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Long induced paths in Ks,s-free graphs

Zach Hunter ∗ Aleksa Milojević∗ Benny Sudakov ∗ István Tomon†

Abstract

More than 40 years ago, Galvin, Rival and Sands showed that every Ks,s-free graph containing an

n-vertex path must contain an induced path of length f(n), where f(n) → ∞ as n → ∞. Recently,

it was shown by Duron, Esperet and Raymond that one can take f(n) = (log logn)1/5−o(1). In this

note, we give a short self-contained proof that a Ks,s-free graphs with an n-vertex path contains an

induced path of length at least (log logn)1−o(1), which comes closer to the best known upper bound

O((log logn)2).

1 Introduction

In 1982, Galvin, Rival and Sands [7] showed that every infinite graph G with a Hamilton path has either
arbitrarily long induced paths or it contains the infinite half-graph as a subgraph. Motivated by this result,
they asked the following finitary problem: given a graph G that does not contain the complete bipartite
graph Ks,s, and which contains a path on n vertices, how long of an induced path must G contain? They
gave a proof showing that every such G contains an induced path of length at least Ω

(

(log log log n)1/3
)

(here and later, the Ω(.), O(.), and o(.) notations assume that s is a fixed constant).
This statement was rediscovered some 30 years later, with worse quantitative bounds, by Atminas,

Lozin and Razgon [1], in the context of parameterized complexity of the biclique problem. Very recently,
Duron, Esperet and Raymond [3] improved upon the bounds of [7], showing that a Ks,s-free graph G with
an n-vertex path must contain an induced path of length at least (log log n)1/5−o(1). On the other hand,
a surprising result of Defrain and Raymond [4] shows the existence of 2-degenerate n-vertex graphs with
a Hamilton path but no induced paths of length Ω((log log n)2). Note that 2-degenerate graphs are also
K3,3-free. The purpose of our paper is to give a very short proof of the following improved lower bound.

Theorem 1.1. Let n ≥ s ≥ 2 be positive integers and let G be a Ks,s-free graph containing a path on n

vertices. Then G contains an induced path of length at least Ω
( log logn
log log logn

)

.

Determining the length of longest induced paths in hereditary classes of graphs has been the subject
of many recent papers, see [3] for an excellent overview of the results related to this problem. A result of
Nešetřil and Ossona de Mendez [9] addresses the class of d-degenerate graphs, showing that a d-degenerate
graph must contain an induced path of length Ω(log log n/ log d). As mentioned above, this bound cannot
be improved beyond (log log n)2 already for d = 2 by a construction of Defrain and Raymond [4].

More generally, the study of long induced paths in graphs with structural properties fits well into the
broader line of research about induced subgraphs of Ks,s-free or Ks-free graphs. The assumption that the
host graph G is Ks,s-free or Ks-free is a natural one, since it forbids the host graph from being a complete
graph, which contains no nontrivial induced subgraphs. An example of this type of problem is the old
question of Erdős, Saks and Sós [5], which asks to determine the maximum size of an induced tree in a
connected Ks-free graph. This problem exhibits an interesting transition between s = 3 and s ≥ 4, since
the largest induced tree in a K3-free graph is of size Ω(

√
n), while for s ≥ 4 there are Ks-free graphs

without induced trees on more than O(log n) vertices, see [6].
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The systematic study of induced subgraphs of Ks,s-free graphs was initiated by the authors of this
note in the recent paper [8], posing the following general Turán-type question. Given a fixed graph H,
what is the maximum number of edges in a Ks,s-free graph G on n vertices which does not contain H as
an induced subgraph? If s and H are fixed, it is shown for several interesting classes of graphs, such as
trees or cycles, that this maximum number of edges cannot exceed the usual extremal number ex(n,H) by
more than a constant factor depending on s and H, and it was conjectured that this phenomenon holds
for all bipartite graphs H.

Finally, let us mention that the study of Ks,s-free graphs without certain induced subgraphs also comes
up naturally in geometry. Namely, incidence or intersection graphs of various geometric objects often avoid
certain induced subgraphs for geometric reasons, and thus the maximum number of edges needed to find
a Ks,s can be studied through the methods of graph theory. For more detailed discussions of this subject,
see the excellent survey of Smorodinsky [10].

2 Long induced paths

In this section, we prove Theorem 1.1 after a few preliminary lemmas. Given a graph G and v ∈ V (G),
N(v) denotes the neighbourhood of v.

Lemma 2.1. Let d, s ≥ 2 be integers and t ≥ 1 be a real number satisfying t ≤ d1/s/s. If G is a Ks,s-free

graph of minimum degree at least d and v is a vertex of G, then less than st vertices u ∈ V (G) satisfy

|N(u) ∩N(v)| ≥ 4
t |N(v)|.

Proof. Suppose for the sake of contradiction that that there exists a set U of size |U | = st such that for
every u ∈ U , we have |N(u)∩N(v)| ≥ 4

t |N(v)|. Consider the bipartite subgraph H of G induced between
the sets U and N(v)\U .

Each vertex of U has at least 4
t |N(v)| − |U | ≥ 2

t |N(v)| neighbours in N(v)\U . Here, we used that

|U | = st ≤ 2
t d ≤ 2

t |N(v)|, which follows from the the assumptions t ≤ d1/s/s and s ≥ 2. Hence, the
number of edges in H is at least |U | · 2

t |N(v)|. On the other hand, the Kővári-Sós-Turán theorem implies
that in a Ks,s-free bipartite graph with parts of size m = |U | and n = |N(v)\U |, one can have at most
(s − 1)1/smn1−1/s + (s− 1)n edges (see e.g. Theorem 2.2 in Chapter VI of [2]). In our case,

2

t
|U ||N(v)| ≤ e(U,N(v)\U) < s|U ||N(v)|1−1/s + s|N(v)|. (1)

But 1
t |U ||N(v)| ≥ s|U ||N(v)|/d1/s ≥ s|U ||N(v)|1−1/s, since |N(v)| ≥ d and 1

t |U ||N(v)| = s|N(v)|. This
contradicts (1), finishing the proof.

Lemma 2.2. Let G be a Ks,s-free graph of minimum degree at least d. Then G contains an induced path

of length at least d1/2s/2s.

Proof. Fix k = ⌈ 1
2sd

1/2s⌉ and assume k ≥ 4 since the statement is trivial otherwise. We pick a random walk
v1, . . . , vk according to the stationary distribution. Namely, the starting vertex v1 is chosen at random
from V (G) such that P[v1 = w] = degw

2e(G) for all w ∈ V (G), and each subsequent vertex vi+1 is chosen

uniformly at random among the neighbours of vi. Note that this choice ensures that (vi, vj) has the
same distribution as (vj , vi) for any 1 ≤ i < j ≤ k (this follows since the walk (v1, . . . , vk) has the same
distribution as its reverse (vk, . . . , v1)). We show that the walk v1, . . . , vk is an induced path with positive
probability.

Define an auxiliary directed graph H on the vertex set V (G), where v → u if |N(u)∩N(v)| ≥ 4s
d1/s

|N(v)|.
Lemma 2.1 applied with t = d1/s/s shows that the outdegree of a vertex v in H is at most d1/s. Next, we
estimate the probability that there is no edge vj → vi for some 1 ≤ i < j ≤ k in H, and we denote this
event by E. By the union bound, we have

P[E] = P[vj → vi for some 1 ≤ i < j ≤ k] ≤
∑

1≤i<j≤k

P[vj → vi].
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Recall that the pair (vi, vj) has the same distribution as (vj , vi), so P[vj → vi] = P[vi → vj ]. Since vj is
chosen uniformly from NG(vj−1), which is a set of size at least d, and the outdegree of vi in H is at most

d1/s, we find that P[vi → vj] ≤ d1/s

d = d1/s−1. Thus, P[E] ≤
(

k
2

)

d1/s−1 ≤ k2d1/s−1.
The next step is to estimate the probability that v1, . . . , vk is an induced path. The walk v1, . . . , vk is

an induced path if and only if there are no edges between vi and vj for i < j − 1. Indeed, since k ≥ 4, the
latter condition implies that the vertices v1, . . . , vk are all distinct. Fixing some 1 ≤ i < j − 1 ≤ k − 1,
our main observation is that P[vivj ∈ E(G)|vj−1 6→ vi] ≤ 4sd−1/s. Indeed, if vj−1 6→ vi in H, then at most
4s
d1/s

|N(vj−1)| neighbours vj ∈ N(vj−1) form an edge of G with vi. As a consequence, we have

P[vivj ∈ E(G) and E] ≤ P[vivj ∈ E(G)|E] ≤ 4sd−1/s.

We now complete the proof. If v1, . . . , vk is not an induced path in G, then either E does not happen,
or there exist some i < j − 1 for which vivj ∈ E(G) and vj−1 6→ vi in H. Since the number of such pairs

(i, j) is bounded by
(

k
2

)

, and we have k = 1
2sd

1/2s, s ≥ 2, we conclude that

P[v1, . . . , vk is not an induced path in G] ≤ P[E] +
∑

1≤i<j−1≤k−1

P[vivj ∈ E(G) and E]

≤ k2d1/s−1 + 4s

(

k

2

)

d−1/s ≤ 1

4s2
d2/s−1 +

1

2s
< 1.

Finally, we give the proof of the following lemma of Nešetřil and Ossona de Mendez [9] for completeness.
Recall that a graph G is d-degenerate if every subgraph of G contains a vertex of degree ≤ d.

Lemma 2.3. Let G be a d-degenerate graph on n vertices containing a Hamilton path. Then G contains

an induced path of length Ω
( log logn

log d

)

.

Proof. We start with a simple claim.

Claim 2.4. If G is an acyclic directed graph of maximum outdegree d on n vertices with a directed Hamilton

path, then G contains an induced directed path of length at least Ω( lognlog d ).

Proof. Let v1 be the first vertex of the Hamilton path, and run the breadth-first search algorithm (BFS
algorithm) starting at v1. Since every vertex of G can be reached from v1 by a directed path, the algorithm
explores the whole graph and constructs a spanning tree, where each node has at most d children. This
tree has n vertices and so it must have depth at least Ω( lognlog d ). Moreover, by simple properties of the BFS
algorithm and the acyclic property of G, each directed path from the root to a leaf is induced, thus giving
us an induced path of the desired length.

Denote the vertices of G by v1, . . . , vn in the order they appear on the Hamilton path. Since G is
a d-degenerate graph, its edges can be directed such that the outdegree of each vertex in the resulting
directed graph is at most d. Let G′ be the subgraph consisting of the edges of the Hamilton path together
with all edges vi → vj with i < j, and direct all the edges of the Hamilton path from vi to vi+1. Then G′

satisfies the conditions of Claim 2.4 (with d+ 1 instead of d), so it contains an induced path P of length
|P | ≥ Ω( lognlog d ).

Let the vertices of P be vi1 , . . . , vik with i1 < · · · < ik. Consider the subgraph of G induced on the
vertices of P . Since P is induced in G′, if viavib ∈ E(G) for some a < b− 1, then vib → via in G. Reverse
the direction of the edges viavia+1

for a = 1, . . . , k − 1, and let the resulting directed graph be P ′. Then
P ′ satisfies the conditions of Claim 2.4, so we find a path P ′′ ⊆ P ′ which is induced in P ′, and thus also
in G, of length Ω( log |P |

log d ) ≥ Ω( log lognlog d ). This completes the proof.

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let d = (log log n)2s. If G is a d-degenerate graph, then by Lemma 2.3, G
contains an induced path of length Ω

( log logn
log d

)

= Ω
( log logn
2s log log logn

)

= Ω
( log logn
log log logn

)

, as claimed. If G is

not d-degenerate, it contains an induced subgraph G′ with minimum degree at least d. Since G′ is also
Ks,s-free, Lemma 2.2 implies that G′ contains an induced path of length d1/2s/2s = Ω(log log n).
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