, I(P,H) ≥ n2/2 and rs(P,H) = n22−Θ(
√
d). Lovett [21]
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conjectured that this bound is the best possible, using the equivalent terminology of low-rank
matrices. This problem might be also interesting over fields other than R. For every field F the
lower bound rs(P,H) = Ω( mn

22dd
) follows from a recent result of Singer and Sudan [25]. On the other

hand, by taking all points and all hyperplanes in Fd
2, we have n = 2d, m = 2(2d − 1), I = mn

2 , and
it is not difficult to show that every complete bipartite graph in the incidence graph has at most
2d ≈ mn

2d+1 edges.
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