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Abstract

In a recent breakthrough, Zhang proves that if G is an H-free graph with m edges, then G has
a cut of size at least m/2 + cHm0.5001, making a significant step towards a well known conjecture
of Alon, Bollobás, Krivelevich and Sudakov. We show that the methods of Zhang can be further
boosted, and prove the following strengthening. If G is a graph with m edges and no clique of size
m1/2−δ, then G has a cut of size at least m/2 +m1/2+ε for some ε = ε(δ) > 0.

In addition, we sharpen another result of Zhang by proving that if G is an n-vertex m-edge graph
with MaxCut of size at most m/2 + n1+ε (or its smallest eigenvalue λn satisfies |λn| ≤ nε), then G is
n−ε-close to the disjoint union of cliques for some absolute constant ε > 0.

1 Introduction

Given a graph G, a cut in G is a partition (U, V ) of the vertex set together with all the edges having
exactly one endpoint in both parts. The size of the cut is the number of its edges. The MaxCut of G
is the maximum size of a cut, denoted by mc(G). The MaxCut is among one the most studied graph
parameters both in extremal combinatorics and theoretical computer science. In this manuscript, we
study the extremal and structural properties of graphs with small MaxCut, continuing a line of research
initiated in the 1970’s.

A simple probabilistic argument shows that every graph with m edges has a cut of size at least m/2.
Indeed, a random cut, chosen from the uniform distribution on all cuts, has size m/2 in expectation. A
fundamental result of Edwards [9, 10] states that this bound can be improved to m

2 +
√
8m+1−1

8 , which
is sharp if the graph is a clique on an odd number of vertices. In general, if G is a disjoint union of
constantly many cliques, then the MaxCut of G is of size m/2+O(

√
m). This raises the following natural

question. Can this bound be improved if G is “far” from a disjoint union cliques? As we are interested in
the size of the MaxCut above m/2, we focus on the notion of surplus, defined as surp(G) = mc(G)−m/2.

1.1 MaxCut in H-free graphs

One way to ensure that a graph is far from a disjoint union of cliques is to assume that it does not
contain some fixed graph H as a subgraph. The study of the size of the MaxCut, and in turn the
surplus, in such graphs was initiated by Erdős and Lovász in the 1970’s (see [11]). One of the first major
results in the area is due to Alon [1], who proved that if a graph G has m edges and no triangles, then
surp(G) = Ω(m4/5), and this bound is tight. The size of the surplus in graphs without short cycles is
studied in [2, 3, 5, 14], where [5, 14] achieve tight bounds for this problem. On the other hand, finding
the size of the minimum surplus in graphs avoiding Kr, the complete graph on r vertices, seems to be
much more difficult. Alon, Bollobás, Krivelevich, and Sudakov [3] proved that for every r, there exists
εr > 0 such that every Kr-free graph has surplus at least m1/2+εr . This was improved by Carlson, Kolla,
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Li, Mani, Sudakov, and Trevisan [7], and then by Glock, Janzer, and Sudakov [14] proved the bound
m1/2+ 3

4r−2 . However, it is conjectured in [2] that the answer should be m3/4+εr for some εr > 0. This
conjecture is still wide open, and for a long time, it was a tantalizing open problem to find any absolute
constant ε > 0 (independent of r), such that every Kr-free graph has surplus Ωr(m

1/2+ε). In a recent
breakthrough, Zhang [21] proved exactly this, by showing that one can take ε = 0.001.

Forbidding a fixed graph H as a subgraph is a very strong, local restriction on the graph. It seemed
plausible that much weaker global restrictions might also force large surplus. One such result is due
to Glock, Janzer, and Sudakov [14] who show that the surplus depends sensitively on the number of
triangles. Another global result, due to Räty, Sudakov, and Tomon [19] shows that regular graphs of
density between 1/2+δ and 1−δ have surplus Ω(m5/8). In the very extreme case, Balla, Hambardzumyan,
and Tomon [4] showed that graphs with clique number o(

√
m) already have surplus ω(m1/2). Here, we

greatly strengthen the result of Zhang [21] and the aforementioned result of [4] by proving that clique
number m1/2−δ already implies that the surplus is at least m1/2+ε for some ε = ε(δ) > 0.

Theorem 1.1. For very ε > 0 there exists δ > 0 such that the following holds for every sufficiently large
m. Let G be a graph with m edges such that G contains no clique of size m1/2−δ. Then G has a cut of
size at least m/2 +m1/2+ε.

We briefly discuss the methods used in the proof of this theorem. While early results on the
surplus used mostly combinatorial and probabilistic techniques, the celebrated approximation algorithm
of Goemans and Williamson [15] introduced a semidefinite programming inspired approach. In the context
of extremal properties of the MaxCut, this approach was first used by Carlson, Kolla, Li, Mani, Sudakov,
and Trevisan [7], and then further refined by Glock, Janzer, and Sudakov [14] and Balla, Janzer, and
Sudakov [5]. Later, Räty, Sudakov, and Tomon [19] demonstrated that one can combine this approach
with spectral techniques to achieve results that are seemingly unobtainable with other methods. Finally,
Zhang’s [21] paper is a tour de force of spectral analysis of graphs. In order to prove Theorem 1.1,
we build on certain results of Zhang as a blackbox, and apply spectral methods similar to the ones
developed in [19]. We highlight that the result of Balla, Hambardzumyan, and Tomon [4] finding surplus
ω(m1/2) in graphs with clique number o(m1/2) uses techniques that are fundamentally different from
these approaches, it builds on properties of factorization norms. Also, there is no implication between
this result and Theorem 1.1, despite the similarity.

1.2 Structural properties of graphs with small cuts

Another, more direct way to measure whether a graph is far from a disjoint union of cliques is to consider
the edit-distance from a union of cliques. We say that an n-vertex graph G is µ-close to some family of
graphs F if it is possible to add or remove at most µn2 edges of G to get a member of F . In other words,
the edit-distance of G to F is at most µn2.

We first heard about the following problem from Victor Falgas-Ravry (personal communication). Is
it true that if an n-vertex graph G is µ-far from a disjoint union of cliques, then G has surplus at least
Ωµ(n

3/2)? This conjecture turns out to be false, there are several families of strongly-regular and other
algebraically defined graph families achieving smaller surplus. For example, a construction of de Caen
[6] related to equiangular lines achieves surplus O(n5/4), while it is constant far from the disjoint union
of cliques. A closely related conjecture of [19] is that if G is µ-far from a Turán graph, then G must have
positive discrepancy at least Ω(n5/4). Here, the positive discrepancy can be thought of as the surplus
of the complement graph (they are equal up to constant factors if G is regular, but otherwise there
are some subtle differences), and the complement of a Turán graph is the disjoint union of cliques of
equal sizes. Zhang [21] made significant progress towards this conjecture as well, and also proved that
every n-vertex graph of surplus at most Oµ(n

1.001) is µ-close to a disjoint union of cliques. Zhang asked
whether the dependence of Oµ(n

1.001) on µ can be chosen to be polynomial. We answer this question in
the affirmative.
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Theorem 1.2. There exists ε > 0 such that the following holds for every sufficiently large n. If G is an
n-vertex m-edge graph with no cut of size larger than m/2 + n1+ε, then G is n−ε-close to the disjoint
union of cliques.

1.3 Smallest eigenvalue

A central topic of spectral graph theory is understanding the structure of graphs, whose adjacency
matrix has large smallest eigenvalue, see e.g. Koolen, Cao, and Yang [17] for a recent survey. Let G be
an n-vertex graph and let λn denote the smallest eigenvalue of its adjacency matrix. If G is non-empty,
then λn ≤ −1 with equality if and only if G is the disjoint union of cliques. In the 1970’s, Cameron,
Goethels, Seidel, and Shult [13] gave a complete characterization of graphs satisfying λn ≥ −2, while
more recently, Koolen, Yang and Yang [18] obtained a partial characterization in the case λn ≥ −3.
Beyond these specific values, much less is known. Kim, Koolen, and Yang [16] proved the following
structure theorem for graphs satisfying |λn| ≤ λ. One can find dense induced subgraph Q1, . . . , Qc in G
such that each vertex lies in at most λ of Q1, . . . , Qc, and almost all edges are covered by the union of
Q1, . . . , Qc. However, the proof of this result is based on certain Ramsey theoretic arguments, and it no
longer applies if λ is polynomial in n.

On the other hand, Zhang [21] proved that as long as |λn| < n1/4−ε for some ε > 0, then the graph
G is µ-close to the disjoint union of cliques for every µ > 0, assuming n > n0(ε, µ) is sufficiently large.
Also, the exponent 1/4 cannot be replaced by anything larger, since de Caen [6] constructs graphs which
are µ-far from a disjoint union of cliques for µ = Ω(1) and have |λn| = Θ(n1/4). This result essentially
resolved another conjecture of [19], and it gives a strong structural property of dense graphs with small
|λn|. On the other hand, this result is meaningless for sparse graphs, since any graph with fewer than
µn2 edges is µ-close to a disjoint union of cliques.

We observe that the following corollary of Theorem 1.2 extends the result of Zhang [21] to a sparser
regime.

Corollary 1.3. There exists ε > 0 such that the following holds for every sufficiently large n. If G is an
n-vertex graph with whose smallest eigenvalue λn satisfies |λn| ≤ nε, then G is n−ε-close to the disjoint
union of cliques.

The surplus and the smallest eigenvalue are closely related. It is well known (see e.g. [21] or Claim
2.1) that surp(G) ≤ n|λn|. Thus, Theorem 1.2 immediately applies to any graph with |λn| ≤ nε since
such graphs also have surp(G) ≤ n1+ε, thus showing the above corollary.

We also note that one can think of the surplus as a robust version of the smallest eigenvalue. Indeed,
surp(G) ≈ n|λn| holds in many natural graph families, but the surplus is much less sensitive to local
changes than λn.

We prove Theorem 1.1 in Sections 3 and Section 4, and then we prove Theorem 1.2 in Section 5. But
before that, we introduce our notation and discuss some basic results in the next section.

2 Preliminaries

In this paper, we crucially exploit the relation between the MaxCut of a graph and its spectral properties.
Therefore, we will start by recalling some basic facts from linear algebra and graph theory, as well as
some known relationships between spectra of graphs and their MaxCut.

The edge density of a graph G is m/
(
n
2

)
, where m = e(G) is the number of edges. Given a subset U

of the vertices, G[U ] denotes the subgraph of G induced on vertex set U . Also, if V ⊂ V (G) is disjoint
form U , then G[U, V ] is the bipartite subgraph of V (G) induced between U and V . The complement of
G is denoted by G. The maximum degree of G is denoted by ∆(G), and the average degree by d(G).

3



The MaxCut of G, denoted by mc(G), is the maximum size of a cut, where a cut is a partition (U, V )
of the vertices into two parts, with all the edges having exactly one endpoint in both parts. The size of
a cut is the number of its edges. The surplus of G is defined as surp(G) = mc(G)−m/2, where m is the
number of edges of G. Note that surp(G) is always nonnegative. A useful property of the surplus is that
if G0 ⊂ G, then surp(G) ≥ surp(G0), see e.g. [14].

As we will see, the surplus of G is controlled by the negative eigenvalues of the graph. If G is
an n-vertex graph whose adjacency matrix is A, then we denote by λ1 ≥ · · · ≥ λn the eigenvalues of
A, sometimes also calling them the eigenvalues of G. We also denote by v1, . . . , vn the corresponding
orthonormal basis of eigenvectors. By the Perron-Frobenius theorem, we may take v1 to be a vector
with non-negative entries, which we call the principal eigenvector of A. Furthermore, the corresponding
eigenvalue satisfies λ1 ≥ d(G).

Finally, before presenting the relations among the eigenvalues and the surplus, we introduce a few
final pieces of notation about matrices. Given two n×n matrices A and B, their scalar product is defined
as ⟨A,B⟩ = tr(ABT ) =

∑
1≤i,j≤nAi,jBi,j . The Frobenius-norm of an n× n matrix A is

∥A∥2F = ⟨A,A⟩ =
n∑

i,j=1

A2
i,j .

If A is symmetric with eigenvalues λ1, . . . , λn, then we also have ∥A∥2F = ⟨A,A⟩ = tr(A2) =
∑n

i=1 λ
2
i .

The Hadamard product (also known as entry-wise product) of A and B is the n × n matrix A ◦ B
defined as (A ◦ B)i,j = Ai,jBi,j . We denote the k-term Hadamard product A ◦ · · · ◦ A by A◦k. A useful
feature of the Hadamard product, which is a key component of our arguments, is that Hadamard product
preserves positive semidefiniteness. More precisely, the Schur product theorem states that if A and B
are positive semidefinite symmetric matrices, then A ◦ B is also positive semidefinite. We remark that
the Hadamard product played a crucial role in both [19] and [21]. In particar, Zhang [21] builds on the
simple observation that if A is an adjacency matrix, then A = A ◦ A. In the current manuscript, one of
the key steps is analyzing certain three-term Hadamard products.

We now begin by showing the promised relation between the MaxCut of a graph and its spectrum.
We begin with an upper bound.

Claim 2.1. For an n-vertex graph G with the smallest eigenvalue λn, we have surp(G) ≤ |λn|n/4.

Proof. Let A be the adjacency matrix of G. We can assign a vector with entries ±1 to each cut V (G) =
X ∪ Y , by setting xu = 1 if u ∈ X and xu = −1 otherwise. Then, the surplus of this cut equals
1
2

(
e(X,Y )− e(X)− e(Y )

)
= −1

2

∑
{u,v}⊆V (G) xuAuvxv = −1

4

∑
u,v∈V (G) xuAuvxv. Hence, we have

surp(G) =
1

4
max

x∈{−1,1}n
−xTAx =

1

4
max

x∈[−1,1]n
−xTAx.

But, we have −xTAx ≤ |λn|∥x∥22 for every vector x ∈ Rn, and so surp(G) ≤ 1
4 |λn|

√
n
2
= |λn|n/4.

The key ingredient of the above proof is the relation surp(G) = 1
4 maxx∈[−1,1]n −xTAx, which can also

be written as surp(G) = 1
4 maxx∈[−1,1]n⟨−A, xxT ⟩, where we observe that xxT is a positive-semidefinite

matrix with diagonal entries bounded by 1. As we will see, it will be very convenient to define the
semidefinite relaxation of the surplus as follows. Given an n-vertex graph G with adjacency matrix A,
define

surp∗(G) = max
X

−⟨A,X⟩,

where the maximum is taken over all n× n positive semidefinite matrices X such that Xi,i ≤ 1 for every
i ∈ [n]. The following inequality between surp(G) and surp∗(G) can be found in [20] and [21], and it is
a simple application of the graph Grothendieck inequality of Charikar and Wirth [8].
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Claim 2.2 ([20]). For every graph G, we have surp∗(G) ≥ surp(G) ≥ Ω
(
surp∗(G)

logn

)
.

The semidefinite relaxation surp∗(G) allows us to obtain lower-bounds on the surplus using the
negative eigenvalues of a graph G. In this paper, we will be often concerned with very dense graphs, and
the following lemma gives good lower bounds on the surplus of G in this case. Parts of the following
lemma and similar bounds can be also found in [19, 20, 21].

Lemma 2.3. Let G be a graph on n vertices with eigenvalues λ1 ≥ · · · ≥ λn, and let ∆ denote the
maximum degree of the complement of G. Then

(i) surp∗(G) ≥
∑

λi<0 |λi|

(ii) surp∗(G) ≥ Ω
(

1√
∆+1

∑
λi<0 λ

2
i

)
(iii) surp∗(G) ≥ Ω

(
1

∆+1

∑
λi<0 |λi|3

)
Before we prove Lemma 2.3, we briefly discuss a preliminary lemma. We show that in dense graphs,

the principal eigenvector must be close to the normalized all-ones vector.

Lemma 2.4. Let G be an n-vertex graph, whose complement has edge density p ≤ 1/10 and maximum
degree ∆ = ∆(G). If v1 is the principal eigenvector of G, then for each i ∈ [n] we have

1− 2∆/n√
n

≤ v1(i) ≤
1 + 2p+ 2/n√

n
.

Proof. Let λ1 be the eigenvalue corresponding to v1. Then for every b ∈ [n], we have λ1v1(b) =
∑

b∼i v1(i).
By the inequality between the arithmetic and quadratic mean, we have 1

n

∑
b∼i v1(i) ≤

1
n

∑n
i=1 v1(i) ≤√∑

i v1(i)
2

n = 1/
√
n, where we have used that

∑n
i=1 v1(i)

2 = 1. Hence λ1v1(b) ≤
√
n and so

v1(b) ≤
√
n

λ1
≤

√
n

d
=

√
n

(1− p)(n− 1)
≤ 1 + 2p+ 2/n√

n
.

Here, in the second inequality, we used that λ1 ≥ d(G), and in the last inequality that p < 1/10. To
prove the lower bound, we first observe that

1 =
n∑

i=1

v1(i)
2 ≤ ∥v1∥∞

n∑
i=1

v1(i),

which implies that
∑n

i=1 v1(i) ≥
λ1√
n
. But then using the identity Av1 = λ1v1,

λ1v1(b) =
∑
i∼b

v1(i) ≥
n∑

i=1

v1(i)−∆∥v1∥∞ ≥ λ1√
n
−∆

√
n

λ1
≥ λ1√

n

(
1−∆

n

λ2
1

)
≥ λ1√

n

(
1− 2∆

n

)
,

where we have used that λ2
1 ≥ d(G)2 ≥ n2/2 in the last inequality. Canceling λ1 gives v1(b) ≥ 1−2∆/n√

n
.

Proof of Lemma 2.3. We begin by showing the inequalities (i) and (iii), which we then combine to
derive (ii). Let v1, . . . , vn be an orthonormal basis of eigenvectors corresponding to the eigenvalues
λ1, . . . , λn. The inequalities (i) and (iii) will be shown by plugging in the appropriate test matrix X
in the formula surp∗(G) = maxX −⟨A,X⟩. Observe that, if we choose X =

∑n
i=1 αiviv

T
i for some real

numbers α1, . . . , αn, then

⟨A,X⟩ =
n∑

i=1

n∑
j=1

αiλj⟨vivTi , vjvTj ⟩ =
n∑

i=1

n∑
j=1

αiλj⟨vi, vj⟩2 =
n∑

i=1

αiλi.
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(i) Let X =
∑

λi<0 viv
T
i . Then X is positive semidefinite, and as v1, . . . , vn is an orthonormal basis,

we have

Xj,j =
∑
λi<0

vi(j)
2 ≤

n∑
i=1

vi(j)
2 =

n∑
i=1

⟨vi, ej⟩2 = ∥ej∥2 = 1.

Therefore,
surp∗(G) ≥ −⟨A,X⟩ =

∑
λi<0

|λi|.

(iii) Let β = 1
100(∆+1) , and X = β

∑
λi<0 λ

2
i viv

T
i . Then X is positive semidefinite. It is enough to

prove that the diagonal entries of X are bounded by 1, as then surp∗(G) ≥ −⟨A,X⟩ = β
∑

λi<0 |λi|3.
To show that Xi,i ≤ 1, we consider the matrix B = A− λ1v1v

T
1 . Since

βB2 −X = β
∑

i ̸=0,λi>0

λ2
i viv

T
i ,

we have that βB2 −X is positive semidefinite. Hence, (βB2)i,i ≥ Xi,i for every i ∈ [n]. Therefore, it is
enough to show that (B2)i,i ≤ 1/β = 100(∆ + 1).

To show this, we first bound the entries of B. We denote by p the density of G, and observe that
p ≤ ∆n/2

(n2)
≤ ∆

n−1 . Then, Lemma 2.4 implies that for any i, j ∈ [n] we have

1− 5∆

n
≤ (n− 1)(1− p)

(
1− 2∆/n√

n

)2

≤ λ1v1(i)v1(j) ≤ n

(
1 + 2p+ 2/n√

n

)2

≤ 1 +
5(∆ + 1)

n
.

Therefore, for every i, j ∈ [n], if ij ∈ E(G) and Ai,j = 1, then |Bi,j | ≤ 5(∆+1)
n . Otherwise, we have

|Bi,j | ≤ 1 + 5(∆ + 1)/n ≤ 6. From this, we have

(B2)i,i =

n∑
j=1

(Bi,j)
2 ≤ 36∆ + n

25(∆ + 1)2

n2
≤ 100(∆ + 1).

(ii) We show that (i) and (iii) can be combined to give the desired lower bound on surp∗(G). Namely,
we have

surp∗(G)2 ≥ β

∑
λi<0

|λi|3
∑

λi<0

|λi|

 ≥ β

∑
λi<0

λ2
i

2

.

Note that the first inequality is the combination of (i) and (iii), while the second one is simply the
Cauchy-Schwartz inequality applied to the sequences (|λi|3)λi<0 and (|λi|)λi<0. Taking square roots then
proves (ii).

Finally, we remark that surp∗(·) is also monotone, that is, if G0 is an induced subgraph of G, then
surp∗(G0) ≤ surp∗(G). This fact follows easily from the definition, and it is used repeatedly throughout
our paper.

3 Dense graphs with small surplus

The proof of Theorem 1.1 can be summarized in the following simple steps, in each of which we find
increasingly denser subgraphs of our host graph. Interestingly, the underlying methods dealing with
each of these steps are quite different. Let G be a graph on n vertices with m edges and assume that
surp(G) ≤ m1/2+ε. Without loss of generality, G has no isolated vertices.
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First, by an old result of Erdős, Gyárfás, and Kohayakawa [12], surp(G) = Ω(n). Therefore, we may
assume that m > n2−ρ for some 0 < ρ = ρ(ε). Second, by a result of Zhang [21], such a dense graph
G contains a subgraph G1 on at least n2−ρ vertices of edge density 1 − 10−5. Interestingly, in [21], this
step consists of two sub-steps: getting a subgraph G0.5 of density Ω(1), and then getting a subgraph G1

of G0.5 using stability. Third, we prove that G1 contains an induced subgraph G2 of edge density at
least 1− n−0.1 on v(G1)

1−o(1) vertices. This result is presented as Lemma 3.2. Finally, we show that G2

contains a half-sized induced subgraph G3 of edge density at least 1 − nO(ε)−1. This result is presented
as Lemma 4.1.

As outlined above, one of the key components of our proof is the following remarkable result of Zhang
[21], which we use as a black box.

Theorem 3.1 (Theorem 1.7 in [21]). Let ρ < 1
1000 . For every p > 0, the following holds for every

sufficiently large n with respect to p. Let G be an n-vertex graph with at least n2−ρ edges. If surp(G) ≤
n1+ρ, then G contains an induced subgraph on at least n1−4ρ vertices of edge density at least (1− p).

Hence, in order to prove Theorem 1.1, we may pass to a very dense subgraph. Unfortunately, the
dependence of n on p for which Theorem 3.1 starts to be effective is exponential. However, we can boost
this result even further. The main result of this section shows that if G has density at least 1 − 10−5,
then either G has large surplus, or a large induced subgraph of density at least 1 − n−0.1. Then, in the
next subsection, we boost this even further to show that graphs of density 1 − n−0.1 either have large
surplus, or they contain a large subgraph of density at least 1− n−0.99.

The main result of this section is the following lemma.

Lemma 3.2. Let 0 < ε < 1/4 and 0 < α < min{ 1
12 − ε

6 ,
1
6 − 2ε

3 }, and let n be sufficiently large with
respect to ε, α. Let G be an n-vertex graph with edge density at least 1− 10−5. If surp∗(G) < n1+ε, then
G contains an induced subgraph of size n1−o(1) with edge density at least 1− n−α.

In order to prove Lemma 3.2, we proceed by a density increment argument. The next lemma contains
the statement of the main density increment step.

Lemma 3.3. Let 0 < ε < 1/4 and 0 < α < min{ 1
12 − ε

6 ,
1
6 − 2ε

3 }, and let n be sufficiently large with
respect to ε, α. Let G be an n-vertex graph with edge density 1− p, where n−α ≤ p < 10−5. Assume that
surp∗(G) < n1+ε. Then G contains an n/4-vertex induced subgraph of edge density at least 1− 108p3.

Proof. Let A be the adjacency matrix of G with eigenvalues λ1 ≥ · · · ≥ λn and corresponding orthonormal
basis of eigenvectors v1, . . . , vn. Define B = A− λ1v1v

T
1 and E =

∑
λi<0 |λi|vivTi . Then, the matrices E

and B + E =
∑

λi>0,i ̸=1 λiviv
T
i are positive semidefinite.

The key idea of the proof is to consider the following triple Hadamard product:

D = (B + E)◦3 = B◦3 + 3B ◦B ◦ E + 3B ◦ E ◦ E + E◦3.

As B +E is positive semidefinite, so is D by the Schur product theorem. Then, using the matrix E and
the principal eigenvector v1, we identify a set of well-behaved vertices I, and evaluate the product

0 ≤ 1T
I D1I = 1T

I B
◦31I + 1T

I

(
3B ◦B ◦ E + 3B ◦ E ◦ E + E◦3)1I .

By carefully analyzing the terms of this product, we will conclude that the graph G[I] must be much
sparser than G.

We will now give the details. First, observe that

tr(E) =
∑
λi<0

|λi| ≤ surp∗(G) ≤ n1+ε

7



by (i) in Lemma 2.3, and

∥E∥2F =
∑
λi<0

λ2
i ≤ O(

√
∆+ 1) surp∗(G) ≤ O(

√
∆+ 1)n1+ε ≤ O(n3/2+ε)

by (ii) in Lemma 2.3. Let I be the set of vertices i ∈ [n] that satisfy Ei,i ≤ 4nε and v1(i) ≥ (1− 8p)/
√
n.

Claim 3.4. |I| ≥ n/4.

Proof. Let I0 be the set of vertices i ∈ [n] such that v1(i) ≥ (1− 8p)/
√
n. Then using Lemma 2.4,

1 =

n∑
i=1

v1(i)
2 ≤ |I0|

(1 + 2p+ 2/n)2

n
+ (n− |I0|)

(1− 8p)2

n

≤ 1

n
(|I0|(1 + 8p) + (n− |I0|)(1− 8p)) = (1− 8p) +

16p|I0|
n

.

From this, we get |I0| ≥ n/2. Now I is those set of vertices i ∈ I0 that satisfy Ei,i ≤ 4nε. As
tr(Ei,i) ≤ n1+ε, the number of vertices such that Ei,i > 4nε is at most n/4, giving the desired bound
|I| ≥ n/4.

We now evaluate the terms of the 1T
I D1I , starting with the main term 1T

I B
◦31I .

Claim 3.5. 1T
I B

◦31I ≤ 106|I|2p3 − e(G[I])/4.

Proof. We have

Bi,j =

{
1− λ1v1(i)v1(j) if ij ∈ E(G),

−λ1v1(i)v1(j) if ij /∈ E(G).

If i, j ∈ I, then

1− λ1v1(i)v1(j) ≤ 1− (1− p)(n− 1) ·
(
1− 8p√

n

)2

≤ 100p,

and thus λ1v1(i)v1(j) >
1
2 . Therefore,

1T
I B

◦31I =
∑

i,j∈I,i∼j

(1− λ1v1(i)v1(j))
3 −

∑
i,j∈I,i ̸∼j

(λ1v1(i)v1(j))
3 ≤ 1003|I|2p3 − 2e(G[I])/8.

Claim 3.6. We have

1T
I (3B ◦B ◦ E + 3B ◦ E ◦ E + E◦3)1I ≤ O(n7/4+ε/2 + n3/2+2ε).

Proof. We bound each summand of the error term independently. Firstly, note that every entry of B is

between 1 and −2, as 0 ≤ λ1v1(i)v2(j) ≤ n
(
1+2p+2/n√

n

)2
≤ 2. Therefore, we have

1T
I (3B ◦B ◦ E)1I ≤ 12

∑
i,j∈I

|Ei,j | ≤ 12|I|
√∑

i,j∈I
E2

i,j ≤ 12n∥E∥F ≤ O(n7/4+ε/2).

Here, the second inequality holds by the inequality between the arithmetic and quadratic mean.
To bound the second summand, we again use that entries of B are bounded by 2 in absolute value,

and so
1T
I (3B ◦ E ◦ E)1I ≤ 6

∑
i,j∈I

E2
i,j ≤ 6∥E∥2F ≤ O(n3/2+ε).

8



Finally, in bounding the last term we will use that Ei,i ≤ nε for all i ∈ I. In particular, since E is a
positive definite matrix, this implies that |Ei,j | ≤ nε for all i, j ∈ I. So,

1T
I E

◦31I ≤
∑
i,j∈I

|Ei,j |3 ≤ max
i,j∈I

|Ei,j | ·
∑
i,j∈I

|Ei,j |2 ≤ nε · ∥E∥2F ≤ O(n3/2+2ε).

The conclusion now follows by summing up the bounds obtained on each of the error terms above.

In conclusion, we proved that

0 ≤ 1T
I D1I ≤ 106|I|2p3 − e(G[I])/4 +O(n7/4+ε/2 + n3/2+2ε) ≤ 107|I|2p3 − e(G[I])/4,

where in the last inequality we used our bounds on p and ε, and that n is sufficiently large. Hence, we
must have e(G[I]) ≤ 108|I|2p3/2, which shows that the edge density of G[I] is at least (1− 108p3).

Proof of Lemma 3.2. Let ε0 > ε and α0 > α be real numbers (independent of n) such that ε0 < 1/4 and
α0 < min{ 1

12 − ε0
6 ,

1
6 − 2ε0

3 }. Let 1 − p be the edge density of G. Let G0 = G, and define the sequence
of induced subgraphs G0 ⊃ G1 ⊃ ... as follows. If Gi is already defined with ni vertices and edge density
1− pi, then stop if either pi < n−α or ni < max{n(1+ε)/(1+ε0), nα/α0}. Otherwise, let Gi+1 be an induced
subgraph of Gi on at least ni/4 vertices of edge density at least 1− 108p3i .

First, we argue that if we did not stop at Gi, we can indeed find a suitable subgraph Gi+1. Note that
surp∗(G) ≥ surp∗(Gi), so if ni ≥ max{n(1+ε)/(1+ε0), nα/α0}, then surp∗(Gi) ≤ n1+ε < n1+ε0

i . Moreover,
using that 108p3 < p for p < 10−5, it follows by induction that the edge density of Gi is at least 1−10−5.
Hence, if pi > n−α ≥ n−α0

i , then an application of Lemma 3.3 with ε0 and α0 instead of ε and α
guarantees the existence of Gi+1.

Let I be the last index i for which Gi is defined. Then nI ≥ n4−I and pI < (108)3
I−1+3I−2+···+1p3

I
<

(104p)3
I
< 10−3I . Hence, we must have stopped because pI < n−α, which happens for some I =

O(log log n). But then nI ≥ n4−O(log logn) = n1−o(1), and thus GI suffices.

4 Even denser graphs with small surplus

The main result of this section is the following lemma, which can be used to further boost Lemma 3.2.
Interestingly, the proof of this is quite different from the proof of Lemma 3.2.

Lemma 4.1. Let 0 < ε < α, then the following holds if n is sufficiently large. Let G be an n-vertex graph
of edge density at least 1− n−α. If surp∗(G) ≤ n1+ε, then G contains an induced subgraph of density at
least (1−O((log n)2n2ε−1)) on at least n/2 vertices.

In order to prove this, it is more convenient to work with the complement G of G. Let λ1 ≥ · · · ≥ λn

be the eigenvalues of G, and let µ1 ≥ · · · ≥ µn be the eigenvalues of G. Unfortunately, as G is not
necessarily regular, there is no simple formula to express µi in terms of λ1, . . . , λn. However, we can use
Weyl’s inequality to establish the following interlacing property.

Lemma 4.2. Let G be an n vertex graph with eigenvalues λ1 ≥ · · · ≥ λn, and let µ1 ≥ · · · ≥ µn be the
eigenvalues of the complement of G. For i = 1, 2 . . . , n− 1,

1 + µi+1 ≤ −λn+1−i.

Proof. Weyl’s inequality states that if X and Y are n × n symmetric matrices, and 1 ≤ i, j ≤ n and
i+ j ≤ n+ 1, then

λi+j−1(X + Y ) ≤ λi(X) + λj(Y ),
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where λ1(X) ≥ · · · ≥ λn(X) denote the eigenvalues of a matrix X. Let A be the adjacency matrix of
G, and let B be the adjacency matrix of G. Then B = J − I − A. Let X = −A and Y = J − I, then
λi(X) = −λn+1−i, λ1(Y ) = n − 1, λi(X) = −1 for i = 2, . . . , n, and λi(X + Y ) = µi. Hence, applying
the above inequality with j = 2, we get

µi+1 ≤ −λn+1−i − 1.

The next lemma provides a bound on the surplus of very dense graphs. The result and its proof are
similar to the proof of Lemma 5.9 of Räty, Sudakov and Tomon [19] for the complementary quantity
called as positive discrepancy. Say that a graph G is C-balanced if ∆(G) ≤ Cd(G).

Lemma 4.3. Let G be an n-vertex graph of density (1−p) such that the complement of G is C-balanced,
and p < 0.001C−2. Then

surp∗(G) ≥ Ω

(
min

{
n

C3p
, C−1p1/2n3/2

})
.

Proof. Let A be the adjacency matrix of G with eigenvalues λ1 ≥ · · · ≥ λn, and let B be the adjacency
matrix of G with eigenvalues µ1 ≥ · · · ≥ µn. Let ∆ be the maximum degree of G, so µ1 ≤ ∆ ≤ Cpn. We
may assume that p > 0 and thus ∆ ≥ 1, otherwise the statement is trivial. For k = 1, 2, 3, set

Pk =
∑

i ̸=1,µi>0

µk
i and Nk =

∑
µi<0

|µi|k.

Lemma 4.2 applied with i ≥ 2 shows that whenever µi ≥ 0 we also have λn+1−i ≤ −µi−1 < 0. Combined
with Lemma 2.3, this shows that

surp∗(G) ≥
∑
λi<0

|λi| ≥
∑

i ̸=1,µi>0

µi = P1,

surp∗(G) ≥ Ω

 1√
∆

∑
λi<0

|λi|2
 ≥ Ω

 1√
∆

∑
i ̸=1,µi>0

µ2
i

 = Ω

(
1√
∆
P2

)
,

surp∗(G) ≥ Ω

 1

∆

∑
λi<0

|λi|3
 ≥ Ω

 1

∆

∑
µi>0

µ3
i

 = Ω

(
1

∆
P3

)
.

We show that these three inequalities together with some simple identities suffice to prove the lemma.
First, assume that N2 ≤ 1

8pn
2. Note that µ2

1 + P2 +N2 = ∥B∥2F is twice the number of edges of G,
so µ2

1 + P2 +N2 = 2p
(
n
2

)
, from which

P2 ≥ pn2/2− µ2
1 −N2 ≥ pn2/2− C2p2n2 − pn2/8 ≥ pn2/4,

where we have used that pC2 ≤ 10−3 in the last inequality. But then surp∗(G) = Ω(p1/2n3/2) by the
second highlighted inequality, and we are done.

Hence, in the rest of the proof, we may assume that N2 ≥ 1
8pn

2. By the inequality between the
quadratic and cubic mean, we have (

N2

n

)1/2

≤
(
N3

n

)1/3

which gives N3 ≥ N
3/2
2 n−1/2 ≥ p3/2n5/2/64.
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Next, consider the quantity T = N3 − P3. Observe that µ3
1 − T =

∑n
i=1 µ

3
i is six-times the number

of triangles of G. In particular, µ3
1 − T it is nonnegative, showing that T ≤ µ3

1 ≤ ∆3. Assume that
N3 ≥ 2T , then P3 ≥ N3/2. By the third highlighted inequality, we then have

surp∗(G) ≥ Ω

(
P3

∆

)
≥ Ω

(
N3

∆

)
≥ Ω(C−1p1/2n3/2).

Hence, we are done in this case as well.
Finally, assume that N3 ≤ 2T , then ∆3 ≥ T ≥ N3/2. By the Cauchy-Schwartz inequality applied to

the sequences (|µi|3)µi<0 and (|µi|)µi<0, we have the inequality N1N3 ≥ N2
2 , which gives

N1 ≥
N2

2

N3
≥ p2n4

128∆3
≥ n

128C3p
.

But 0 = tr(B) = µ1+P1−N1, from which P1 = N1−µ1 ≥ n
128C3p

−∆ ≥ n
500C3p

. Hence, as surp∗(G) ≥ P1,
we are done.

Next, we present a simple technical lemma which shows that every graph contains a large induced
O(log n)-balanced graph.

Lemma 4.4. Let G be an n-vertex graph of edge density p, and let C ≥ 4 log2 n. Then G contains a
C-balanced induced subgraph on at least (1− 2 log2 n/C)n vertices of edge density at most p.

Proof. Let d = d(G) be the average degree of G. We perform an inductive process, where in each step
we delete the vertices of high degree. More precisely, let G0 = G, and define the sequence of induced
subgraphs G0 ⊃ G1 ⊃ ... as follows. Having already defined Gi, we denote its number of vertices by ni

and its average degree by di. To define Gi+1, remove from Gi all vertices of degree at least Cdi/2, if any
such vertices exist. The process halts once either all vertices of Gi have degree less than Cdi/2, or the
average degree of Gi is at least di−1/2. Let I be the last index i for which Gi is defined.

For each i, it is not hard to verify that the density of Gi is smaller than the density of Gi−1. Moreover,
since the average degree of Gi is di, there are at most 2ni/C vertices of degree larger than Cdi/2 in Gi,
so v(Gi) ≥ v(Gi−1)− 2ni/C ≥ v(Gi−1)− 2n/C. Thus, we have v(Gi) ≥ n(1− 2i/C) for all i = 1, . . . , I.
Furthermore, if the process did not halt at index i, we have di ≤ di−1/2, and so di ≤ d2−i. This shows
that I ≤ log2 n and nI ≥ n(1− 2 log2 n/C).

Finally, note that GI has no vertices of degree more than Cd(GI). Indeed, if the process has halted
because GI contains no vertices of CdI/2, this is immediate, and if the process has halted because
dI ≥ dI−1/2, then GI contains no vertex of degree more than CdI−1/2 ≤ CdI . Hence, GI is a C-balanced
induced subgraph of G on at least (1− 2 log2 /C)n vertices.

Proof of Lemma 4.1. Let 1 − p the edge density of G, and let C = 4 log2 n. Applying Lemma 4.4 to
the complement of G, we find an induced subgraph G0 ⊆ G on at least n/2 vertices with edge density
1 − p0 ≥ 1 − p such that the complement of G0 is C-balanced. As p0 ≤ p ≤ 0.001C−3, we can apply
Lemma 4.1 to conclude that

surp∗(G0) = Ω

(
min

{
n

C3pI
, C−1p

1/2
I n3/2

})
.

However, as p0 < n−α and ε < α, the inequality surp∗(G0) ≤ n1+ε is only possible if

p0 ≤ O(C2n2ε−1) = O(n2ε−1(log n)2).
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We can combine Theorem 3.1, Lemma 3.2 and Lemma 4.1 into the following “master lemma”, which
shows that somewhat dense graphs contain large cliques.

Lemma 4.5. Let 0 < ε < 10−3. Let G be a graph on n vertices with at least n2−ε edges such that
surp∗(G) ≤ n1+ε. Then G contains a clique of size n1−20ε.

Proof. Let p = 10−5. As e(G) ≥ n2−ε and surp(G) ≤ surp∗(G) ≤ n1+ε, Theorem 3.1 implies that there is
an induced subgraph G1 ⊂ G of edge density at least 1−p on n1 vertices, where n1 > n1−4ε. Set ε1 = 8ε
and α1 = 1/20. Then surp∗(G1) ≤ surp∗(G) ≤ n1+ε ≤ n1+ε1

1 . Moreover, the conditions of Lemma 3.2
are satisfied for α1, ε1 and G1, so we can find an induced subgraph G2 ⊂ G1 of edge density at least n−α1

1

on n2 vertices, where n2 = n
1−o(1)
1 . We have surp∗(G2) ≤ surp∗(G1) ≤ n

1+ε1+o(1)
2 and the edge density

of G2 is at least 1− n−α1
2 . As ε1 < α1, we can apply Lemma 4.1 to find an induced subgraph G3 ⊂ G2

on at least n2/2 vertices of edge density at least 1 − O((log n2)
2n2ε1−1

2 ). But then by Turán’s theorem,
G3 contains a clique of size at least

Ω(n1−2ε1
2 (log n2)

−2) ≥ n(1−4ε)(1−16ε)−o(1) ≥ n1−20ε.

Finally, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. We prove that if surp(G) ≤ m1/2+ε for some 0 < ε < 10−5, then G contains a
clique of size m1/2−30ε. Let n be the number of vertices of G. We may assume that G contains no
isolated vertices. Then, a result of Erdős, Gyárfás, and Kohayakawa [12] implies that surp(G) ≥ n/6.
If m ≤ n2−3ε, then surp(G) ≥ n/6 ≥ 1

6m
1/(2−3ε) ≥ m1/2+ε, contradiction. Hence, m ≥ n2−3ε and

surp(G) ≤ m1/2+ε ≤ n1+3ε. But then G contains a clique of size n1−60ε > m1/2−30ε by Lemma 4.5
applied with 3ε instead of ε.

5 Stability of graphs with small surplus

In this section, we prove Theorem 1.2. To aid the interested reader, we give a brief overview of the proof.
Let G be a graph on n vertices with surp∗(G) ≤ n1+ε for some small ε > 0. Then, we use Lemma 4.5
to repeatedly pull out large cliques C1, . . . , CI . We show that we can repeat this procedure until the
subgraph induced by C1 ∪ · · · ∪CI contains all but n2−ε edges of G, see Lemma 5.2. In the proof of this
lemma, we employ a technical result showing that graphs with small surplus and large minimum degree
cannot contain sparse parts, see Lemma 5.1.

Then, we show that the bipartite graph between Ci and Cj for every 1 ≤ i < j ≤ I must be either
close to complete or close to empty, this can be found in Lemma 5.6. Finally, we finish the proof by
observing that we cannot have three different cliques, Ci, Cj , Ck, such that G[Ci ∪Cj ] and G[Cj ∪Ck] is
close to complete, but the bipartite graph between Ci and Ck is close to empty. This then easily implies
that G[C1 ∪ · · · ∪ CI ] is close to the disjoint union of cliques, and we are done.

We start with the following simple lemma, which will be used to argue that a dense graph with small
surplus cannot induce sparse subgraphs.

Lemma 5.1. Let G be a graph on n vertices. Let X ∪ Y be a partition of V (G), and let b = e(G[X,Y ])

and c = e(G[Y ]). Then surp∗(G) ≥ b2

4n2 − c.

Proof. If a = e(G[X]) satisfies a ≤ b/2, then surp∗(G) ≥ surp(G) is at least

e(G[X,Y ])− e(G)

2
= b− a+ b+ c

2
=

b− a− c

2
≥ b

4
− c

2
≥ b2

4n2
− c,
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as desired.
Otherwise, we have b < 2a and we can take p = b/(4a) ∈ [0, 1/2). Let U be a random sample of X,

where each vertex is sampled independently with probability 1/2+p, and consider the cut (U, (X\U)∪Y ).
Each edge in G[X] has probability 1/2− 2p2 of being cut, and each edge between X and Y is cut with
probability 1/2 + p. Therefore, the expected size of this cut is a(1/2 − 2p2) + b(1/2 + p), showing that
the expected surplus is

a
(1
2
− 2p2

)
+ b

(1
2
+ p

)
− a+ b+ c

2
= bp− 2ap2 − c

2
=

b2

8a
− c

2
≥ b2

4n2
− c,

where we have used that a = e(G[X]) ≤ n2/2 in the last step.

Next, we show that a graph with small surplus contains a collection of large cliques such that almost
all edges are contained in the subgraph induced by the union of these cliques.

Lemma 5.2. For every δ > 0 there exists ε > 0 such that the following holds. Let G be a graph on n
vertices such that surp∗(G) ≤ n1+ε. Then there exists X ⊂ V (G) such that the number of edges not in
G[X] is at most n2−ε, and G[X] can be partitioned into cliques of size n1−δ.

Proof. We may assume δ < 10−3. Define δ0 = δ/2 and ε0 = δ0/20. By Lemma 4.5, every n0-vertex
graph with at least n1−ε0

0 edges and surplus at most n1+ε0
0 contains a clique of size n1−δ0

0 .
We now prove the statement with ε = ε0/10 suffices. Delete all vertices of G of degree less than

d = n1−2ε, and let G0 be the resulting graph. Note that we removed at most dn edges. Repeat the
following procedure. If Gi is defined and Gi contains a clique of size n1−δ, then let Ci+1 be such a clique,
and set Gi+1 = Gi \ Ci+1. Otherwise, stop, and let I be the last index i for which Gi is defined. We
show that X = C1 ∪ · · · ∪CI suffices. It is clear that X can be partitioned into cliques of size n1−δ, so it
remains to show that the number of edge not in X is at most n2−ε.

Let Y = V (GI), b = e(G0[X,Y ]) and c = e(G0[Y ]).

Claim 5.3. If |Y | ≥ n2/3, then c ≥ d2|Y |2/(20n2).

Proof. As G has minimum degree d, we have b + 2c ≥ d|Y |. Assume that c < d2|Y |2/(20n2) < d|Y |/4,
then b ≥ d|Y |/2. By Lemma 5.1, we have

n1+ε ≥ surp∗(G) ≥ surp∗(G0) ≥
b2

4n2
− c,

from which

c ≥ b2

4n2
− n1+ε ≥ d2|Y |2

16n2
− n1+ε ≥ d2|Y |2

20n2
.

In the last inequality we used that d > n3/4 and |Y | ≥ n2/3.

Hence, if |Y | ≥ n1−2ε, then GI has at least d2|Y |2/(20n2) > |Y |2n−5ε ≥ |Y |2−ε0 edges and surp∗(GI) ≤
surp∗(G) ≤ n1+ε ≤ |Y |1+4ε ≤ |Y |1+ε0 . But then Y contains a clique of size |Y |1−δ0 > n1−2ε−δ0 > n1−δ,
contradicting that GI contains no clique of size n1−δ. Therefore, we must have |Y | ≤ n1−2ε.

From this, the number of edges of G not in G[X] is at most

dn+ e(G[X,Y ]) + e(G[Y ]) ≤ dn+ |Y |n ≤ n1−ε.

This finishes the proof.

Our next goal is to show that if H is a bipartite graph, then the complement of H has large surplus,
unless H is close to the empty or complete bipartite graph. We prepare the proof of this with two lemmas.

A Boolean matrix is a matrix with only zero and one entries. We show that if a Boolean matrix
is approximated by a rank one matrix, then it is also approximated by a rank one Boolean matrix, or
equivalently, a combinatorial rectangle.
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Lemma 5.4. Let A be an n × n Boolean matrix, and let δ ≥ 0. If there exist u, v ∈ Rn such that
∥A− uvT ∥2F ≤ δn2, then there exist x, y ∈ {0, 1}n such that ∥A− xyT ∥2F ≤ O(δ1/3n2).

Proof. Without loss of generality, we may assume that δ ≤ 1. Furthermore, we may assume that u and v
has nonnegative entries, as replacing every entry with the absolute value does not increase ∥A− uvT ∥2F .
Observe that ∥u∥22∥v∥22 = ∥uvT ∥2F , which shows that

∥u∥2∥v∥2 ≤ ∥A∥F +
√
δn ≤ 2n.

We may rescale u and v such that ∥u∥2 = ∥v∥2 ≤
√
2n. Let α = δ1/6, and define x, y ∈ {0, 1}n such that

x(i) =

{
1 if u(i) ≥ α

0 otherwise,

and similarly

y(i) =

{
1 if v(i) ≥ α

0 otherwise.

We show that xyT is a good approximation of A. Note that ∥A − xyT ∥2F is the number of pairs (i, j)
such that Ai,j ̸= xiyj . We count these pairs in three cases.

Case 1. Ai,j = 1 and xi = 0.

In this case, we have ui < α. If vj ≤ 1/(2α), then (Ai,j − uivj)
2 > 1/4, so there are at most 4δn2

such pairs (i, j). On the other hand, the number of j such that vj ≥ 1/(2α) is at most 4α2n, as
∥v∥22 =

∑n
j=1 v

2
j ≤ 2n. Therefore, the number of (i, j) such that Ai,j = 1 and xi = 0 is at most

4δn2 + 4α2n2 = 4δn2 + 4δ1/3n2 = O(δ1/3n2).

Case 2. Ai,j = 1 and yj = 0.

This is symmetric to the previous case, so the number of such pairs is also at most O(δ1/3n2).

Case 3. Ai,j = 0 and xi = yj = 1.

In this case, ui ≥ α and vj ≥ α, so (Ai,j − uivj)
2 ≥ α4. Thus, the total number of pairs (i, j) in

this case is at most δn2/α4 = δ1/3n2.

Next, we prove a simple technical lemma which shows that the union of two cliques has large surplus
as long as the two cliques are not too disjoint, and do not overlap too much.

Lemma 5.5. Let G be a graph such that V (G) = C1 ∪ C2 and E(G) =
(
C1

2

)
∪
(
C2

2

)
. Let |C1 \ C2| = a,

|C2 \ C1| = b and |C1 ∩ C2| = c. Then

surp(G) ≥ 1

4
min{a2, b2, c2}.

Proof. Let A = C1 \ C2, B = C2 \ C1, and C = C1 ∩ C2. We may assume that a = b. Otherwise, if, say
a ≤ b, we remove vertices of B \C until its size is exactly a. Then it is enough to show that the resulting
graph has surplus at least 1

4 min{a2, c2}.
The number of edges of G is

2

(
a+ c

2

)
−
(
c

2

)
< a2 + 2ac+

c2

2
.
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If c ≤ a, then define the cut (U, V ) such that U is some (a+ c)/2 element subset of A together with some
(a+ c)/2 element subset of B. The number of edges in this cut is (a+ c)2/2. Hence, the surplus of G is
at least 1

2(a+ c)2 − 1
2e(G) = c2/4.

If c ≥ a, then define the cut (U, V ) such that U is some (a + c)/2 element subset of C. Then the
number of edges in this cut is a+c

2 · c−a
2 + 2a+c

2 · a = c2

4 + 3
4a

2 + ac. Therefore, the surplus is at least
a2/4.

Now we are ready to prove our lemma about the surplus of the complement of bipartite graphs.

Lemma 5.6. Let ε, δ > 0 be parameters such that ε+ 6δ < 1/2. Let H be a bipartite graph with vertex
classes of size n, and let G = H. If surp∗(G) ≤ n1+ε, then either e(H) ≤ n2−δ or e(H) ≥ n2 − n2−δ.

Proof. Let A be the adjacency matrix of G with eigenvalues λ1 ≥ · · · ≥ λ2n. Furthermore, let M be
the adjacency matrix of H, and let µ1 ≥ · · · ≥ µ2n be the eigenvalues of M . As H is bipartite, we have
µi = −µ2n+1−i for i ∈ [2n]. By Lemma 2.3 (ii) and Lemma 4.2, we have

surp∗(G) ≥ Ω

 1√
n

∑
λi<0

λ2
i

 ≥ Ω

 1√
n

∑
i ̸=1,µi>0

µ2
i

 = Ω

 1√
n

∑
i ̸=1,2n

µ2
i

 .

Hence, if surp∗(G) ≤ n1+ε, then we have
∑

i ̸=1,2n µ
2
i = O(n3/2+ε).

On the other hand, we can express
∑

i ̸=1,2n µ
2
i as follows. The matrix M has the form M =

(
0 B
BT 0

)
with an appropriate n× n matrix B. Let v1 be the principal eigenvector of M , then we can write v1 =
(u, v), where u, v ∈ Rn correspond to the two vertex classes of H. Then the eigenvector corresponding
to the smallest eigenvalue λ2n = −λ1 is v2n = (u,−v), and we have∑

i ̸=1,2n

µ2
i = ∥M − λ1v1v

T
1 − λ2nv2nv

T
2n∥2F

=

∥∥∥∥( 0 B
BT 0

)
− λ1

(
uuT uvT

vuT vvT

)
+ λ1

(
uuT −uvT

−vuT vvT

)∥∥∥∥2
F

= 2∥B − 2λ1uv
T ∥2F .

Therefore, ∥B − 2λ1vu
T ∥F = O(n3/2+ε). But then by Lemma 5.4, there exist x, y ∈ {0, 1}n such that

∥B − xyT ∥2F = O(n5/6+ε/3). The matrix xyT corresponds to a complete bipartite graph between the
vertex classes of H, let H̃ denote this complete bipartite graph, and let X0 and Y0 denote its vertex
classes. Note that e(H̃) = ∥xyT ∥2F = |X0||Y0|, and ∥B−xyT ∥2F is the number of edges H̃ differs from H.
Therefore, if e(H̃) ≤ n2−δ/2, then e(H) ≤ e(H̃) + ∥B − xyT ∥F ≤ n2−δ, so we are done. We can proceed
similarly if e(H̃) ≥ n2 − n2−δ/2. Hence, we may assume that n2−δ/2 ≤ e(H̃) ≤ n2 − n2−δ/2. We show
that this is impossible, by deriving that the surplus of G is too large in this case.

Let G̃ be the complement of H̃. Then G̃ and G differ by at most O(n5/6+ε/3) edges. On the other
hand, G̃ is the union of two cliques, having vertex sets C1 and C2, where X0 = C1 \ C2, Y0 = C2 \ C1,
and C1 ∩ C2 = V (G) \ (X0 ∪ Y0). As n2−δ/2 ≤ e(H̃) = |X0||Y0|, we have |X0|, |Y0| ≥ n1−δ/2. Also,
as e(H̃) ≤ n − n2−δ/2, we have |C1 ∩ C2| = |V (G) \ (X0 ∪ Y0)| ≥ n2−δ/2. Hence, by applying Lemma
5.5, we get that surp∗(G̃) ≥ Ω(n2−2δ). But as G and G̃ differ by less than O(n5/6+ε/3) edges, and
5/6 + ε/3 < 2− 2δ, this gives

surp∗(G) ≥ surp∗(G̃)−O(n5/6+ε/3) ≥ Ω(n2−2δ) > n1+ε

as well, contradiction.

After these preparations, we are ready to prove the main theorem of this section.
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Proof of Theorem 1.2. Let δ0 = 10−3, and let ε = min{ε0/2, 10−4}, where ε0 is the constant guaranteed
by Lemma 5.2 with respect to δ = δ0. We show that ε suffices. Let G be a graph on n vertices such that
surp∗(G) ≤ n1+ε. Then Lemma 5.2 guarantees a set X ⊂ V (G) such that X can be partitioned into the
union of cliques of size n0 = n1−δ0 , and G has at most n2−ε0 edges not in G[X]. Let C1, . . . , CI be the
cliques of size n0 partitioning X, then I = |X|/n0.

Let ε1 = δ1 = 0.05, then ε1 + 6δ1 < 1/2. For every 0 ≤ i < j ≤ I, let Gi,j = G[Ci ∪ Cj ]. Then
surp∗(Gi,j) ≤ surp∗(G) ≤ n1+ε ≤ n1+ε1

0 , so Lemma 5.6 implies that the bipartite graph between Ci and
Cj has either at most n2−δ1

0 , or at least n2
0 − n2−δ1

0 edges. Define the auxiliary graph Γ on vertex set
{1, . . . , I}, where we connect i and j if the bipartite graph between Ci and Cj has at least n2

0 − n2−δ1
0

edges.

Claim 5.7. Γ contains no cherry, that is, three vertices i, j, k such that ij, jk ∈ E(Γ), but ik ̸∈ E(Γ).

Proof. Assume to the contrary that i, j, k ∈ {1, . . . , I} forms a cherry. Let G′ be the subgraph induced
on the vertex set Ci ∪ Cj ∪ Ck. Consider the cut (Cj , Ci ∪ Ck) in G′. The size of this cut is at least
2n2

0 − 2n2−δ1
0 ≥ 1.9n2

0. But e(G′) ≤ 7
2n

2
0 + n2−δ1

0 ≤ 3.6n2
0. Therefore, n1+ε ≥ surp∗(G) ≥ surp∗(G′) ≥

0.1n2
0, contradiction.

It is easy to show that graphs containing no cherry are the disjoint union of cliques. Therefore, we
can partition V (Γ) into sets I1, . . . , Is such that Γ[Ii] is a clique and there are no edges between Ii and
Ij in Γ. But this gives a partition of X into sets Y1, . . . , Ys by setting Ya =

⋃
i∈Ia Ci. Define G̃ to be the

graph on vertex set V (G), where Y1, . . . , Ys are cliques, and all edges of G̃ are contained in one of these
cliques.

We prove that G̃ is n−ε-close to G. For 1 ≤ i < j ≤ I, G[Ci, Cj ] and G̃[Ci, Cj ] differ by at most n2−δ1
0

edges. Therefore, G[X] and G̃[X] differ by at most(
|X|/n0

2

)
n2−δ1
0 ≤ n2n−δ1

0 ≤ n2−δ1/(1−δ0) ≤ n2−2δ1

edges. Furthermore, there are at most n2−ε0 edges of G not in G[X], so G and G̃ differ by at most
n2−ε0 + n2−2δ1 ≤ n2−ε edges. This finishes the proof.
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