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1. Introduction

The goal of this paper is to combine two classical areas of graph theory: Turán prob-
lems and the study of graphs with forbidden induced subgraphs. The extremal number
or Turán number of a graph H is the maximum number of edges in an n-vertex graph 
containing no copy of H as a subgraph, and it is denoted by ex(n,H). The study of 
extremal numbers goes back more than a 100 years to Mantel [42], who determined the 
extremal number of the triangle. This was extended by Turán [58], who found the ex-
tremal number of every clique. By the Erdős-Stone-Simonovits theorem [16,18], we know 
the extremal number of every non-bipartite graph H up to lower order terms.

The extremal numbers of bipartite graphs are much more mysterious, with a plethora 
of results addressing specific instances, and with just as many open problems. One of the 
most notorious problems is to determine the extremal number of Ks,t, i.e. the complete 
bipartite graph with vertex classes of size s and t. The celebrated Kővári-Sós-Turán 
theorem [36] states that if s ≤ t, then ex(n,Ks,t) = Ot(n2−1/s). This is only known to 
be tight if s ∈ {2, 3}, or t is sufficiently large with respect to s [4,10]. On the other hand, 
the random deletion method shows that ex(n,Ks,s) = Ωs(n2−2/(s+1)).

Another classical topic of graph theory is the study of graphs avoiding a fixed graph 
H as an induced subgraph. One such problem closely related to the topic of this paper is 
the Gyárfás-Sumner conjecture [27,54]. A family of graphs G is χ-bounded if there exists a 
function f such that χ(G) ≤ f(ω(G)) for every G ∈ G, where χ(G) denotes the chromatic 
number, and ω(G) the clique number. In this case, we say that f is a χ-bounding function
for G. The Gyárfás-Sumner conjecture states that if T is a tree, then the family of graphs 
avoiding T as an induced subgraph is χ-bounded. An additional classical problem of 
interest about graphs avoiding a fixed induced subgraph is the Erdős-Hajnal conjecture 
[15]. This conjecture states that if H is a graph, then any induced H-free n-vertex graph 
contains either a clique or an independent set of size at least nc for some c = c(H) > 0.

Here, we consider the problem of finding the maximum number of edges in a Ks,s-
free graph, assuming the host graph satisfies certain further structural restrictions. To 
this end, given a family of graphs G, let exG(n, s) denote the maximum number of 
edges of an n-vertex member of G which contains no copy of Ks,s. In the past two 
decades, the function exG(n, s) has been extensively studied for various natural (typi-
cally hereditary) families G. In each case, it has been observed that the trivial bound 
exG(n, s) ≤ ex(n,Ks,s) = Os(n2−1/s) can be significantly improved. The study of 
these problems developed both in structural graph theory and combinatorial geome-
try, seemingly independently from each other. One goal of our manuscript is to provide 
a systematic study of exG(n, s), and to unite these two areas. Let us survey the known 
results.

Structural graph theory. Given a graph H, or a family of graphs H, we are interested 
in the family G defined as the family of all graphs containing no induced copy of a 
member of H. In this case, let us write ex∗(n,H, s) := exG(n, s), and simply ex∗(n,H, s)
if H = {H}. It was proved by Kühn and Osthus [38] that if H is the family of all 
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subdivisions of a fixed graph H, then ex∗(n,H, s) = Os(n). The constant hidden in the 
Os(.) notation was recently improved by Du, Girão, Hunter, McCarty and Scott [13]. 
Bonamy et al. [7] showed that ex∗(n, Pt, s) = sOt(1)n and ex∗(n, C≥t, s) = sOt(1)n, where 
Pt is the path of length t and C≥t is the family of cycles of length at least t. A common 
strengthening of the previous results is proved independently by Girão and Hunter [26] 
and Bourneuf, Bucić, Cook and Davies [9]: if H is the family of subdivisions of a graph 
H, then ex∗(n,H, s) ≤ sOH(1)n. As another generalization of the result on paths, Scott, 
Seymour and Spirkl [49], improving a previous unpublished result of Rödl, proved that 
for every tree T , one has ex∗(n, T, s) = sOT (1)n, where the exponent of s has the order 
of magnitude |T |Ω(|T |).

These results are partially motivated by the above described Gyárfás-Sumner conjec-
ture, which says that the family of graphs avoiding an induced copy of a fixed tree is 
χ-bounded. Gyárfás [27] proved that the conjecture is true for every path, while Kierstead 
and Penrice [34] proved it if T is a tree of radius two. In general, Scott [48] showed that if 
T is a tree, then the family of graphs avoiding all induced subdivisions of T is χ-bounded. 
Scott [48] also proposed the conjecture that this holds if we forbid all subdivisions of a 
given graph H, however, this is disproved by Pawlik et al. [47]. The polynomial Gyárfás-
Sumner conjecture states that one can also find a polynomial χ-bounding function for 
families avoiding induced copies of a tree T . This conjecture is open even for paths with 
at least 5 vertices.

Observe that forbidding Ks,s can be thought of as a relaxation of the condition that 
ω(G) ≤ s, which is equivalent to forbidding the complete graph Ks+1. Thus, considering 
Ks,s-free graphs with no induced copies of H is an natural intermediate step in proving 
the Gyárfás-Sumner conjecture for some specific trees H, see e.g. [34,35]. If G is a hered-
itary family of graphs (i.e. a family of graphs closed under taking induced subgraphs), 
then the inequality exG(n, s) ≤ c(s)n implies that the Ks,s-free members of G are 2c(s)-
degenerate (i.e. every subgraph has a vertex of degree at most 2c(s)). This implies that 
Ks,s-free members of G have chromatic number at most 2c(s) + 1. In particular, the re-
sults described above show that the family of graphs containing no Ks,s and no induced 
subdivision of a given graph H have chromatic number at most sOH(1).

Girão and Hunter [26] and Bourneuf, Bucić, Cook and Davies [9] also consider the 
family of graphs avoiding an induced copy of a bipartite graph H. Namely, they show 
that for every H, there exists εH > 0 such that ex∗(n,H, s) ≤ Os,H(n2−εH ). Bourneuf, 
Bucić, Cook and Davies [9] find εH that is exponential in the size of H, while Girão 
and Hunter [26] show that εH can be taken to be 1 

100Δ(H) , where Δ(H) is the maximum 
degree of H.

Combinatorial geometry. In this area we are interested in the following types of graphs. 
The intersection graph of a family F is the graph on vertex set F , where two sets are 
joined by an edge if they have a nonempty intersection. The bipartite intersection graph
of two families A and B is the bipartite graph with vertex classes A and B, with edges 
joining A ∈ A and B ∈ B if A ∩ B �= ∅. The incidence graph of a set X and a family 
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of sets F is the bipartite graph with vertex classes X and F , where x ∈ X is joined to 
A ∈ F if x ∈ A.

A curve in the plane is the image of a continuous function φ : [0, 1] → R2, and a string 
graph is an intersection graph of a collection of curves in the plane. These graphs are 
extensively studied both in computational and combinatorial geometry. It is well known 
that string graphs avoid induced proper subdivisions of K5, where a subdivision is proper 
if every edge is subdivided at least once. This immediately implies that n-vertex Ks,s-free 
string graphs have at most Os(n) edges by the results mentioned above [9,13,26,38]. The 
optimal bound O(s(log s)n) is obtained by Lee [40], building on ideas of Fox and Pach 
[21].

Chan and Har-Peled [11] considered incidence graphs of n points and n pseudo-discs 
in the plane. A family of simple closed Jordan regions is a family of pseudo-discs if the 
boundary of any two intersect in at most two points. They proved that if such an incidence 
graph is Ks,s-free, then it has Os(n log logn) edges. This was strengthened by Keller and 
Smorodinsky [32] who proved that if A and B are families of n pseudo-disks, then the 
bipartite intersection graph of A and B has at most O(s6n) edges, assuming it is Ks,s-
free. We highlight that by a result Keszegh [33], such graphs contain no induced proper 
subdivision of a non-planar graph, in particular no induced proper subdivision of K5. 
Hence, one immediately gets the bound sO(1)n by [9,26]. The study of the family Gbox of 
incidence graphs of points and axis-parallel boxes in Rd was initiated by Basit, Chernikov, 
Starchenko, Tao and Tran [6]. Chan and Har-Peled [11] determined the optimal bound 
exGbox(n, s) = Os(n( logn 

log logn )d−1). Furthermore, Tomon and Zakharov [57] study the 
closely related family of intersection graphs of axis-parallel boxes in Rd, see also [32].

As a high-dimensional generalization of the Szemerédi-Trotter theorem [55], Chazelle 
[12] proposed to study Ks,s-free incidence graphs of points and hyperplanes in Rd. In this 
context, forbidding Ks,s in the incidence graph is a natural nondegeneracy condition, 
since otherwise all points may lie on a line which is contained in all hyperplanes, in 
which case no nontrivial upper bound on the number of incidences can be given. For 
d ≥ 3, the currently best known upper bound on the number of edges in a Ks,s-free 
incidence graph of n points and n hyperplanes is Od,s(n2−2/(d+1)), proved by Apfelbaum 
and Sharir [3], while the best known lower bound is due to Sudakov and Tomon [53]. 
In [44], Milojević, Sudakov and Tomon show that over any field F , a Ks,s-free incidence 
graph of n points and n hyperplanes has at most Od,s(n2− 1 

�(d+1)/2� ) edges, and this bound 
is the best possible. The proof of this result proceeds by considering ex∗(n,H, s) for a 
simple finite family of bipartite graphs H avoided by point-hyperplane incidence graphs. 
In another direction, Fox, Pach, Scheffer, Suk and Zahl [22] proved that the bound of 
Apfelbaum and Sharir [3] also holds (up to an o(1) error term in the exponent) for Ks,s-
free semialgebraic graphs in dimension d as well (we refer the interested reader to [22] 
for precise definitions). One of their key tools is a bound on the number of edges in a 
Ks,s-free graph of VC-dimension at most d. Here, a graph has VC-dimension at most 
d if it contains no set A of d + 1 vertices such that for every X ⊂ A there is a vertex 
joined to every vertex in X, but no vertex in A \X. In [22], it is proved that a Ks,s-free 
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graph of VC-dimension at most d has at most Od,s(n2−1/d) edges, see also [32] for an 
alternative proof. For d ≥ 3, this was improved to o(n2−1/d) by Janzer and Pohoata [31]. 
For a generalization of this result to an even wider class of graphs by Axenovich and 
Zimmermann, see [5].

Further related work. Loh, Tait, Timmons and Zhou [41] have defined the notion of 
induced Turán number for graphs H and F . This is the maximum number of edges in 
an n vertex graph G containing no induced copy of F and no (not necessarily induced) 
copy of H, and is denoted by ex(n, {H,F -ind}). In [41], they considered H = Kr and 
F = Ks,t, obtaining the bound e(G) ≤ Or,s,t(n2−1/s). They have also considered the 
cases when F = K2,t and H is either an odd cycle or a complete graph. Their work 
was later extended by Illingworth ([28], [29]) and Ergemlidze, Győri and Methuku [20]. 
These results are quite different from ours, since we consider hereditary families in which 
induced copies of an arbitrary bipartite graph F are forbidden, instead of just considering 
cases when F is a complete bipartite graph.

1.1. Main results

In this section, we present our results. Recall that ex∗(n,H, s) denotes the maximum 
number of edges in an n-vertex graph containing no Ks,s and no induced copy of H. 
We consider ex∗(n,H, s) for various bipartite graphs H. Note that the case when H is 
not bipartite is not very interesting: as every graph contains a bipartite subgraph with 
at least half of the edges, we have ex∗(n,H, s) = Θ(ex(n,Ks,s)). In the case where H
is bipartite, we believe that for sufficiently large s, ex∗(n,H, s) is close to the extremal 
number of H. In particular, we propose the following conjecture.

Conjecture 1.1. For every connected bipartite graph H,

ex∗(n,H, s) ≤ CH(s) · ex(n,H)

for some CH(s) depending only on H and s.

This conjecture is so far consistent with all known results. We provide further evi-
dence by considering several families of bipartite graphs for which the extremal numbers 
are extensively studied. First, we consider bipartite graphs H = (A,B;E) in which all 
vertices in B have degree at most k. Such bipartite graphs are of interest due to a 
celebrated result of Füredi [25] and Alon, Krivelevich, Sudakov [1] which shows that 
ex(n,H) = OH(n2−1/k). In general, this bound is also the best possible by taking 
H = Kk,t for sufficiently large t. We show that a similar bound holds for ex∗(n,H, s) as 
well.

Theorem 1.2. Let H = (A,B;E) be a bipartite graph such that every vertex in B has 
degree at most k. Then,
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ex∗(n,H, s) ≤ (CHs)4|V (H)|+10n2−1/k,

with CH = 4|A||B|.

This result improves the above mentioned bounds of Girão and Hunter [26] and Bourneuf, 
Bucić, Cook and Davies [9]. The exponent 2 − 1/k is optimal, which can be seen by 
considering H = Kk,t for sufficiently large t.

Next, we consider trees. It is an easy exercise to show that if T is a tree, then ex(n, T ) ≤
|T |n. As proved by Scott, Seymour and Spirkl [49], ex∗(n, T, s) also grows linearly as a 
function of n, and furthermore as a polynomial function of s. The exponent of s in their 
result is super-exponential in |T |, it is of the order |T |Ω(|T |). One of our main results 
improves this to linear, i.e., ex∗(n, T, s) = sO(|T |)n. This is optimal up to the constant 
term hidden by O(.) for every tree T .

Theorem 1.3. There exists an absolute constant C such that for every tree T on t vertices, 
and for every s sufficiently large with respect to t, we have

ex∗(n, T, s) ≤ sCtn.

Let us argue why this theorem is optimal by showing that ex∗(n, T, s) ≥ sΩ(t)n for 
s 
 t2. Consider the random graph on N = st/10 vertices, in which each edge is included 
with probability 1 − s−1/2. It is a standard union bound argument to show that this 
graph contains no Ks,s, no independent set of size at least t/2 (which ensures that it 
is also induced T -free), and has at least N2/4 edges with high probability. Taking n/N
disjoint copies of such a graph proves our lower bound.

Next, we consider the cycle of length 2k, denoted by C2k. The classical result of Bondy 
and Simonovits [8] states that ex(n,C2k) = Ok(n1+1/k), and this bound is known to be 
tight for k ∈ {2, 3, 5} [39]. We achieve a similar upper bound for ex∗(n,C2k, s) as well.

Theorem 1.4. Let k, s ≥ 2 be integers, then there exists Cs,k such that

ex∗(n,C2k, s) ≤ Cs,kn
1+1/k.

Finally, we consider Q8, the graph of the cube. That is, the vertices of Q8 are {0, 1}3, 
and two vertices are connected by an edge if they differ in exactly one coordinate. Deter-
mining the order of ex(n,Q8) is an old open problem of Erdős [14], and the best known 
upper bound ex(n,Q8) = O(n8/5) is due Erdős and Simonovits [17]. We show the same 
upper bound for ex(n,Q8, s) as well.

Proposition 1.5. For every integer s ≥ 2, there exists Cs such that

ex∗(n,Q8, s) ≤ Csn
8/5.
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1.2. Applications

Our results and techniques have several additional applications which we discuss in 
this subsection.

Kühn and Osthus [37] proved that for every k, every graph of sufficiently large average 
degree contains a C4-free subgraph of average degree at least k (see also [45] for improved 
bounds). McCarty [43] established a natural induced variant of this result: for every k
and sufficiently large s, there exists a smallest number g(k, s) such that if a Ks,s-free 
graph G has average degree at least g(k, s), then G contains a C4-free induced subgraph 
of average degree at least k. Quantitative bounds are first proved by Du, Girão, Hunter, 
McCarty and Scott [13], who show that g(k, s) ≤ kO(s3), while Girão and Hunter [26] 
prove that g(k, s) ≤ sO(k4). In [26], the lower bound g(k, s) ≥ sΩ(k2) is also established 
for s sufficiently large with respect to k. Our results can be used to show that this lower 
bound is tight and g(k, s) ≤ sO(k2).

Theorem 1.6. Let k ≥ 1 be an integer and let s be sufficiently large compared to k. Then 
every Ks,s-free graph G with average degree at least s103k2 contains an induced subgraph 
with no C4 and average degree at least k.

Note that quantitative bounds for g(k, s) are quite useful, since there are interesting 
hereditary families G which do not contain C4-free graphs of large average degree k. For 
such families, we know that the average degree of any Ks,s-free graph G ∈ G is at most 
g(k, s) and therefore exG(n, s) ≤ g(k, s)n. For example, the family G of graphs which do 
not contain an induced subdivision of a fixed graph H has this property, by a result of 
Kühn and Osthus [38]. Moreover, the proof of Theorem 1.6 can be used to show a tight 
bound on the Turán number of induced subdivisions in Ks,s-free graphs, improving the 
bounds from [38,13,26,9].

Theorem 1.7. Let H be a fixed bipartite graph, s sufficiently large integer and let G be a 
Ks,s-free graph which does not contain an induced subdivision of H. Then, the average 
degree of G is at most sO(|V (H)|).

The fact that this bound is tight up to the constant in the exponent of s follows from 
the same random graph construction discussed after the statement of Theorem 1.3.

A well known lopsided weakening of the Erdős-Hajnal conjecture, proved by Fox 
and Sudakov [23], says that every induced H-free graph on n vertices contains either 
a complete bipartite graph with vertex classes of size nc, or an independent set of size 
at least nc, for some c = c(H) > 0. Their proof implies that one can take c(H) =
Ω(1/|V (H)|3). We improve this in case H is bipartite to c(H) = Ω(1/|V (H)|), which is 
optimal as can be shown by considering appropriate random graphs. We also remark that 
a recent result of Nguyen, Scott and Seymour [46] proves the Erdős-Hajnal conjecture 
in the case one forbids bi-induced copies of a bipartite graph H, i.e. we forbid every 
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induced copy of those graphs we get by possibly adding edges to the two vertex classes 
of H.

Theorem 1.8. Let H be a bipartite graph on h vertices. Then, for every sufficiently large 
n, every graph G on n vertices with no induced copy of H contains either an independent 
set of size nΩ(1/h) or a complete bipartite graph with parts of size at least nΩ(1/h).

2. Bipartite graphs with bounded degree on one side

The main goal of this section is to prove Theorem 1.2, which we now restate in a 
slightly extended form.

Theorem 2.1. Let H = (A,B;E) be a bipartite graph such that the degree of every vertex 
in B is at most k, let CH = 4|A||B| and let G be a Ks,s-free graph on n vertices.

(i) If e(G) ≥ (CHs)4|V (H)|+10n2−1/k, then G contains an induced copy of H.
(ii) If n ≥ (CHs)8|V (H)|+20 and e(G) ≥ n2−1/4k, then G contains an induced copy of H.

Although the second statement of Theorem 2.1 is weaker than the first one for large 
n, it will be used in the proof of some of our other results. We develop new ideas and 
machinery in order to guarantee that the exponent of s is linear in |V (H)|. Indeed, there 
are shorter proofs available that achieve an exponent of s that is quadratic in |V (H)|
(see [26] for similar arguments). However, the methods used for obtaining this linear 
dependence are crucial for getting optimal results in our applications.

The proof of Theorem 2.1 has three main steps, which we outline now. Throughout 
this section, we fix a host graph G with n vertices and at least Cn2−1/k edges which 
does not contain Ks,s as a subgraph, and we fix the bipartite graph H = (A,B;E). 
Furthermore, we denote the size of A and B by a and b, and write |V (H)| = h = a + b.

Step 1. Find a large set X ⊂ V (G) in which every k-tuple of vertices has a large common 
neighbourhood. This step is a standard application of the dependent random 
choice technique [24], which is a technique used in the proof that the usual 
Turán number of H is O(n2−1/k).

Step 2. Construct rich independent sets in X. Here, we call a set of vertices S ⊂ V (G)
rich if for all subsets T ⊆ S of size at most k, there are at least (4bs)b vertices 
v ∈ V (G)\S which are adjacent to all vertices of T and non-adjacent to all 
vertices of S\T . This step is the most technically involved part of our proof.

Step 3. Show that if I is a rich independent set of size a, then there is a set U ⊂ V (G)
of size b such that U ∪ I induces a copy of H.

After presenting the proof of Theorem 2.1, we give a simple construction that shows 
why the upper bounds we obtain must depend polynomially on s.
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2.1. Embedding the vertices of degree at most k

We start with step 3, that is, we show how to find an induced copy of H given a rich 
independent set. We begin this section by presenting a simple statement that will be 
used repeatedly in our proofs.

Claim 2.2. Let G be a graph which does not contain Ks,s. Then for every set W of size 
at least 2s, there are at most s vertices v ∈ V (G) for which |W\N(v)| ≤ |W |/2s.

Proof. Suppose there are s vertices v1, . . . , vs ∈ V (G) such that |N(vi) ∩ W | ≥(
1 − 1 

2s
)
|W |. Then, the common neighbourhood of v1, . . . , vs in W has size at least 

|W | − s · 1 
2s |W | = |W |/2 ≥ s. This contradicts that G is Ks,s-free. �

Recall that a set of vertices S ⊂ V (G) is rich if for each T ⊆ S, |T | ≤ k, we have

|{v ∈ V (G)\S : N(v) ∩ S = T}| ≥ (4bs)b.

Lemma 2.3. Let G be a graph not containing Ks,s. If G contains a rich independent set 
of size a, then G contains H as an induced subgraph.

Proof. Let I be a rich independent set of size |A|. We embed the vertices of A into I in 
an arbitrary manner and show that we can extend this embedding to obtain an induced 
copy of H. We index the vertices of B by b1, . . . , b|B|, and we denote the embedding of 
vertices of A into I by φ.

We embed the vertices b1, b2, . . . , b|B| inductively. Assume that we already defined the 
images φ(b1), . . . , φ(bi). A vertex v ∈ V (G)\({φ(b1), . . . , φ(bi)} ∪ I) is a candidate for bj
if it is not adjacent to φ(b1), . . . , φ(bi), and satisfies N(v) ∩ I = φ(NH(bj)). The first 
condition serves to ensure that the embedding of B forms an independent set, while the 
second one guarantees that the edges between φ(A) and φ(B) correspond precisely to the 
edges of H. We show by induction on i = 0, 1, . . . , |B| that one can embed the vertices 
b1, . . . , bi such that for each j > i, there are at least (4|B|s)|B|−i candidates for bj . When 
i = 0, there are at least (4|B|s)|B| candidates for each bj , since I is a rich independent 
set and bj has at most k neighbours. Having defined φ(b1), . . . , φ(bi), our goal is to define 
φ(bi+1) such that the sets of candidates have not decreased too much. More precisely, if 
we denote the set of candidates for bj by Uj , our goal is to find a vertex v ∈ Ui+1 for 
which |Uj\N(v)| ≥ |Uj |/2s for all j ≥ i + 2. If we find such a vertex v, then we take 
φ(bi+1) := v.

The existence of such a vertex v is a simple consequence of Claim 2.2. Namely, by the 
induction hypothesis, for i ≤ |B| − 1 we have |Uj | ≥ (4|B|s)|B|−i ≥ 2s for all j > i and 
therefore for each j > i there are at most s vertices v in Ui+1 with |Uj\N(v)| ≤ |Uj |/2s. 
Therefore, from |Ui+1| ≥ (4|B|s)|B|−i > |B|s we conclude there is a vertex v ∈ Ui+1 such 
that for any j ≥ i + 2 one has |Uj\N(v)| ≥ |Uj |/2s.
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Setting φ(bi+1) = v is sufficient to show the induction step. The set of candidates for 
bj is decreased from Uj to Uj\(N(v) ∪ {v}) and we have

|Uj\(N(v) ∪ {v})| ≥ 1 
2s |Uj | − 1 ≥ 1 

2s (4|B|s)|B|−i − 1 ≥ (4|B|s)|B|−(i+1).

Thus, by iterating this procedure until i = |B|, we conclude that there is an embedding 
φ : V (H) → V (G) which induces a copy of H, thus completing the proof. �
2.2. Finding a rich independent set

In this section, we prove the following proposition, which serves as the second step in 
the proof of Theorem 2.1. Recall that CH = 4ab.

Proposition 2.4. Let G be a Ks,s-free graph and X ⊆ V (G) a set of at least (CHs)4a+10

vertices in which every k-tuple of vertices has at least (CHs)2h common neighbours. Then 
X contains a rich independent set of size a.

The techniques discussed in this section may be of independent interest and therefore 
we state them in a slightly more general setting than needed. We begin by introducing 
some terminology. Given a hypergraph H and S ⊂ V (H), we define the degree of the 
set S as the number of edges of H containing S, i.e. degH(S) := |{e ∈ E(H) : S ⊆ e}|. 
Furthermore, we say that an edge e ∈ E(H) is δ-heavy if it contains a set S ⊂ e and a 
vertex v ∈ e\S for which degH(S∪{v}) ≥ δ degH(S). Otherwise, we say that e is δ-light. 
Finally, we say a hypergraph H is (ε, δ)-superspread if at most εe(H) edges of H are δ-
heavy. The reason we call such hypergraphs “superspread” is that a (0, δ)-superspread 
hypergraph must satisfy degH(S) ≤ δ|S|e(H) for all sets S ⊂ V (H), implying that H
is “δ-spread” in the terminology of the recent breakthrough work [2] on the Sunflower 
conjecture.

The definition of (ε, δ)-superspread hypergraphs is designed with the following goal 
in mind. Suppose B is a collection of ordered �-tuples of distinct vertices of H with 
the property that for any v1, . . . , v�−1 ∈ V (H), there are at most s vertices v� for which 
(v1, . . . , v�) ∈ B. Then, we can show that many edges of an (ε, δ)-superspread hypergraph 
H do not contain any �-tuples of B.

Let us now give an imprecise explanation of how these notions will come into play in 
our proof. We consider the hypergraph H which consists of many independent sets of 
a given size inside the set X ⊆ V (G). The first step is to turn this hypergraph into a 
(ε, δ)-superspread hypergraph by cleaning it. Then, we define a collection of “bad” tuples 
B by saying that (v1, . . . , v�) is bad if N(v�) contains too many vertices from the set 
S = N(v1, . . . , vi)\

⋃�−1
j=i+1 N(vj), for some fixed index i. Thus, for any fixed v1, . . . , v�−1

for which the set S is not too small, Claim 2.2 shows that there are at most s vertices 
v� making the �-tuple (v1, . . . , v�) bad. Then, we show that there exists an independent 
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set avoiding all bad tuples, which turns out to be sufficient for the independent set to 
be rich.

Now, we start presenting the precise statements and proofs. First, we show that 
every r-uniform hypergraph with sufficiently many edges can be turned into a (ε, δ)-
superspread hypergraph through a cleaning procedure.

Proposition 2.5. Let r ≥ a ≥ 1 be fixed integers and let ε, δ ∈ (0, 1) be real numbers. 
Suppose that H is an r-uniform hypergraph with n vertices and at least Cr(εδ)−rna−1

edges, where Cr = rr2r2 . Then, there exists an integer t ≥ a and a nonempty t-uniform 
(ε, δ)-superspread hypergraph H′ on the vertex set V (H) such that every edge e′ ∈ E(H′)
is contained in some edge e ∈ E(H).

When proving this proposition, we may assume that H is an r-partite hypergraph. In-
deed, we can find an r-partite subhypergraph with at least r! 

rr proportion of the edges, 
and passing to such a subhypergraph only effects the constant Cr. Then, for an r-partite 
r-uniform hypergraph H, with an r-partition given by V (H) = V1 ∪ · · · ∪ Vr, and for an 
index set I ⊂ [r], we define the restriction of H to I, denoted by HI , as the hypergraph 
with the vertex set VI =

⋃
i∈I Vi and the edge set E(HI) = {e ∩ VI : e ∈ E(H)}.

The main idea is to show that, as long as HI is not (ε, δ)-superspread, one can elimi-
nate an index i from I without decreasing the number of edges of HI significantly. Then, 
the bound on the number of edges of H allows us to show that this density increment 
procedure stops with some uniformity t ≥ a. We begin by showing this statement in the 
form of an auxiliary lemma.

Lemma 2.6. Let H be an r-partite r-uniform hypergraph with n vertices which is not 
(ε, δ)-superspread. Then, there exists an index i ∈ [r] such that e(H[r]\{i}) ≥ εδ

r2r e(H).

Proof. Since H is not (ε, δ)-superspread, at least an ε-fraction of its edges are δ-heavy. 
In other words, for at least εe(H) edges e ∈ E(H), there exists a set Se ⊂ e and a vertex 
ve ∈ e\Se such that degH({ve} ∪ Se) ≥ δ degH(Se). Let us record for each edge, from 
which parts V1, . . . , Vr the vertices of Se and the vertex ve come from. Formally, for each 
δ-heavy edge e, we can define the index ie ∈ [r] such that ve = e ∩ Vie . Similarly, we 
define the set Je ⊆ [r] for which Se = e ∩

⋃
j∈Je

Vj . By the pigeonhole principle, there 
exist an index set J = {j1, . . . , jm} ⊆ [r] and an index i ∈ [r] such that Se = e ∩ VJ and 
{ve} = e∩Vi for at least an ε 

r2r -fraction of the edges of H. Let us denote the set of such 
edges by E∗.

Without loss of generality, we may assume that J = [m] and i = m + 1. We claim 
that H[r]\{m+1} has at least εδ

r2r e(H) edges, or equivalently, the edges of H form at least 
εδ
r2r e(H) distinct intersections with V (H[r]\{m+1}) =

⋃
i�=m+1 Vi. The number of edges of 

the hypergraph H[r]\{m+1} can be computed as the sum of the degrees of all m-tuples 
of vertices from V1 × · · · × Vm. Formally, we have
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e(H[r]\{m+1}) =
∑

v1∈V1,...,vm∈Vm

degH[r]\{m+1}
(v1, . . . , vm).

Observe that the degrees degH[r]\{m+1}
(v1, . . . , vm) are lower bounded by

degH[r]\{m+1}
(v1, . . . , vm) ≥ max

v∈Vm+1
degH(v1, . . . , vm, v).

Furthermore, for each δ-heavy edge e ∈ E∗ given by e = (v1, . . . , vr), we have 
δ degH(v1, . . . , vm) ≤ degH(v1, . . . , vm+1). Thus, for every m-tuple (v1, . . . , vm) contained 
in some δ-heavy edge e ∈ E∗, one has

degH[r]\{m+1}
(v1, . . . , vm) ≥ degH(v1, . . . , vm+1) ≥ δ degH(v1, . . . , vm).

Thus, we can lower bound the number of edges in H[r]\{m+1} by restricting the sum 
over only those tuples v1 ∈ V1, . . . , vm ∈ Vm for which there is a δ-heavy edge e ∈ E∗

containing them. Then, we get

e(H[r]\{m+1}) ≥
∑

v1∈V1,...,vm∈Vm

∃e∈E∗:v1,...,vm∈e

degH[r]\{m+1}
(v1, . . . , vm)

≥
∑

v1∈V1,...,vm∈Vm

∃e∈E∗:v1,...,vm∈e

δ degH(v1, . . . , vm)

≥ δ|E∗| ≥ εδ

r2r e(H).

This finishes the proof. �
Now we are ready to prove Proposition 2.5, which shows that we can restrict every 

hypergraph to an (ε, δ)-superspread hypergraph.

Proof of Proposition 2.5. As suggested in the short discussion following the statement 
of Proposition 2.5, by randomly partitioning the vertex set of H into r parts, we may 
pass to a hypergraph H0 ⊆ H which is an r-partite r-uniform hypergraph with at least 
r! 
rr e(H) edges. Let V1, . . . , Vr be the parts of H0.

Lemma 2.6 shows that if H0 is not (ε, δ)-superspread, one can eliminate one of the 
parts Vi and obtain an (r − 1)-partite (r − 1)-uniform hypergraph H1 with at least 
εδ
r2r e(H0) edges. In general, this procedure can be repeated, thus obtaining a sequence of 
hypergraphs H0,H1, . . . ,Hm, where Hi is an (r − i)-partite (r − i)-uniform hypergraph 
with

e(Hi) ≥
(εδ)i

r(r − 1) · · · (r − i + 1)2−
∑r

k=r−i+1 k · e(H0)

>
(εδ)r

r! 2−r2
(
r! 
rr

Cr(εδ)−rna−1
)

≥ na−1.
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Since we have e(Hi) > na−1 for all i, the process must stop at uniformity t = r−i ≥ a, 
as a t-uniform hypergraph on n vertices has less than nt edges. Thus, we find a (ε, δ)-
superspread hypergraph Hi which satisfies all requirements. �

In the next proposition, we show how to use the fact that H is superspread to bound 
the number of edges of H which contain “bad” tuples from certain structured collections 
B.

Proposition 2.7. Let H = (V,E) be a t-uniform (ε, δ)-superspread hypergraph and let 
B be a collection of “bad” ordered �-tuples of distinct elements of V (H) satisfying the 
property that for any v1, . . . , v�−1 ∈ V (H), there exist at most s vertices v� for which 
(v1, . . . , v�) ∈ B. Then, at most (ε + t!sδ)e(H) edges of H contain a tuple of B.

Proof. Since H is a (ε, δ)-superspread hypergraph, at most εe(H) edges of H are δ-heavy. 
Thus, it is enough to show that among the δ-light edges of H, at most t!sδe(H) contain 
a tuple of B. To this end, say that an edge of H is bad if it is δ-light and contains 
some tuple of B. Observe that the number of δ-light edges of H containing a bad �-tuple 
(v1, . . . , v�) ∈ B can be bounded by degH(v1, . . . , v�) ≤ δ degH(v1, . . . , v�−1), where the 
inequality follows from the definition of δ-lightness. Furthermore, for any fixed (�− 1)-
tuple of distinct vertices (v1, . . . , v�−1), there exist at most s vertices v� completing it to 
a bad �-tuple (v1, . . . , v�−1, v�) ∈ B. Thus, we conclude that the number of bad edges of 
H which contain a fixed (�− 1)-tuple (v1, . . . , v�−1) is at most δsdegH(v1, . . . , v�−1).

Hence, the total number of bad edges can be bounded by

δs
∑

distinct v1,...,v�−1

degH(v1, . . . , v�−1) = δs(�− 1)!
(

t 
�− 1

)
e(H).

The last equality is the consequence of double counting, as the sum 
∑

degH(v1, . . . , v�−1)
counts the number of pairs (e, (v1, . . . , v�−1)) for which the vertices v1, . . . , v�−1 belong 
to e and e ∈ E(H). Since every edge e of cardinality t contains exactly (� − 1)!

(
t 

�−1
)

ordered (� − 1)-tuples, the equality follows. Since δs(� − 1)!
(

t 
�−1

)
e(H) < δst!e(H), we 

conclude that the number of bad edges is at most δst!e(H), finishing the proof. �
Corollary 2.8. Let s, a ≥ 1 be integers. Let G be a graph which does not contain Ks,s and 
let X ⊆ V (G) be a subset of at least |X| ≥ (2a)4a+10(4s)4a+2 vertices. Then, there exists 
some t ∈ [a, 2a] and a non-empty collection I of independent sets of size t in X such 
that I is an (ε, δ)-superspread hypergraph, where ε = (2a)−2 and δ = (2a)−2(a+1)s−1.

Proof. Set r := 2a. The main idea is to apply Proposition 2.5 to the r-uniform hyper-
graph, whose edges are the independent sets of size 2a in X. In order to do this, we need 
to verify that there are at least Cr(εδ)−r|X|a−1 independent sets of size r in X, where 
Cr = rr2r2 .
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This will simply follow from a supersaturation argument. Namely, by the Erdős-
Szekeres theorem [19], the Ramsey number of Ks,s versus K2a can be upper bounded 
as

R(Ks,s,Kr) ≤ R(K2s,Kr) ≤
(

2s + r − 2
r − 1 

)
≤ (2s)r.

Hence, every set Y ⊆ X of size |Y | = (2s)r contains a independent set of size r (since 
G is Ks,s-free). On the other hand, each independent set of size r belongs to 

( |X|−r
(2s)r−r

)
sets Y of size |Y | = (2s)r. Thus, the collection Ir of independent sets of size r in X has 
cardinality at least

|Ir| ≥
( |X| 
(2s)r

)
( |X|−r
(2s)r−r

) ≥
(

|X| 
(2s)r

)r

≥
(√

|X| · r
r+5(4s)r+1

(2s)r

)r

≥ rr2r
2
r2r(srr+2)r|X|a ≥ Cr(εδ)−r|X|a−1.

This suffices for Proposition 2.5 to be applied and therefore we find the collection I
satisfying all necessary conditions. �

Finally, we show how to find rich independent sets in the graph G.

Proof of Proposition 2.4. The main idea of this proof is to apply Corollary 2.8 to find a 
superspread collection of independent sets in X. Then, we define a set of “bad” tuples 
with the property that if an independent set contains no “bad” tuples, then it must be 
a rich independent set.

Let us present this argument formally. Since |X| ≥ (4|A||B|s)4|A|+10, Corollary 2.8
implies that there exists a non-empty (ε, δ)-superspread collection of independent sets I
of size t ∈ [|A|, 2|A|] in X, where ε = (2a)−2 and δ = (2a)−2(a+1)s−1. Then, we define 
the tk collections of bad ordered tuples, Bi,� for i ∈ [k] and � ∈ [t] as follows. The �-tuple 
of distinct vertices (v1, . . . , v�) belongs to Bi,� if it satisfies the following two conditions:

• The set S = N(v1, . . . , vi)\
⋃�−1

j=i+1 N(vj) contains at least 2s vertices, and
• |S\N(v�)| < 1 

2s |S|.

By Claim 2.2, for any (v1, . . . , v�−1) satisfying the first condition, there are at most 
s vertices v� for which (v1, . . . , v�) ∈ Bi,�. Therefore, Bi,� satisfies the requirement of 
Proposition 2.7, and we conclude that at most (ε+t!sδ)e(I) independent sets of I contain 
a tuple of Bi,�.

Thus, there are at most tk(ε + t!sδ)|I| independent sets of I which contain a bad 
tuple from any of the families Bi,�. In particular, noting that tk(ε + t!sδ) ≤ 2a2( 1 

4a2 +
(2a)!s 

(2a)2a+2s ) ≤
1
2 + 1

4 < 1, there exists an independent set I0 ∈ I containing no bad tuples. 
Let I ⊆ I0 be an independent set of size |A|.
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We claim that I is a rich independent set, that is, for any T ⊂ I of size at most k, 
there are at least (4|B|s)|B| vertices v ∈ V (G)\I which are adjacent to all vertices of T
and non-adjacent to all vertices of I\T . Indeed, consider a subset T ⊂ I with |T | = i ≤ k

and let us enumerate the vertices of I by v1, . . . , v|A| such that T = {v1, . . . , vi}. By the 
definition of X, any k vertices of X have at least (CHs)2|V (H)| common neighbours in G
and therefore |N(v1, . . . , vi)| ≥ (CHs)2|V (H)|. We can now show by induction that

∣∣∣∣∣∣N(v1, . . . , vi)
∖ � ⋃

j=i+1
N(vj)

∣∣∣∣∣∣ ≥ (2s)−(�−i)(CHs)2|V (H)|.

For � = i, this is equivalent to the fact v1, . . . , vi have many common neighbours, which 
was stated above. For � > i, under the assumption |N(v1, . . . , vi)\

⋃�−1
j=i+1 N(vj)| ≥

(2s)−(�−i)+1(CHs)2|V (H)| ≥ 2s, by recalling the fact that I contains no bad tuples from 
Bi,�, we conclude that

∣∣∣∣∣∣
(
N(v1, . . . , vi)

∖ �−1 ⋃
j=i+1

N(vj)
)
\N(v�)

∣∣∣∣∣∣
≥ 1 

2s · (2s)−(�−i+1)(CHs)2|V (H)| = (2s)−(�−i)(CHs)2|V (H)|.

In particular, when � = |I|, we conclude that the number of vertices of G adjacent to all 
vertices of T and nonadjacent to all vertices of I\T is at least (CHs)|V (H)| ≥ (4|B|s)|B|. 
This suffices to conclude that I is a rich independent set, completing the proof. �
2.3. Finishing the proof

In this section, we put everything together to prove Theorem 2.1. In the proof, we use 
the following standard form of the dependent random choice lemma.

Lemma 2.9 (Lemma 2.1 in [24]). Let �,m, k be positive integers. Let G = (V,E) be a 
graph with |V | = n vertices and average degree d = 2|E(G)|/n. If there is a positive 
integer t such that

dt

nt−1 −
(
n

k

)(m
n 

)t

≥ �

then G contains a subset X of at least � vertices such that every k vertices in X have at 
least m common neighbours.

Proof of Theorem 2.1. (i) We follow the outline presented in the beginning of this sec-
tion. The first step is to apply Lemma 2.9 with � = (CHs)4h+10, m = (CHs)2h, and 
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t = k, and note that d ≥ (CHs)4h+10n1−1/k. The assumption of Lemma 2.9 is satisfied 
since

dt

nt−1 −
(
n

k

)(m
n 

)t

≥ (CHs)(4h+10)k − nk

k! 
(CHs)2hk

nk
≥ �.

Hence, we can find a subset X ⊂ V (G) such that |X| ≥ � and every k-tuple of vertices in 
X has at least m common neighbours. By Proposition 2.4, X contains a rich independent 
set of size a. Finally, by Lemma 2.3, G contains an induced copy of H.

(ii) The proof is almost the same as above: apply Lemma 2.9 with � = m =
√
n ≥

(CHs)4h+10, and t = 2k, and note that d ≥ 2n1−1/4k. Since

dt

nt−1 −
(
n

k

)(m
n 

)t

≥ 22k n
2k− 1

2

n2k−1 − nk

k! 

(√
n

n 

)2k

≥ 22k√n− 1 ≥ �,

the assumption of Lemma 2.9 holds and we can find a subset X ⊂ V (G) such that 
|X| ≥ � ≥ (CHs)4h+10 and every k-tuple of vertices in X has at least m ≥ (CHs)2h
common neighbours. From this point, the proof is identical to that of (i). �
2.4. Lower bounds

To conclude this section, we briefly sketch a lower bound construction for the induced 
Turán number of a complete bipartite graph. Namely, in Theorem 2.1 we have shown 
that ex∗(n,H, s) ≤ (CHs)4|V (H)|+10n2−1/k, for some constant CH depending on the 
graph H. Now, we show that the constant next to n2−1/k indeed needs to grow with s
polynomially, at least when H is the complete bipartite graph.

Proposition 2.10. Let H = Kk,� where � = (k − 1)!. Then, for all integers n ≥ s ≥ 2k!
we have

ex∗(n,H, s) = Ωk(s1/kn2−1/k).

Proof. Let G0 be an extremal bipartite H-free graph on n0 = n
t vertices, where t = s 

2k! . 
By a classical result of Alon, Rónyai and Szabó [4] (see also [10]), there exists such 
G0 with at least Ω(n2−1/k

0 ) edges. Then, we let G be a t-fold blowup of the graph G0, 
where every vertex of G0 is replaced by a clique of size t and every edge is replaced by a 
complete bipartite graph Kt,t. We say that two vertices in such a t-clique are twins. The 
graph G has at most n0t ≤ n vertices and at least Ω(t2e(G0)) = Ω(t1/k(n0t)2−1/k) =
Ωk(s1/kn2−1/k) edges. If we show that G has no induced copy of H and no Ks,s, this 
implies that ex∗(n,H, s) = Ωk(s1/kn2−1/k).

Let us observe that if U ⊂ V (G) induces a copy of H, then no two vertices of U
are twins. If two vertices from the same part of H are embedded into twins, they are 
adjacent in G, which is not possible. On the other hand, if two vertices from different 
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parts of H are embedded into twins, then any other vertex of G is either connected to 
both of them or to none. Therefore, we conclude that U contains no twins. But then 
each vertex of U corresponds to a unique vertex in G0, so G0 contains an induced copy 
of H as well, contradiction.

Finally, one can argue that if G contains Ks,s as a subgraph, then G0 must contain 
Ks/t,s/t = K2k!,2k!, contradiction. This completes the proof. �

One can slightly improve the above construction when n = 2O(s) by replacing vertices 
in the blow-up by Ramsey graphs avoiding Ks/2,s/2 and independent sets of size h, instead 
of replacing them by cliques. If one replaces the edges between these vertices with dense 
graphs which avoid Ks/2,s/2, the resulting graph has no Ks,s. Hence, this improved 

construction shows that ex∗(n,H, s) ≥ s|V (H)|1/(k+1)
n2− 1 

k , i.e., that the exponent of s
should grow with |V (H)|. We omit further details since there is still a large gap between 
upper and lower bounds.

3. Trees, induced C4-free subgraphs and the Erdős-Hajnal conjecture

In this section, we prove Theorem 1.3. We also present three short applications of the 
results obtained in the previous section, proving Theorems 1.6–1.8.

Let us begin by discussing Theorem 1.3. The starting point of our proofs is Proposition 
7.9 from a recent paper of Girão and the first author [26], which shows that within every 
graph of large enough average degree, one can find either an induced subgraph which 
is C4-free with average degree larger than any constant or an induced subgraph with 
almost quadratically many edges.

Proposition 3.1 ([26]). Let H be a bipartite graph and fix an integer k and ε > 0. For 
all sufficiently large d, the following is true. Let G be a graph with no induced copy of 
H and with average degree d. Then G has an induced subgraph G′ satisfying one of the 
following:

• G′ has no C4 and has average degree at least k;
• G′ has n′ ≥ d1/10 vertices and e(G′) ≥ (n′)2−ε.

We note that the sufficiently large condition in the above result is not especially quan-
titative. It would be interesting to determine whether we can take d ≤ kOH(1/ε).

In either of the cases, our goal is to find an induced copy of our tree T within G′. 
Before we embark on our proof, we first show that it is easy to embed T in C4-free graphs 
of large average degree.

Proposition 3.2. Let T be a tree on t vertices. Then ex∗(n, T, 2) ≤ 2tn.
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Proof. We proceed by induction on the number of vertices, and we note that the state-
ment is trivial when T consists of a single vertex. For general trees, let us fix a host 
graph G on n vertices which is C4-free and has e(G) > 2tn.

We may clean the graph G such that its minimal degree is at least 2t. Namely, as long 
as there exists a vertex of degree less than 2t in G, one may remove it. The maximum 
number of edges removed in this way is at most 2tn and therefore the cleaning procedure 
ends with a non-empty graph whose minimal degree is at least 2t. To simplify notation, 
we still denote this cleaned version of the graph by G.

Let T ′ be a tree on t − 1 vertices obtained by deleting a leaf v from the tree T . 
We denote by u the unique neighbour of v in T . By inductive hypothesis, the graph G
contains an induced copy of T ′.

If the vertex u′ plays the role of u in this copy, if suffices to find a vertex v′ in the 
neighbourhood of u′ which is not adjacent to any of the other vertices in the induced 
copy of T ′.

Since G is C4-free, u′ shares at most one neighbour with any other vertex of this 
induced copy of T ′. Therefore, since the neighbourhood of u′ has at least 2t elements, it 
contains a vertex v′ different from and non-adjacent to all other vertices of the induced 
copy of T ′. Adding this vertex to the copy of T ′ gives an induced copy of T , thus 
completing the proof. �
Proof of Theorem 1.3. Let G be a graph with n vertices and at least sCtn edges, where 
C = 150. We show that if G is Ks,s-free, then there exists an induced copy of the tree T
on t edges in G. Let us assume, for the sake of contradiction, that G does not contain 
an induced copy of T and further assume that t ≥ 3, since otherwise the statement is 
trivial.

Apply Proposition 3.1 to the graph G with parameters H := T , k := 4t + 1 and 
ε := 1 

4t . We conclude that, for all sufficiently large s, either G contains an induced 
C4-free subgraph G′ ⊆ G with average degree greater than 4t, or an induced subgraph 
G′ ⊆ G on n′ ≥ sCt/10 vertices and average degree (n′)1− 1 

4t .
In the first case, we can apply Proposition 3.2 to conclude that G′ contains an induced 

copy of T , and hence G also contains an induced copy of T . In the second case, we apply 
(ii) of Theorem 2.1 to the host graph G′ with n′ ≥ sCt/10 > (t2s)8t+20 vertices and 
e(G′) ≥ (n′)2− 1 

4t edges. Since G is Ks,s-free, so is G′, and we conclude that G′ contains 
an induced copy of T . This completes the proof. �

In what follows, we present further applications of Theorem 2.1.

Proof of Theorem 1.6. For each k ≥ 1, we construct a C4-free bipartite graph Hk of 
average degree k and at most 8k2 vertices. To do this, we pick the smallest prime power 
q satisfying q ≥ k − 1 and setting Hk to be the point-line incidence graph of projective 
plane with q2 + q + 1 elements. Then, Hk is a (q + 1)-regular graph and so H is a C4-
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free graph with average degree at least k. Moreover, by Bertrand’s postulate, we have 
q ≤ 2(k − 1) and thus Hk has at most 2(q2 + q + 1) ≤ 8k2 vertices.

Let us now suppose, for the sake of contradiction, that for some sufficiently large 
s, there exists a Ks,s-free graph G with average degree d(G) ≥ s103k2 and no C4-free 
induced subgraph of average degree at least k. Since G does not contain an induced copy 
of Hk and s is sufficiently large compared to k, we may apply Proposition 3.1 to it with 
parameters k and ε = 1 

8k .
By our assumption on G, the first conclusion of the Proposition 3.1 cannot hold 

and therefore G contains an induced subgraph G′ ⊆ G on n′ ≥ d(G)1/10 ≥ s100k2
>

(CHk
s)8|V (Hk)|+20 vertices and with e(G′) ≥ (n′)2− 1 

8k edges. Since Hk is a (q+1)-regular 
graph, its degrees are bounded by 2k and therefore part (ii) of Theorem 2.1 shows that 
G′ contains an induced copy of Hk. This presents a contradiction to the assumption that 
G has no C4-free induced subgraph of average degree at least k, thus completing the 
proof. �
Proof of Theorem 1.7. Assume that the statement is not true and there exists a Ks,s-
free graph G which does not contain an induced subdivision of H and has average degree 
at least s150|V (H)|. Also, assume |V (H)| ≥ 3, since the statement is otherwise trivial. A 
result of Kühn and Osthus [38] states that every C4-free graph G′ of large enough average 
degree d(G′) ≥ d0 must contain an induced subdivision of H, where d0 may depend on 
H. Therefore, we conclude G does not contain an induced C4-free subgraph G′ of average 
degree at least d0.

Furthermore, since G does not contain an induced subdivision of H, it does not contain 
an induced copy of H. Therefore, Proposition 3.1 applies to G, with the parameters k =
d0 and ε = 1 

4|V (H)| . By the above discussion, the first conclusion of Proposition 3.1 cannot 
hold and hence G contains an induced subgraph G′ on n′ ≥ d(G)1/10 ≥ s15|V (H)| ≥
(CHs)8|V (H)|+20 vertices and with e(G′) ≥ (n′)2−1/4|V (H)| edges. But Theorem 2.1 now 
implies that G contains either Ks,s or an induced copy of H, contradiction. �
Proof of Theorem 1.8. Set s = 1 

h2n
1 

8h+20 . If G does not contain Ks,s as a subgraph and 
G does not contain an induced copy of H, we apply Theorem 2.1 to deduce that G
has few edges. By our choice of s, we have n ≥ (CHs)8h+20 and therefore part (ii) of 
Theorem 2.1 applies to show that G has at most n2− 1 

4h edges. Hence, G must contain 
an independent set of size at least n 1 

4h , which completes the proof. �
4. Cycles and the cube

The goal of this section is to prove Theorem 1.4, which is concerned with graphs that 
are induced C2k-free and Ks,s-free. Also, we show Proposition 1.5 which gives an upper 
bound on the induced Turán number of the cube graph. We begin by proving the following 
strengthening of Theorem 1.4, which is needed to for our proof of Proposition 1.5.
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Theorem 4.1. Let k, s ≥ 2 be integers and let G be a graph on n vertices which does not 
contain Ks,s as a subgraph. Then there exists a constant C = Ck,s > 0 such that for any 
partition V (G) = A ∪ B with at least e(A,B) ≥ Cn1+ 1 

k crossing edges, there exists an 
induced copy of the cycle C2k on vertices v1, v2, . . . , v2k such that v1, v3, . . . , v2k−1 ∈ A

and v2, v4, . . . , v2k ∈ B.

Since any graph G contains an partition with at least e(G)/2 crossing edges, Theo-
rem 1.4 is directly implied by Theorem 4.1.

Before presenting the main idea of the proof, we introduce some terminology and 
notation which will be used throughout the section. For every graph G with partition 
V (G) = A ∪ B, we define the subgraph G1 containing the crossing edges. Furthermore, 
we say that a cycle of length 2k in G is alternating if all edges of this cycle cross the 
partition A,B. Similarly, a path is alternating if all of its edges cross the partition.

Now, we present the outline of our proof. The first step is to pass to subsets A0 ⊆
A,B0 ⊆ B such that G1[A0 ∪ B0] is an almost regular graph. To do this, we use the 
notion of α-maximality, introduced in [56]. Then, we use a result of Janzer [30] to show 
that most homomorphic cycles of length 2k are non-degenerate. Finally, we argue that if 
there are no induced cycles of length 2k in G, then one can choose vertices u, v ∈ V (G)
with many disjoint paths between them and many edges between internal vertices of 
these paths. This will allow us to find a dense subgraph of G, in which we find a copy of 
Ks,s, using the Kővári-Sós-Turán theorem.

As mentioned above, the first step is to show how to pass from a graph to an almost 
regular induced subgraph. Given a graph G, Δ(G) denotes the maximum degree, δ(G)
the minimum degree, and d(G) the average degree of G. We say that G is K-almost-
regular if Δ(G) ≤ Kδ(G).

Lemma 4.2. Let α > 0 be a fixed real number and let K = 23/α+5. Furthermore, let G be 
a graph on n vertices with at least Cn1+α edges. Then, there exists a K-almost-regular 
induced subgraph H ⊆ G on m vertices with at least C4 m

1+α edges.

Proof. The main idea of the proof is to pass to a so called α-maximal subgraph of G
and clean it to remove the low-degree and the high-degree vertices. We say that a graph 
G is α-maximal if for any subgraph H ⊆ G one has

e(G) 
v(G)1+α

≥ e(H) 
v(H)1+α

.

If G is not α-maximal, we may replace G by the subgraph G′ ⊆ G maximizing the ratio 
e(G′) 

v(G′)1+α . Note that G′ is induced, α-maximal, and satisfies e(G′) ≥ Cv(G′)1+α. Hence, 
in what follows, we assume that G is α-maximal and set C0 := e(G)/v(G)1+α ≥ C.

Let U be the set of vertices v ∈ G whose degree is at least K0d(G), where K0 = 23/α+2. 
Then, U has size at most |U | ≤ n 

K0
. Using the assumption that G is α-maximal, we show 

that at most a half of the edges in G are incident to U .
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Suppose this is not the case and we have at least e(G)/2 edges incident to U . Our goal 
is to find a set V ⊆ V (G)\U for which e(G[U ∪ V ]) > C0|U ∪ V |1+α, which contradicts 
the α-maximality of G. Let V be a random subset of V (G)\U of cardinality n 

K0
. Then 

we have |U ∪ V | ≤ |U | + |V | ≤ 2n 
K0

. Furthermore, every edge incident to U belongs 
to G[U ∪ V ] with probability at least 1 

K0
and therefore the expected number of edges 

induced on U ∪ V is at least E[e(G[U ∪ V ])] ≥ e(G)/2K0. Therefore, there exists a set 
V of size n 

K0
for which e(G[U ∪ V ]) ≥ e(G)/2K0.

We claim that the subgraph G[U ∪ V ] contradicts the α-maximality of G, which is 
verified by the following simple computation:

e(G[U ∪ V ]) − C0|U ∪ V |1+α ≥ e(G)
2K0

− C0

(
2n 
K0

)1+α

≥ C0n
1+α

2K0
− C0

(
2n 
K0

)1+α

≥ 0,

where the last inequality follows from the choice of K0.
Thus, we conclude that U is incident to at most e(G)/2 edges and so V (G)\U induces 

at least e(G)/2 edges. Let us now focus on the subgraph G′ ⊆ G induced on the set 
V (G)\U . We may repeatedly remove from this graph all vertices of degree at most 
d(G′)/4, while removing at most half of the edges of G′. In this way, we obtain an 
induced subgraph G′′ ⊆ G with the property that e(G′′) ≥ e(G′)/2 ≥ e(G)/4 and 
δ(G′′) ≥ d(G′)/4 ≥ d(G)/8. Since all vertices of G′ have degree at most K0d(G), we 
finally arrive at the conclusion 8K0δ(G′′) ≥ Δ(G′′), thus completing the proof. �

The next step of the proof is to show that almost all homomorphic 2k-cycles are non-
degenerate. Here, a homomorphic 2k-cycle denotes a sequence of 2k vertices, v1, . . . , v2k

such that vi is adjacent to vi+1 for all i = 1, . . . , 2k − 1 and v1 is adjacent to v2k. Such 
a cycle is non-degenerate if all 2k vertices are distinct and otherwise it is degenerate. 
The number of homomorphic 2k-cycles in G is denoted by hom(C2k, G). For brevity, 
throughout this section, we will often refer to homomorphic 2k-cycles simply as 2k-
cycles.

Lemma 4.3. Let k be a positive integer, let K = 23k+5 and let G be a K-almost-regular 
graph with d(G) = Cn1/k. Then at most 22k+10

√
C

hom(C2k, G) homomorphic 2k-cycles in 
G are degenerate.

The key ingredient in the proof of this lemma is the following result of Janzer [30], 
which controls the number of degenerate 2k-cycles in a graph.

Lemma 4.4 (Lemma 2.2 in [30]). Let k ≥ 2 be an integer and let G = (V,E) be a graph 
on n vertices. Let ∼ be a symmetric binary relation defined over V such that for every 
u ∈ V and v ∈ V , v has at most t neighbours w ∈ V which satisfy u ∼ w. Then the 
number of homomorphic 2k-cycles (x1, x2, . . . , x2k) in G such that xi ∼ xj for some 
i �= j is at most
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32k3/2t1/2Δ(G)1/2n 1 
2k hom(C2k, G)1− 1 

2k .

Moreover, we also use the well known fact that even cycles satisfy Sidorenko’s conjec-
ture [51].

Lemma 4.5 ([51]). For every graph G,

hom(C2k, G) ≥ d(G)2k.

Proof of Lemma 4.3. We apply Lemma 4.4 and define the relation ∼ such that u ∼ v if 
and only if u = v. Then Lemma 4.4 gives a bound on the number of degenerate copies 
of 2k-cycles. Since one can take t = 1, the number of degenerate homomorphic 2k-cycles 
in G is at most

32k3/2Δ(G)1/2n 1 
2k hom(C2k, G)1− 1 

2k .

From Lemma 4.5, we have hom(C2k, G)1/2k ≥ d(G). Furthermore, since G is a K-
almost-regular graph, we have Δ(G) ≤ Kd(G). Thus, we have

32k3/2Δ(G)1/2n 1 
2k hom(C2k, G)1− 1 

2k

hom(C2k, G) = 32k3/2Δ(G)1/2n 1 
2k

hom(C2k, G) 1 
2k

≤ 32k3/2K1/2 d(G)1/2n 1 
2k

d(G) 

≤ 32k3/223k/2+2 n
1 
2k

d(G)1/2
≤ 22k+10

√
C

. �
Before we begin the proof of Theorem 4.1, we present an auxiliary lemma which shows 

that if one has a sparse and a dense graph on the same vertex set, one can find a large 
independent set of the sparse graph in which the density of the dense graph does not 
decrease too much. This lemma will be applied to an auxiliary graph which is constructed 
in the course of the main proof.

Lemma 4.6. For every integer t and every c ∈ (0, 1), there exists δ = δ(t, c) ∈ (0, 1) such 
that for all n > cδ−1 the following statement holds. Let V be a set of n vertices and let 
GR, GB be a red and a blue graph on V . If GR has at most δn2 edges and GB has at 
least cn2 edges, then there exists a set S ⊆ V of size at least t such that GB[S] has at 
least c 2 |S|2 edges and GR[S] is empty.

Proof. Let S be a random subset of V which includes each element with probability 
p = cδ−1

10n . Furthermore, denote by eR(S) and eB(S) the number of red and blue edges in 
S, respectively.

The first step of the proof is to show that we have the following inequality between 
expectations

E
[
eB(S)

]
>

c 
2E

[
|S|2

]
+ E

[
|S| · eR(S)

]
+ t2. (1)
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For a vertex u ∈ V , we define 1u to be the indicator function of the event u ∈ S. Let us 
begin by computing the expectation of eB(S):

E[eB(S)] = E

[ ∑
uv∈E(GB)

1u1v

]
=

∑
uv∈E(GB)

E[1u1v] = e(GB)p2.

Similarly, one can compute the expectation of |S|2 and |S| · eR(S):

E
[
|S|2

]
= E

[( ∑
u∈V

1u

)2
]

= E

[ ∑
u,v∈V

1u1v

]

=
∑
u �=v

E[1u1v] +
∑
u∈V

E[1u] = (n2 − n)p2 + np,

E
[
|S| · eR(S)

]
= E

[ ∑
u,v∈E(GR)

1u1v

∑
w∈V

1w

]
=

∑
uv∈E(GR)

w �=u,v

E[1u1v1w] +
∑

uv∈E(GR)
w∈{u,v}

E[1u1v]

= e(GR)(n− 2)p3 + 2e(GR)p2.

Having computed these, it is straightforward to verify inequality (1):

c 
2E

[
|S|2

]
+ E

[
|S| · eR(S)

]
+ t2 ≤ c 

2(np)2 + c 
2np + δn3p3 + 2δn2p2 + t2

= c3δ−2

200 
+ c2δ−1

20 
+ c3δ−2

1000 
+ 2c2δ−1

100 
+ t2

<
c3δ−2

100 
≤ e(GB)p2,

assuming δ is sufficiently small with respect to t and c. Therefore, one can choose S
such that eB(S) > c 

2 |S|2 + |S|eR(S) + t2. Since eB(S) < |S|2
2 for all S, we must also 

have eR(S) < |S|/2. As there are fewer red edges in S than vertices, one can remove 
one vertex from every red edge and obtain a non-empty set of vertices S′ of cardinality 
|S′| ≥ |S| − eR(S).

We claim that |S′| ≥ t and that S′ contains at least c 2 |S|2 blue edges. Showing both 
of these inequalities is sufficient to complete the proof by choosing the set S′. The first 
inequality follows from |S|2

2 > eB(S) > |S|eR(S) + t2, which implies

1
2 |S

′|2 ≥ 1
2(|S| − eR(S))2 = |S|2

2 
− |S|eR(S) + eR(S)2

2 
≥ t2.

On the other hand, by removing at most eR(S) vertices of S, one can remove at most 
eR(S)|S| blue edges from S, meaning that at least eB(S)− |S|eR(S) ≥ c 

2 |S|2 blue edges 
remain in S′. This suffices to complete the proof. �

Having covered all the preliminaries, we are ready for the proof of the main theorem.
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Proof of Theorem 4.1. Let us begin by applying Lemma 4.2 with α = 1 
k to the graph 

G1 of edges crossing the partition (A,B). Let C0 = C
4 and K = 23k+5, then there is a 

K-almost-regular induced subgraph H1 of G1 satisfying e(H1) ≥ C0m
1+1/k, where m is 

the number of vertices of H1. Also, let H be the subgraph of G induced by V (H1).
For any two distinct vertices u, v ∈ V (H), we denote by Pu,v the set of alternating 

paths of length k between vertices u and v in H, and let Pu,v = |Pu,v|. Furthermore, let 
Au,v denote the number of ordered pairs of paths (P1, P2) ∈ P2

u,v which intersect in a 
vertex different from u, v. Finally, let Bu,v denote the number of ordered pairs of distinct 
paths (P1, P2) ∈ P2

u,v such that some internal vertex of P1 and some internal vertex of 
P2 are connected by an edge of H.

Let us begin by presenting a set of simple observations about these quantities. Since ev-
ery pair of paths with the same endpoints can be glued to form a homomorphic 2k-cycle, 
we have that 

∑
u,v P

2
u,v ≤ hom(C2k, H1). Here and later, 

∑
u,v denotes the sum over all 

pairs (u, v) ∈ V (H)2, u �= v. Furthermore, every non-degenerate 2k-cycle (x1, . . . , x2k)
can be uniquely partitioned into two paths of length k with the same endpoints, namely 
the paths (x1, x2, . . . , xk+1) and (x1, x2k, . . . , xk+1). Hence, the sum 

∑
u,v P

2
u,v is at least 

the number of non-degenerate 2k-cycles. For sufficiently large C0, Lemma 4.3 guaran-
tees that at least half of all homomorphic 2k-cycles in H1 are nondegenerate, and so ∑

u,v P
2
u,v ≥ 1

2 hom(C2k, H1).
The sum 

∑
u,v Au,v can be bounded by the number of degenerate 2k-cycles, since each 

pair of paths which share the endpoints and intersect in some internal vertex corresponds 
to a degenerate 2k-cycle. Thus, Lemma 4.3 implies 

∑
u,v Au,v ≤ 22k+10

√
C0

· hom(C2k, H1).
Finally, if H has no induced nondegenerate 2k-cycles, then 

∑
u,v Bu,v ≥ 1 

4k hom(C2k, 
H1). To see why, note that every nondegenerate cycle (x1, . . . , x2k) must have a chord, 
since it is not induced. Then, there exists a way to shift the indices of the vertices, say 
by setting yi = xi+t mod 2k for some t, such that the chord goes between the vertex 
sets {y2, . . . , yk} and {yk+2, . . . , y2k}. In this case, the cycle (y1, . . . , y2k) corresponds 
to a pair of paths between y1 and yk+1 with an edge between their internal vertices, 
which is counted in By1,yk+1 . This argument shows that for any non-degenerate 2k-
cycle, one of its 2k cyclic relabeling corresponds to a pair of paths counted in the sum ∑

u,v Bu,v. Hence, 2k
∑

u,v Bu,v is at least the number of nondegenerate 2k-cycles, and 
so 

∑
u,v Bu,v ≥ 1 

4k · hom(C2k, H1).
Combining these observations with the fact that hom(C2k, H1) ≥ d(H1)2k ≥ m2C2k

0 ≥∑
u,v C

2k
0 , which comes from Lemma 4.5, we obtain the following inequality:

8k
∑
u,v

Bu,v −
√
C0

22k+10

∑
u,v

Au,v ≥ hom(C2k, H1) ≥
1
2d(H1)2k + 1

2
∑
u,v

P 2
u,v

≥ 1
2
∑
u,v

(P 2
u,v + C2k

0 ).

Hence, there exist distinct vertices u, v for which
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8kBu,v ≥
√
C0

22k+10Au,v + 1
2P

2
u,v + 1

2C
2k
0 .

Let us fix these vertices and define δ = 22k+10 · 8k/
√
C0. Since Bu,v counts certain 

pairs of paths in Pu,v, we always have Bu,v ≤ P 2
u,v. Thus, we deduce that 8kδ−1Au,v ≤

8kBu,v ≤ 8kP 2
u,v and so Au,v ≤ δP 2

u,v. Also, we directly have both Bu,v ≥ 1 
16kP

2
u,v and 

8kP 2
u,v ≥ 8kBu,v ≥ 1

2C
2k
0 , implying Pu,v ≥ Ck

0 /4
√
k.

We now define two auxiliary graphs, a red and a blue one, on the set of vertices Pu,v. 
A pair of distinct paths P1, P2 ∈ Pu,v is a red edge if the paths P1, P2 intersect in some 
of their internal vertices. Also, P1P2 is a blue edge if there exists an edge of H between 
the internal vertices of P1 and P2. Let us denote the red graph by GR and the blue graph 
by GB. Note that an ordered pair of paths (P1, P2) is counted in Au,v precisely if P1P2
is a red edge or if P1 = P2. Thus, we have that the number of red edges is precisely 
e(GR) = (Au,v − Pu,v)/2 ≤ δP 2

u,v. Similarly, we have e(GB) = Bu,v/2 ≥ 1 
32kP

2
u,v, since 

Bu,v only counts pairs of distinct paths.
Apply Lemma 4.6 to the graphs GR, GB with the parameters n = Pu,v, c = 1 

32k , and 
t = (64k)3s. The conditions of the Lemma 4.6 hold when C0 is sufficiently large, since 
e(GR) ≤ δP 2

u,v and Pu,v > cδ−1 as Pu,v ≥ Ck
0 /4

√
k. We conclude that there exist r ≥ t

paths P1, . . . , Pr ∈ Pu,v with disjoint interiors and with at least 1 
64k r

2 pairs Pi, Pj having 
an edge of H between their internal vertices.

Let us now consider an induced subgraph F ⊆ H on the union of vertices of all these 
paths. The number of vertices of F is h = 2 + r(k − 1) and the number of edges in F
is at least 1 

64k r
2. However, F is a Ks,s-free graph and the Kővári–Sós–Turán theorem 

implies that e(F ) ≤ (s/h)1/sh2 + hs/2. Since r ≥ t = (64k)3s and h ≤ rk, we have 
1 

64k r
2 > (s/h)1/sh2 + hs/2, a contradiction. This completes the proof. �

4.1. The cube graph

We finish the section by showing Proposition 1.5, which states that ex∗(n,Q8, s) ≤
Os(n8/5), where Q8 denotes the graph of a three-dimensional cube. Before we start the 
proof, we show that almost all paths of a given length in a Ks,s-free graph are induced. 
Although we need this statement only for paths of length three, we prove it in full 
generality since we believe it might be of independent interest.

Lemma 4.7. For any integers k, s ≥ 2 and any K, ε > 0, there exists a constant C =
C(k, s,K, ε) > 0 such that the following statement is true. Let G be a graph on n vertices 
which does not contain Ks,s and let V (G) = A∪B be a partition of the graph G with at 
least e(A,B) ≥ Cn1+ 1 

k crossing edges. Furthermore, assume that the graph of crossing 
edges is K-almost regular. Then, at least a (1− ε)-fraction of alternating paths of length 
k in G are induced.

Proof. We denote the graph of edges crossing the partition by G1. We show that if at 
least an ε-fraction of alternating paths of length k in G are not induced, then G has 
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Ω(nd(G1)�−1) cycles of length �, for some � ≤ k, with all but at most one edge crossing 
the partition. This suffices to show that G contains Ks,s as a subgraph.

Let us begin by showing that the total number of alternating k-paths in G is at least 
1
2n(δ(G1)/2)k. Namely, to specify an alternating path of length k, one has n choices for 
the first vertex and at least δ(G1) − k ≥ δ(G1)/2 choices for each of the subsequent 
vertices. However, since we may count every path twice, depending on the direction it is 
traversed, we divide by 2.

If an ε-fraction of these paths are not induced, we have εn(δ(G1)/2)k/2 ≥ ε ndk

Kk2k+1 =
Ωk,K,ε(ndk) non-induced alternating paths of length k, where d = d(G1) is the average 
degree of G1. In other words, there are at least Ωk,K,ε(ndk) k-paths with a chord between 
some two vertices. By the pigeonhole principle, there exist indices i, j ∈ {0, . . . , k} such 
that i ≤ j−2 and at least 1 

k2 Ωk,K,ε(ndk) of these paths have a chord between the vertices 
vi and vj . Let us denote this collection of paths by Pij .

Every path in Pij can be completed to a cycle of length � = j − i + 1. Let us denote 
by C� the collection of �-cycles in G with all but at most one edge crossing the partition. 
We argue that each cycle C ∈ C� can be obtained from at most �Δ(G1)k−(j−i) paths 
P ∈ Pij . Given a cycle C, there are � ways to label its vertices using the labels vi, . . . , vj . 
Furthermore, there are at most Δi ways to choose vertices vi−1, vi−2, . . . , v0 with the 
restrictions vivi−1 ∈ E(G1), vi−1vi−2 ∈ E(G1) etc. Similarly, there are at most Δk−j

ways to choose the vertices vj+1, . . . , vk and therefore at most �Δk−(j−i) paths P ∈ Pij

contain the cycle C. We conclude that |C�| ≥ |Pij | 
�Δk−�+1 = Ωk,K,ε(nd�−1).

The last step of the proof is to show that |C�| ≥ Ωk,K,ε(nd�−1) implies that G contains 
Ks,s as a subgraph. Let P�−3 denote the collection of alternating paths of length �− 3. 
Since at most one edge of any cycle C ∈ C� does not cross the partition, C contains 
an alternating path of length � − 1. Let us take this alternating path and eliminate 
its first and last edge to obtain an alternating path of length � − 3, which we assign 
to the cycle C. Since there are at most nΔ�−3 alternating paths of length � − 3, the 
pigeonhole principle implies that there exists a path P ∈ P�−3 which is assigned to at 
least |C�| 

nΔ�−3 = Ωk,K,ε(d2) cycles of C�.
Let us denote the endpoints of this path by u and v. The number of ways to complete 

the path P to a cycle in C� is upper bounded by the number of edges between NG1(u)
and NG1(v). Both of these sets have size at most Δ ≤ Kd and the number of edges in 
NG1(u)∪NG1(v) is at least Ωk,K,ε(d2). On the other hand, if G is Ks,s-free, the Kővári-
Sós-Turán theorem implies that NG1(u)∪NG1(v) induces at most Os((2Kd)2−1/s) edges, 
which is not possible if d is large enough. Hence, we conclude that G contains Ks,s as a 
subgraph. �

We are now ready to prove the upper bound on the induced Turán number of the 
cube.

Proof of Proposition 1.5. Our goal is to find a pair of non-adjacent vertices u, v with a 
large number of induced paths of length three between them. Then, we find an alternating 
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u v

U V

Fig. 1. Illustration of the proof of Proposition 1.5. 

induced cycle of length 6 between the neighbourhoods of u and v, which suffices to find 
the graph of the cube as depicted in Fig. 1.

Let G be an n vertex graph with average degree at least Cn3/5 containing no Ks,s. 
Partition the vertex set of G into parts A,B such that at least half of the edges cross 
the partition, and let G1 be the graph of crossing edges. By Lemma 4.2 applied with 
α = 3

5 , G1 has a K-almost-regular induced subgraph H1 with m vertices and average 
degree d satisfying d ≥ C0m

3/5, where C0 = C
4 and K = 210. Let H be the subgraph of 

G induced on V (H1).
By Lemma 4.7, the graph H contains Ω(md3) alternating induced paths of length 

3. By the pigeonhole principle, there exists a pair of vertices u, v, which have at least 
Ω(md3/m2) = Ω(d3/m) induced alternating paths of length 3 between them. In partic-
ular, the vertices u and v are non-adjacent.

Let us denote the collection of these paths by P, the set of all neighbours of u on 
these paths by U and the set of neighbours of v on these paths by V . Since all paths are 
induced, U ∩N(v) = ∅ and V ∩N(u) = ∅. Moreover, the number of induced alternating 
paths of length 3 between u and v is equal to the number of edges between U and V , 
meaning that e(U, V ) = Ω(d3/m). On the other hand, the cardinality of U and V is at 
most Δ(H1) ≤ Kd.

We claim that if C0 is sufficiently large, one has e(U, V ) ≥ C0(|U | + |V |)4/3, which 
allows us to apply Theorem 4.1 with k = 3. To verify that there are sufficiently many 
edges between U and V , we recall that d ≥ C0m

3/5, which implies

e(U, V ) = Ω(d3/m) ≥ Ω
(
d4/3C

5/3
0

)
≥ C0 · (2Kd)4/3 ≥ C0(|U | + |V |)4/3.

Thus, one can find an alternating induced cycle of length 6 between U and V . But the 
vertices u and v, together with this cycle, form an induced copy of Q8, which completes 
the proof. �
5. Concluding remarks

In this paper, we proposed a framework which unifies the study of Turán-type prob-
lems with the study of induced subgraphs. We proved upper bounds on ex∗(n,H, s) with 
the same asymptotic behaviour as the best known upper bounds on the usual Turán 
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number ex(n,H) for several natural classes of bipartite graphs, e.g. when H is a tree, 
cycle or has degrees on one side bounded by k. Let us repeat our conjecture that a similar 
result should hold for every bipartite graph H.

Conjecture 1.1. For every connected bipartite graph H,

ex∗(n,H, s) ≤ CH(s) · ex(n,H)

for some CH(s) depending only on H and s.

An obvious difficulty in the resolution of this conjecture is that we do not even know 
the extremal numbers of most bipartite graphs. However, it is plausible that this can be 
circumvented by some clever argument. It would be also interesting to prove or disprove 
this conjecture in case H is replaced with a family of bipartite graphs H. As we discussed 
in the introduction, sharp bounds are known in case H is the family of subdivisions of a 
given graph H.

A curious problem left open is about the family of graphs of VC-dimension at most d, 
which is of great interest due to its connection to geometry. This family can be defined 
as the family of graphs containing no induced member of the following finite collection 
of graphs H. The collection H contains all graphs H with a partition A ∪ B such that 
|A| = d + 1, |B| = 2d+1, and for every X ⊂ A there is a unique b ∈ B such that b
is connected to all vertices in X, but no vertices in A \ X. For d ≥ 3, the best known 
upper bound is ex∗(n,H, s) = o(n2−1/d) due to Janzer and Pohoata [31]. However, we 
believe that ex∗(n,H, s) = O(n2−1/d−δ) should also hold for some δ = δ(d) > 0. It seems 
the main obstacle in proving this is that the best known bound for the ordinary Turán 
number is also ex(n,H) = o(n2−1/d), following from a result of Sudakov and Tomon [52] 
as well.
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