
ar
X

iv
:2

21
0.

03
86

4v
2 

 [
m

at
h.

C
O

] 
 7

 S
ep

 2
02

3

CONNECTIVITY OF OLD AND NEW MODELS OF FRIENDS-AND-STRANGERS

GRAPHS

ALEKSA MILOJEVIĆ

Abstract. In this paper, we investigate the connectivity of friends-and-strangers graphs, which were introduced by
Defant and Kravitz in 2020. We begin by considering friends-and-strangers graphs arising from two random graphs
and consider the threshold probability at which such graphs attain maximal connectivity. We slightly improve the
lower bounds on the threshold probabilities, thus disproving two conjectures of Alon, Defant and Kravitz. We also
improve the upper bound on the threshold probability in the case of random bipartite graphs, and obtain a tight
bound up to a factor of no(1). Further, we introduce a generalization of the notion of friends-and-strangers graphs
in which vertices of the starting graphs are allowed to have multiplicities and obtain generalizations of previous
results of Wilson and of Defant and Kravitz in this new setting.

1. Introduction

The main objects of study in this paper are the friends-and-strangers graphs, which were introduced by Defant and
Kravitz in 2020 [6].

Definition 1.1. Given two simple graphs X and Y on n vertices, we define the friends-and-strangers graph
FS(X,Y ) associated to X and Y as follows. Vertices of FS(X,Y ) are all bijections σ : V (X) → V (Y ), and the
edges are given by pairs of bijections σ and τ which satisfy σ = τ ◦ (a b), for some a, b ∈ V (X) with ab ∈ E(X)
and σ(a)σ(b) ∈ E(Y ). In this case, we say that σ and τ differ by a (X,Y )-friendly swap across the edge σ(a)σ(b)
(or, equivalently, across the edge ab).

The graph FS(X,Y ) has a natural interpretation, from which the name friends-and-strangers originated. Namely,
if we think of vertices of X as n different people and vertices of Y as n chairs, the bijections σ : V (X) → V (Y )
represent arrangements of people onto chairs, with exactly one person sitting on each chair. We say that a pair
of people are friends if they are adjacent in X , and that they are strangers otherwise. Then, a (X,Y )-friendly
swap in FS(X,Y ) corresponds to choosing two friends sitting on adjacent chairs and swapping their positions. It
is natural to ask whether any arrangement can be obtained from any other by a sequence of friendly swaps, which
corresponds to the graph FS(X,Y ) being connected.

The concept of friends-and-strangers graphs generalizes several previously considered problems, as noted in [1]
and [6]. For example, in the famous 15-puzzle numbers 1, . . . , 15 are placed on a 4 × 4 grid, leaving one cell
empty. Any number adjacent to the empty cell is allowed to move to the empty cell, and the goal is to reach a
predetermined configuration of numbers. In the context of friends-and-strangers graph, this puzzle corresponds to
FS(Star16,Grid4×4), the numbers 1, . . . , 15 corresponding to leaves of Star16 and the empty cell corresponding to
its center. Generalizing the 15-puzzle, in 1974 Wilson [13] characterized all graphs X for which FS(Starn, X) is
connected. Further, Stanley investigated the connected components of FS(Pathn,Pathn) in [12], while Reidys [11]
used the graph FS(Pathn, X) in order to investigate the acyclic orientations of X .

Defant and Kravitz [6] recognized that all of these results can be phrased in a unified framework, thus defining
the friends-and-strangers graphs. After proving some of the basic properties of these graphs, such as symmetry
FS(X,Y ) ∼= FS(Y,X) and the fact that FS(X,Y ) is bipartite, they went on to describe the connected components
of FS(X,Pathn) and FS(X,Cyclen) in terms of acyclic orientations of the complement X. As a consequence of the
structural description of FS(X,Cyclen), they showed that FS(X,Cyclen) is connected if and only if the complement
of X is a forest of trees of coprime sizes (Corollary 4.14 of [6]). Building on their work, Jeong [8] showed that, for
such graphs X , the friends-and-strangers graph FS(X,Y ) is still connected even if Cyclen is replaced by any other
biconnected graph Y . In a follow-up paper, Jeong [9] investigates the diameter of the connected components of
the graph FS(X,Y ). Finally, Defant, Dong, Lee, and Wei [5] extended the connectivity results to new classes of
graphs, such as spiders and dandelions. Although most of these results address structural questions, other aspects
of friends-and-strangers graphs are also worth investigating.

In a follow-up paper Alon, Defant, and Kravitz [1] initiated the study of extremal questions about friends-
and-strangers graphs. One of the main questions addressed in [1] asks what is the smallest integer dn such that
for all graphs X,Y whose minimum degrees satisfy δ(X), δ(Y ) ≥ dn, the friends-and-strangers graph FS(X,Y ) is
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connected. After Alon, Defant, and Kravitz [1] initially showed dn ≥ 3
5n−1, and conjectured dn = 3

5n+O(1), Ban-
gachev [2] settled this conjecture by showing that it is sufficient to have δ(X), δ(Y ) > n/2 and 2min{δ(X), δ(Y )}+
3max{δ(X), δ(Y )} ≥ 3n for FS(X,Y ) to be connected.

Further, the authors of [1] also introduced several probabilistic questions about the connectivity of FS(X,Y )
and the first half of our paper is dedicated to answering them. More precisely, if X,Y are random graphs, cho-
sen according to the Erdős-Rényi model G(n, p), Alon, Defant and Kravitz investigated the threshold probability
pgen at which FS(X,Y ) becomes connected with high probability. In their paper [1], they showed the inequalities

Ω(n−1/2) ≤ pgen ≤ n−1/2+o(1) and conjectured pgen = Θ(n−1/2). In this paper, we disprove this conjecture by

showing that pgen ≥ Ω(log1/2 n/n1/2), using a slightly tweaked version of the original argument from [1]. Asym-
metric variant of this question has also been investigated by Wang and Chen [14], who considered the connectivity
of FS(X,Y ) when X ∼ G(n, p1) and Y ∼ G(n, p2), for different probabilities p1, p2.

Finally, Alon, Defant, and Kravitz studied the case when X,Y ∼ G(Kn,n, p) are random bipartite graphs,
generated as edge-subgraphs of the balanced bipartite graph Kn,n in which every edge is included with probability
p, randomly and independently. When X,Y are bipartite graphs, a parity obstruction prevents FS(X,Y ) from
being connected and hence it is natural to ask for the threshold probability pbip at which the graph FS(X,Y )

has exactly two components with high probability. In [1], the authors showed that Ω(n−1/2) ≤ pbip ≤ n−0.3+o(1)

and conjectured pbip = Θ(n−1/2), as in the non-bipartite case. We tighten the upper bound by showing that

pbip ≤ n−1/2+o(1) using a modified version of the approach from the non-bipartite case, and we tighten the lower

bound to pbip ≥ Ω(log1/2 n/n1/2). These results close the polynomial gap between the upper and the lower bound

on the threshold probability in the bipartite case, bringing it down to a factor of no(1).
In Section 2 we present general properties of the FS(X,Y ), some of which reproduced from [1], [6]. Alongside

these, in Subsection 2.2 we prove the following strengthening of Propositions 3.1 and 4.1 from [1].

Theorem 1.2. There exists a constant ε > 0 with the following property. For a large positive integer n and

p < ε

(
log n

n

)1/2

,

if we choose random graphs X,Y ∼ G(n, p) independently, the resulting friends-and-strangers graph FS(X,Y ) has
an isolated vertex with high probability. The same statement holds if we choose X,Y to be random bipartite graphs
X,Y ∼ G(Kn,n, p).

As previously mentioned, Theorem 1.2 disproves Conjectures 7.1 and 7.2 from [1]. Our argument is very similar to
the argument given in [1], and the improvement comes from replacing the application of the general Sauer-Spencer
theorem by a stronger result of Bollobás, Janson and Scott [4] which applies only in the case of random graphs
(which is all we need). Then, in Section 3, we show the following strengthening of Theorem 1.2 from [1].

Theorem 1.3. Let n be a positive integer, and let X,Y be random bipartite graphs independently chosen from
G(Kn,n, p). If

(1) p ≥
exp

(
10(logn)4/5

)

n1/2
,

then FS(X,Y ) has two connected components with high probability.

Remark 1.4. If X and Y are bipartite graphs, Proposition 2.5 of [1] shows that FS(X,Y ) has at least two connected
components, due to a parity obstruction. Thus, Theorem 1.3 shows that if p satisfies (1), then the number of
connected components of FS(X,Y ) is the least possible. Furthermore, the parity obstruction implies that, if
FS(X,Y ) has exactly two connected components, they must have the same size. Thus, if FS(X,Y ) contains an
isolated vertex, in the regime of Theorem 1.2, it must have more than two connected components.

Together with Proposition 4.1 of [1], our result determines that p ∼ n−1/2 is the correct exponent for the threshold
probability in the case of X,Y ∼ G(Kn,n, p), which agrees with the threshold probability for FS(X,Y ) to be
connected when X,Y ∼ G(n, p). Although the proof of Theorem 1.3 follows the general strategy used by Alon,
Defant, and Kravitz in the non-bipartite setting, several new ideas are needed, including an additional result about
matchings in random bipartite graphs.

In Sections 4 and 5, we investigate a generalization of the friends-and-strangers graphs obtained by adding
multiplicities onto vertices. To understand and motivate this generalization, it is useful to adopt an alternative
view of friends-and-strangers graphs. We will think of bijections σ : V (X) → V (Y ) as assignments of labels
σ(v) ∈ V (Y ) to vertices v ∈ V (X). We will first present a motivating example based on the previous work of
Kornhauser, Miller, and Spirakis [10] and then give a formal definition.
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Following the early work of Wilson on understanding the graph FS(X, Starn), Kornhauser, Miller, and Spirakis
[10] considered the setting in which k different pebbles are placed on the graph with n vertices, and a pebble is
allowed to move to any empty vertex adjacent to its current position. In this setting, the result of Wilson [13]
can be interpreted as the case n = k + 1, when only one vertex is left empty. This scenario can be interpreted in
the language of friends-and-strangers graphs by setting X to be the underlying graph on which the pebbles move,
and setting the label graph Y to be the graph consisting of k pebbles connected to one blank vertex, in which the
blank label is allowed to appear n− k times on X . When n > k + 1, the problems of this type do not fit into the
framework of friends-and-strangers graphs anymore, since the empty vertices are allowed to repeat. Motivated by
this example, let us now formally introduce multiplicity friends-and-strangers graphs.

Definition 1.5. Let X,Y be simple graphs, on n and m vertices, respectively, and let m ≤ n. Fix a list of
multiplicities c = (c1, . . . , cm) ∈ Z

m
>0. We call simple graph Y together with the list of multiplicities c a multiplicity

graph, with total multiplicity
∑

y∈V (Y ) cy. If the total multiplicity of Y is n, we define a multiplicity friends-

and-strangers graph FSm(X,Y ) whose vertices are functions σ : V (X) → V (Y ), called arrangements , satisfying
|σ−1({y})| = cy for all y ∈ V (Y ). Further, arrangements σ and τ are adjacent in FSm(X,Y ) when σ = τ ◦ (a b),
where ab ∈ E(X) and σ(a)σ(b) ∈ E(Y ).

Remark 1.6. If the multiplicities of all vertices of Y are equal to 1, we recover the standard friends-and-strangers
graph FS(X,Y ). Further, note that the definition of FSm(X,Y ) is not symmetric in X,Y anymore.

Intuitively, the multiplicity cy of a label y ∈ V (Y ) can be understood as the number of times this label appears on
X . Alternatively, in the interpretation of FS(X,Y ) which involves friends sitting on chairs, the multiplicity cy can
be understood as the number of people from X sitting on a chair y ∈ V (Y ).

Multiplicity friends-and-strangers graphs were also considered in a more applied setting, by Brailovskaya, Gowri,
Yu, and Winfree [3]. They proposed a computation model in which various types of molecules are placed on a
surface modeled by a grid, and certain pairs of molecules are allowed to swap through a chemical reaction. It
turns out that their model can be understood in the language of friends-and-strangers graphs, the molecules types
corresponding to labels placed on the grid graph, with the edges between molecule types encoding which swaps are
chemically allowed.

In Section 4, we focus on investigating connectivity of the graphs FSm(X, Starn) and FSm(Starn, X), generalizing
previous work of Wilson. Before formally stating our results, let us present the precise statement of Wilson’s
theorem.

Theorem 1.7 ([13]). Let X be a simple graph on n ≥ 3 vertices. The graph FS(X, Starn) is connected if and only
if X is a biconnected graph, which is not bipartite, not a cycle of length at least 4 and not isomorphic to θ0, which
a specific graph on 7 vertices shown on Figure 1. Furthermore, if X is bipartite and biconnected, but it is not a
cycle of length at least 4 or θ0, then the graph FS(X, Starn) has exactly two connected components.

If a graph X satisfies all conditions of Wilson’s theorem for FS(X, Starn) to be connected, we say X is Wilsonian.

Figure 1. Diagram of the graph θ0.

Wilson’s theorem can be generalized in two possible ways, depending if the multiplicities are assigned to the graph
X or to the star Starn. Theorem 1.8 characterizes the sets of multiplicities that can be assigned to vertices of
X such that FSm(Starn, X) is still connected, while Theorem 1.9 does the same in the case the multiplicities are
assigned to the vertices of Starn. Theorem 1.9 was originally derived by Kornhauser, Miller, and Spirakis in 1984
[10], using algebraic methods. Since some of the details of their proof are omitted, we present a rigorous, purely
combinatorial proof of their results in the language of friends-and-strangers graphs.

Theorem 1.8. Let X be a connected multiplicity graph on the vertex set [m] with multiplicities c = (c1, . . . , cm) ∈
Z
m
>0. If X is Wilsonian, the graph FSm(Starn, X) is connected. If X is biconnected but not Wilsonian, the graph

FSm(Starn, X) is connected if and only if there exists a vertex v ∈ V (X) with multiplicity cv ≥ 2. Finally, if X is
not biconnected, the graph FSm(Starn, X) is connected if and only if cv ≥ 2 for all cut vertices v ∈ V (X).
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To state Theorem 1.9, we need to introduce the following notion. Given a simple graph X , a k-bridge in X is
a k-tuple of vertices a1, . . . , ak ∈ V (X) for which the following two conditions hold: ai+1 and ai−1 are the only
neighbors of ai, for i ∈ {2, . . . , n− 1}, and in X |V (X)−{a2,...,ak−1} the vertices a1 and ak lie in different connected
components, which both have size at least 2.

a1 a2 ak−1 ak
. . .

Figure 2. Diagram of a k-bridge consisting of vertices a1, . . . , ak.

Theorem 1.9 ([10]). Let Starm be a star on m > 2 vertices and let c ∈ Z
m
>0 be the list of multiplicities assigned

to vertices of Starm, with the center of Starm having multiplicity k ≥ 2. Let X be a connected simple graph on n
vertices, where n is the total multiplicity of Starm. If X does not contain a k-bridge and if X is not a cycle, the
graph FSm(X, Starm) is connected. If X contains a k-bridge, FSm(X, Starm) is disconnected. If X is a cycle, the
graph FSm(X, Starm) is connected if and only if m = 3 and one of the leaves of Starm has multiplicity 1.

In Section 5, we describe the structure of FSm(Pathn, X) and FSm(Cyclen, X) when X is a multiplicity graph.
In [6], Defant and Kravitz characterized the connected components of the graphs FS(Pathn, Y ),FS(Cyclen, Y ) in
terms of the acyclic orientations of the complement Y , using the notion of toric equivalence, which was initially
introduced by Develin, Macauley, and Reiner in [7]. Following this approach, we describe the connected components
of FSm(Pathn, X),FSm(Cyclen, X) in terms of the acyclic orientations of X ′, where X ′ denotes the blow-up of X
with respect to the multiplicity list c. We then use this description to characterize all graphs X and multiplicity
lists c for which FSm(Cyclen, X) is connected. Since formal definitions and exact statements of these results are
somewhat technical, we postpone them until Section 5.

In Section 6, we end by presenting another generalization of friends-and-strangers graphs, which allows both
graphs X and Y to have multiplicities, along with indicating possible further research directions.

2. Preliminaries

In this section, we present some of the basic tools we will use throughout the paper. We begin by presenting
two results used to show friends-and-strangers graphs are connected, and then show two typical obstructions to
connectivity of these graphs. Together with these obstructions, we discuss the proof of Theorem 1.2 which shows
that certain random friends-and-strangers graphs have isolated vertices. Finally, we will conclude by introducing
the lift of a multiplicity graph, a notion that proves to be key in understanding this generalization of friends-and-
strangers graphs.

2.1. Connectivity of FS(X,Y ). One of the fundamental notions Alon, Defant, and Kravitz use in [1] to show their
results about connectivity of friends-and-strangers graphs are exchangeable pairs. More precisely, for a bijection
σ : V (X) → V (Y ), we say that a pair of vertices u, v ∈ V (Y ) is (X,Y )-exchangeable from σ if there exists a sequence
of (X,Y )-friendly swaps which transforms the arrangement σ into (u v) ◦ σ. Note that this sequence might consist
of more than one swap. Since FS(X,Y ) is symmetric in X and Y , one might define the notion of exchangeability
for pairs of vertices u′, v′ ∈ V (X) in the symmetric fashion. The following result, stated as Proposition 2.8 in [1],
shows how exchangeability can be used to establish connectivity of FS(X,Y ).

Proposition 2.1 ([1]). Let X,Y, Ỹ be n-vertex graphs and suppose Y ⊆ Ỹ . Suppose that for every edge uv of Ỹ and
every bijection σ : V (X) → V (Y ) satisfying σ−1(u)σ−1(v) ∈ E(X), the vertices u and v are (X,Y )-exchangeable

from σ. Then, the connected components of FS(X,Y ) and the connected components of FS(X, Ỹ ) have the same

vertex sets. In particular, the number of connected components of FS(X, Ỹ ) is equal to the number of connected
components of FS(X,Y ).

Note that Proposition 2.1 allows us to translate a global question about connectedness of FS(X,Y ) to a local question
about exchangeability of certain pairs of vertices, and therefore it will be very useful throughout the paper. Since
the graph FS(X,Kn) is connected whenever X is connected, the following special case of Proposition 2.1, stated

as Lemma 2.9 in [1], is particularly interesting. Setting Ỹ = Kn shows that, for a connected graph X , the graph
FS(X,Y ) is connected if every pair of adjacent vertices in X is (X,Y )-exchangeable from any arrangement σ.

In the setting of multiplicity graphs, the notion (X,Y )-exchangeability generalizes with almost the same def-
inition. The only difference is that exchangeability can only be defined for pairs of vertices of X . Formally, we
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say that a pair of vertices u′, v′ ∈ V (X) is (X,Y )-exchangeable from a bijection σ if there exists a sequence of
(X,Y )-friendly swaps transforming σ into σ ◦ (u′ v′). It is not hard to see that the analogue of Proposition 2.1
holds even in the setting of multiplicity graphs.

The following useful result, first observed by Bangachev in [2], relates the notion of exchangeability from two
different arrangements, σ and σ′.

Proposition 2.2 ([2]). Suppose that σ, σ′ ∈ V (FSm(X,Y )) are in the same connected component of FSm(X,Y )
and assume that the sequence of swaps transforming σ into σ′ never involves vertices u, v ∈ V (X). Then, if the
pair of vertices u, v is (X,Y )-exchangeable from σ, it is also (X,Y )-exchangeable from σ′.

Proof. Suppose that Σ is the sequence of (X,Y )-friendly swaps which transform σ into σ′, and let Σ−1 be the
reverse sequence which transforms σ′ into σ. Since none of the swaps in Σ involve u, v, it is simple to see that Σ
also transforms σ ◦ (u v) into σ′ ◦ (u v). Given that the pairs (σ′, σ), (σ, σ ◦ (u v)) and (σ ◦ (u v), σ′ ◦ (u v)) are in
the same connected component of FSm(X,Y ), we conclude that the pair u, v is (X,Y )-exchangeable from σ′. �

2.2. Obstructions to connectivity of friends-and-strangers graphs. We will now present two typical ob-
structions to connectivity of FS(X,Y ). The first one occurs when both X and Y have cut vertices, where a cut
vertex is defined as vertex whose removal disconnects the graph. The obstruction presented in the following propo-
sition is a direct generalization of Proposition 2.6 from [6] to the setting with multiplicities. Since the proof is
completely analogous to the original, we omit it.

Proposition 2.3. Let X be a connected graph on m ≥ 3 vertices with a list of multiplicities c ∈ Z
m
>0, which has

total multiplicity n, and let Y be a graph on n vertices. Suppose x0 ∈ V (X), y0 ∈ V (Y ) are cut vertices and that
cx0 = 1. Also, let X1, . . . , Xr be the connected components of X produced by removing x0, and let Y1, . . . , Ys be the
connected components of Y produced by removing y0. Let M be the set of r × s matrices with nonnegative integer
entries in which the i-th row sums to |Xi| and the j-th column sums to |Yj |. Then, FSm(Y,X) has at least |M |
connected components.

In case Y has at least 3 vertices, it is not hard to see that |M | ≥ 2, and therefore Proposition 2.3 implies that the
graph FSm(Y,X) is disconnected.

Let us now present the second obstruction to connectivity which will be important in this paper. It was mentioned
in the introduction that if X,Y are bipartite graphs, the graph FS(X,Y ) has at least two connected components,
due to a parity obstruction. Moreover, if the graph FS(X,Y ) has exactly two connected components, there is a
simple way to test whether two arrangements are in the same connected component, which is described by the
following proposition. This description will be particularly useful in Section 3, where we consider random bipartite
graphs X and Y . This proposition was presented in [1] as Proposition 2.5 and it is equivalent to Proposition 2.7 of
[6].

Proposition 2.4 ([1], [6]). Let X and Y be bipartite graphs on n vertices with vertex bipartitions V (X) = AX

⊔
BX

and V (Y ) = AY

⊔
BY . If the bijections σ and τ are in the same connected component of FS(X,Y ), then sgn(σ−1◦τ)

has the same parity as |τ(AX ) ∩AY | − |σ(AX) ∩ AY |.

Here, the sign of the permutation π, denoted by sgn(π) denotes the parity of the number of inversions in the
permutation π. Finally, we present the proof of Theorem 1.2 closely the approach from [1].

Proof of Theorem 1.2. We begin by focusing on the non-bipartite case. Given two n-vertex graphsX,Y , an isolated
vertex in the graph FS(X,Y ) corresponds to a bijection σ : V (X) → V (Y ) with the property that σ(u)σ(v) 6∈ E(Y )
for all edges uv ∈ E(X). In other words, an isolated vertex of FS(X,Y ) corresponds to a packing of graphs X,Y .
Theorem 1 from the paper of Bollobás, Janson and Scott [4] gives a criterion for the existence of such packing, when
X and Y are random graphs generated from G(n, p). More precisely, plugging in k = 2 and p = q into this theorem
gives the following statement: there exists a constant ε > 0 such that for p2 ≤ ε logn/n and independent random
graphsX,Y ∼ G(n, p), there is a packing of X,Y inKn with high probability. In other words, for p < (ε logn/n)1/2

the friends-and-strangers graph FS(X,Y ) contains an isolated vertex.
The case of bipartite graphs is almost identical. Namely, random bipartite graphs on 2n vertices can be generated

by taking G(2n, p) and deleting all edges occurring among the first n vertices and among the last n vertices. As
long as p < (ε log 2n/2n)1/2, two independent graphs from G(2n, p) can be packed with high probability, and hence
the same holds after deleting the edges. This completes the proof of Theorem 1.2. �

Remark 2.5. Since the bounds of Theorem 1 in [4] are tight, this proof actually determines exactly the threshold
probability for the existence of isolated vertices in randomly generated friends-and-strangers graphs.
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2.3. Lift of a multiplicity graph. Finally, the key tool for understanding the connectivity of multiplicity friends-
and-strangers graphs is the lift of a multiplicity graph.

Definition 2.6. Let Y be a graph on m vertices and let c = (c1, . . . , cm) ∈ Z
m
>0 be its multiplicity list. We define

the lift of Y to be a simple graph Y ′ on
∑

v∈V (Y ) cv vertices which has a vertex partition of Y ′, V (Y ′) =
⊔

v∈V (Y ) Sv,

with the following properties:

• Y ′|Sv is a clique of size cv for all vertices v ∈ V (Y ), and
• vertices u′ ∈ Su, v

′ ∈ Sv are adjacent in Y ′ if and only if u, v are adjacent in Y .

In other words, the lift Y ′ is a blow-up of the graph Y , in which the vertex v is replaced with a clique of size cv.
Note that defining the lift of the graph also defines a natural projection map πY from Y ′ to Y which maps all
elements of Sv to v.

To see why considering the lift of a graph is useful, let us describe an equivalence relation on the vertices of
FS(X,Y ′), along with a way to describe the structure of FSm(X,Y ) using FS(X,Y ′). Throughout this discussion,
we assume a multiplicity graph Y is given, with total capacity n, together with a simple graph X on n vertices.

For a finite set A, let SA denote the group of all permutations ρ : A → A, with the composition operation.
Furthermore, for a multiplicity graph Y , let us define SY to be the group of permutations ρ : V (Y ′) → V (Y ′) which
satisfy ρ(Sv) = Sv for all cliques Sv. In other words, SY is the set of those permutations that permute the vertices
of Y ′ only within their cliques. Then, we define an equivalence relation ≡ on the bijections from V (X) to V (Y ′)
given by σ1 ≡ σ2 if σ1 = ρ ◦ σ2 for some ρ ∈ SY . Equivalently, one might say that σ1 ≡ σ2 if πY ◦ σ1 = πY ◦ σ2, as
functions from V (X) to V (Y ).

This equivalence relation induces a natural quotient operation on the graph FS(X,Y ′), which identifies all vertices
equivalent under ≡ and assigns an edge between distinct equivalence classes [σ]≡, [τ ]≡ precisely when there exist
representatives σ0 ∈ [σ]≡, τ0 ∈ [τ ]≡ which are adjacent in FS(X,Y ′). We denote the arising graph by FS(X,Y ′)/≡

Proposition 2.7. Let X be a simple graph on n vertices Y be a multiplicity graph with total multiplicity n. Then,
the quotient FS(X,Y ′)/≡ is isomorphic to the graph FSm(X,Y ).

Before passing to the formal proof, let us illustrate this statement with an example.

Example 2.8. Suppose that X = Path3, with vertices numbered 1, 2, 3, and Y is a multiplicity graph on two
adjacent vertices, with multiplicities 1 and 2. The lift Y ′ is a triangle and the graphs FSm(X,Y ) and FS(X,Y ′) are
represented schematically in Figure 3.

1 2, 3

2 1, 3

3 1, 2

1
2

3
1

3

2

2
1

3
2

3

1

3
1

2
3

2

1

Figure 3. Schematic representation of graphs FSm(X,Y ) on the left and FS(X,Y ′) on the right.

The red contours represent vertices of the graphs FSm(X,Y ) and FS(X,Y ′). Within each red vertex, we see the
arrangement of labels 1, 2, 3 from V (X) onto the vertices of Y or Y ′ corresponding to it. Note that the vertices of
Y ′ are colored in green and blue in order to keep track which vertex of Y they are coming from.
In this example, SY consists of only two permutations, and the induced equivalence relation ≡ has equivalence
classes of size 2. These equivalence classes are precisely the pairs of vertices of FS(X,Y ′) which are horizontally
next to each other — they differ precisely by exchanging the labels of the two green vertices.

Proof of Proposition 2.7. Let us note that every equivalence class of bijections [σ]≡ can be associated with a function
f[σ]≡ = πY ◦ σ from V (X) to V (Y ), which is independent of the representative σ ∈ [σ]≡. The isomorphism of
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FS(X,Y ′)/≡ and FSm(X,Y ) is given by the correspondence [σ]≡ 7→ f[σ]≡ . In the rest of the proof, we check that
this correspondence preserves the edges of FS(X,Y ′)/≡.

We begin by showing that if [σ]≡ and [τ ]≡ are distinct adjacent vertices of FS(X,Y ′)/ ≡, then f[σ]≡ and
f[τ ]≡ are also adjacent in FSm(X,Y ). By definition of the quotient graph FS(X,Y ′), we have representatives
σ0 ∈ [σ]≡, τ0 ∈ [τ ]≡ differing by a (X,Y ′)-friendly swap along uXvX ∈ E(X), i.e. σ0 = τ0 ◦ (uX vX). Since
σ0 and τ0 are in distinct equivalence classes, the vertices σ0(uX), σ0(vX) ∈ V (Y ′) are adjacent, but not in the
same clique in the clique decomposition of Y ′. Therefore, the vertices πY ◦ σ0(uX), πY ◦ σ0(vX) are distinct and
adjacent in Y , meaning that swapping vertices uX , vX is a (X,Y )-friendly swap for the function f[σ]≡ . Since
f[σ]≡ = f[τ ]≡ ◦ (uX vX), the vertices f[σ]≡ and f[τ ]≡ are adjacent in FS(X,Y ).

To show the converse statement, suppose f[σ]≡ and f[τ ]≡ are vertices of FS(X,Y ) which differ by a (X,Y )-friendly
swap of adjacent labels uX , vX ∈ V (X) along the edge uY vY ∈ E(Y ), where uY , vY are vertices of Y . For any
representative σ0 ∈ [σ]≡, we have σ0(uX) ∈ SuY and σ0(vX) ∈ SvY , which means that σ0(uX)σ0(vX) is an edge of
Y ′. Therefore, the swap σ0 7→ σ0 ◦ (uX vX) is a (X,Y ′)-friendly swap. Noting that σ0 ◦ (uX vX) ≡ τ , we conclude
that there exists a (X,Y ′)-friendly swap mapping between representatives of [σ]≡ and [τ ]≡. This completes the
proof of Proposition 2.7. �

Since the main focus of this work is connectivity of FSm(X,Y ), the following simple corollary gives us an efficient
criterion for determining the connectivity of FSm(X,Y ) in terms of connectivity of FS(X,Y ′).

Corollary 2.9. Let X be a simple graph on n vertices and let Y be a multiplicity graph of total multiplicity n. If
the graph FS(X,Y ′) is connected, then so is FSm(X,Y ).

Proof. It is immediate to see that the quotient FS(X,Y ′)/≡ is connected whenever FS(X,Y ′) is connected. Together
with Proposition 2.7, this implies connectedness of FSm(X,Y ). �

In fact, we can establish an even more precise description of the connected components of FSm(X,Y ) just based
on FS(X,Y ′), which will be very important in Section 5.

Corollary 2.10. Let X be a simple graph on n vertices and let Y be a multiplicity graph of total multiplicity n. Let
E0 = {στ |σ, τ ∈ V (FS(X,Y ′)) and σ ≡ τ} and let G be the graph obtained by adding the edges of E0 to FS(X,Y ′).
Then, the connected components of FSm(X,Y ) have the same vertex sets as projections of connected components of
G under the map σ 7→ πY ◦ σ.

Proof. By Proposition 2.7, we may consider the graph FS(X,Y ′)/≡ instead of FSm(X,Y ), with the map σ 7→ [σ]≡
replacing σ 7→ πY ◦ σ. Let us denote the projection σ 7→ [σ]≡ by π≡.

Note that the partition of V (G) into connected components is coarser than the partition into equivalence
classes [σ]≡, and therefore different connected components have disjoint images under π≡. Since the map π≡ :
V (FS(X,Y ′)) → V (FS(X,Y ′)/ ≡) is surjective, to complete the proof it suffices to show that, for an arbitrary
connected component C of the graph G, (FS(X,Y ′)/≡) |π≡(C) is a connected component of FS(X,Y ′)/≡.

We begin by showing there are no outgoing edges from π≡(C). Suppose the contrary, and let [σ]≡[τ ]≡ be
an edge of FS(X,Y ′)/ ≡ with [σ]≡ ∈ π≡(C), [τ ]≡ /∈ π≡(C). By definition of FS(X,Y ′)/ ≡, this means there
exist representatives σ0 ∈ [σ]≡, τ0 ∈ [τ ]≡ with σ0τ0 ∈ E(FS(X,Y ′)). Since the partition of V (G) into connected
components is coarser than the partition into equivalence classes, we must have σ0 ∈ C and τ0 /∈ C, which is a
contradiction to the fact that C is a connected component of G.

On the other hand, by definition of FS(X,Y ′)/ ≡, the map π≡ preserves adjacencies between nonequivalent
bijections, which means that (FS(X,Y ′)/≡) |π≡(C) is a connected subgraph of FS(X,Y ′)/≡. This completes the
proof of Corollary 2.10. �

3. Random bipartite graphs

3.1. General proof strategy. The main goal of this section is to prove Theorem 1.3, following the proof strategy
presented in [1]. We begin by introducing the terminology used in the proof and presenting a high-level overview
of the proof strategy.

The first step of the proof is to reduce the question about connectivity of the graph FS(X,Y ) to a local problem
about exchangeability of certain pairs of vertices. More precisely, we begin by reducing Theorem 1.3 to Proposi-
tion 3.1, which mirrors Proposition 4.5 of [1].

Proposition 3.1. Let X,Y be independently chosen random graphs in G(Kn,n, p), where p satisfies (1), as in
Theorem 1.3. Then, the following statement holds with high probability: for any arrangement σ : V (X) → V (Y )
and any two vertices u0, v0 in different partite sets of Y whose preimages σ−1(u0), σ

−1(v0) are in different partite
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sets of X, one has that u0 and v0 are (X̃, Y )-exchangeable from σ, where X̃ denotes the graph X with edge
σ−1(u0)σ

−1(v0) added.

The following argument, reproduced from [1], shows how Proposition 3.1 implies Theorem 1.3. Intuitively, this
argument should be thought of as the analogue of Proposition 2.1 in the bipartite setting.

Proof of Theorem 1.3 from Proposition 3.1. We use Proposition 2.8 from [1], which states the following. Let X,Y

and Ỹ be graphs on [n], having Y ⊆ Ỹ . Suppose that for every edge uv ∈ E(Ỹ ) and every σ : V (X) → V (Y ) with
σ−1(u)σ−1(v) ∈ E(X) the vertices u, v are (X,Y )-exchangeable from σ. Then the number of connected components

of FS(X,Y ) is the same as the number of connected components of FS(X, Ỹ ).
Let us begin by applying Proposition 3.1 to conclude that, with high probability, any two vertices u0, v0 in

different partite sets of Y satisfying σ−1(u0)σ
−1(v0) ∈ E(X) are (X,Y )-exchangeable, as X̃ = X . Hence, by setting

Ỹ = Kn,n in Proposition 2.8 of [1], we conclude that FS(X,Y ) has the same number of connected components as
FS(X,Kn,n). Since FS(X,Kn,n) ∼= FS(Kn,n, X), it suffices to show that FS(Kn,n, X) has two connected components
with high probability.

Swapping the roles of X and Y in Proposition 3.1, we can also say that, with high probability, for any two

vertices u′0, v
′
0 in different partite sets of X , u′0 and v′0 are (Ỹ , X)-exchangeable from any τ : V (Y ) → V (X), where

Ỹ is the graph Y with τ−1(u0)τ
−1(v0) added. Since Ỹ ⊂ Kn,n, any two vertices u′0, v

′
0 in different partite sets of

X are (Kn,n, X)-exchangeable.
Therefore, by Proposition 2.8 of [1], we conclude that FS(Kn,n, X) has the same number of connected components

as FS(Kn,n,Kn,n), which is two, as shown by Proposition 2.6 of [1]. Hence, we conclude that the graph we started
with, FS(X,Y ), also has two connected components with high probability, completing the proof. �

To prove Proposition 3.1, we combine the methods used in [1] to tackle the bipartite and non-bipartite cases.
The approach for proving Proposition 3.1 relies on constructing sparse bipartite graphs G,H on the vertex set
[m] ∪ {u, v}, in which the vertices u and v are (G,H)-exchangeable starting from the identity arrangement. Since
the construction is involved and contains many details, we postpone the details until Subsections 3.2 and 3.3. Still,
we will point out the properties of G,H relevant for the proof.

After constructing G and H , our next objective will be to show the following statement: With high probability,

for every arrangement σ and vertices u0, v0 from Proposition 3.1, there exist embeddings ψG : V (G) → V (X̃)
and ψH : V (H) → V (Y ) respecting the arrangement σ in the sense that σ ◦ ψG = ψH ◦ Id and having ψH(u) =
u0, ψH(v) = v0. In this context, an embedding is merely an injective map which preserves adjacencies. This
objective will be accomplished in Subsections 3.4 and 3.5.

Intuitively, finding embeddings ψG, ψH corresponds to finding subgraphs of X and Y which are isomorphic to
G and H and are mapped to each other under σ. Proposition 3.2 shows how embeddings ψG, ψH can be used to
ensure that u0, v0 are (X,Y )-exchangeable.

Proposition 3.2. Let X,Y be bipartite graphs with the vertex set [n], and let σ : V (X) → V (Y ) be an arbitrary
arrangement. Further, let G,H be bipartite graphs with the vertex set [m] ∪ {u, v}, such that u and v are (G,H)-
exchangeable starting from the identity arrangement Id : V (G) → V (H). Suppose that there exist embeddings

ψG : V (G) → V (X̃) and ψH : V (H) → V (Y ) with σ ◦ ψG = ψH ◦ Id and ψH(u) = u0, ψH(v) = v0. Then, u0 and

v0 are (X̃, Y )-exchangeable from σ.

Proof. Let the sequence of (G,H)-friendly swaps transforming Id into (u v) be a1b1, a2b2, . . . , akbk. Then, the
sequence of swaps ψH(a1)ψH(b1), . . . , ψH(ak)ψH(bk) takes σ to (u0 v0) ◦ σ. Properties of ψG, ψH guarantee that

all of these swaps are (X̃, Y )-friendly, and hence (u0, v0) are (X̃, Y )-exchangeable. �

Finally, let us describe the strategy we use to construct the embeddings ψG : V (G) → V (X) and ψH : V (H) →
V (Y ). The idea behind this step of the proof is to choose large disjoint sets V1, . . . , Vm ⊆ V (Y ) and look for a
m-tuple of vertices (ψH(1), . . . , ψH(m)) ∈ V1 × · · · × Vm which will, together with vertices u0 and v0, span a copy
of H in Y and whose preimages under σ span a copy of G in X . To formalize this idea, we need to introduce the
following terminology, which initially appeared in [1].

Let G′ = G|[m] and H ′ = H |[m] be graphs G,H with vertices u, v removed, and let V (G′) = AG′

⊔
BG′ ,

V (H ′) = AH′

⊔
BH′ be the respective bipartitions. Also, assume that X and Y have bipartitions V (X) = AX

⊔
BX

and V (Y ) = AY

⊔
BY . For a fixed arrangement σ : V (X) → V (Y ), we call disjoint sets V1, . . . , Vm ⊆ V (Y )

admissible for σ and (G′, H ′) if the following two conditions are satisfied:

• Vi ⊆ AY for i ∈ AH′ and Vi ⊆ BY if i ∈ BH′ , and
• σ−1(Vi) ⊆ AX for i ∈ AG′ and σ−1(Vi) ⊆ BX for i ∈ BG′ .
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We say that the pair (G′, H ′) is bipartite-embeddable in (X,Y ) with respect to admissible sets V1, . . . , Vm and an
arrangement σ if there exist embeddings ψG : V (G′) → V (X), ψH : V (H ′) → V (Y ) such that ψH(i) ∈ Vi and
σ◦ψG = ψH ◦ Id. Moreover, if q1, . . . , qm are fixed positive integers satisfying q1+ · · ·+qm ≤ n, we say that (G′, H ′)
is (q1, . . . , qm)-bipartite-embeddable in (X,Y ) if (G′, H ′) is bipartite-embeddable in (X,Y ) for any admissible choice
of V1, . . . , Vm and σ satisfying |Vi| = qi for all i ∈ [m].

The concept of (q1, . . . , qm)-bipartite-embeddability is useful for the following reasons. On one hand, Lemma
4.2 of [1] gives an simple condition on (q1, . . . , qm) which ensures that the pair (G′, H ′) is (q1, . . . , qm)-bipartite-
embeddable in X,Y with high probability. Since each of q1, . . . , qm must be somewhat large in order to satisfy
this condition, we cannot directly infer the existence of embeddings ψG, ψH , since Proposition 3.2 requires that
ψH(u) = u0 and ψH(v) = v0.

Hence, we need to use the fact (G′, H ′) is (q1, . . . , qm)-biparite-embeddable in the following way. The idea is
to choose Vi ⊆ NY (u0) for all i ∈ NH(u) and Vi ⊆ σ(NX(u′0)) for all i ∈ NG(u), since this ensures ψH(i)u0 ∈
E(Y ), ψG(i)u

′
0 ∈ E(X) (we require similar conditions for i ∈ NG(v), NH(v)). However, since the sets V1, . . . , Vm

must be admissible, we must simultaneously ensure Vi ⊆ AY for all i ∈ AH and Vi ⊆ σ(AX ) for i ∈ AG. Hence,
based on how the pairs of sets σ(NX(u′0)), AY and NY (u0), σ(AX) intersect, we have have four cases. To describe
them, we need the notion of majority-mapping, introduced in [1].

For an arrangement σ : V (X) → V (Y ) and vertices u0, v0 having preimages u′0 = σ−1(u0) and v
′
0 = σ−1(v0), we

say that σ majority-maps NX(u′0) to AY if |σ(NX(u′0))∩AY | ≥
1
2 |NX(u′0)|. This definition is naturally generalized

if we replace AY by BY or if we replace σ and Y by σ−1 and X . We adopt the convention of naming AX and AY

so that u′0 ∈ AX and u0 ∈ AY . Based on where σ and σ−1 majority-maps NX(u′0), NX(v′0), NY (u0), NY (v0), we
have four essentially different cases.1

(C1): σ majority-maps N(u′0) and N(v′0) to BY , and σ
−1 majority-maps N(u0) and N(v0) to AX .

(C2): σ majority-maps N(u′0) and N(v′0) to BY , and σ
−1 majority-maps N(u0) to AX and N(v0) to BX .

(C3): σ majority-maps N(u′0) to BY and N(v′0) to AY , and σ
−1 majority-maps N(u0) to AX and N(v0) to BX .

(C4): σ majority-maps N(u′0) to BY and N(v′0) to AY , and σ
−1 majority-maps N(u0) to BX and N(v0) to AX .

As we will see, all other cases can be reduced to those four by applying symmetry. These cases seem to be merely
a technical requirement of our argument and it might be possible to apply some additional symmetries, or slightly
alter the argument, in order to further reduce the number of cases.

In anticipation of these four cases, we will construct four pairs of graphs (G(ρ), H(ρ)), for ρ ∈ {1, 2, 3, 4}, in which
sets NG(u), NH(u), NG(v), NH(v) are disjoint and satisfy the following properties, corresponding to the cases (C1),
(C2), (C3), (C4).

(C1): NG(1)(u), NG(1)(v) ⊆ BH(1) , NH(1)(u), NH(1)(v) ⊆ AG(1) .
(C2): NG(2)(u), NG(2)(v) ⊆ BH(2) , NH(2)(u) ⊆ AG(2) , NH(2)(v) ⊆ BG(2) .
(C3): NG(3)(u) ⊆ AH(3) , NG(3)(v) ⊆ BH(3) , NH(3)(u) ⊆ AG(3) , NH(3)(v) ⊆ BG(3) .
(C4): NG(4)(u) ⊆ AH(4) , NG(4)(v) ⊆ BH(4) , NH(4)(u) ⊆ BG(4) , NH(4)(v) ⊆ AG(4) .

Before concluding this subsection, let us present the plan for this section. In Subsection 3.2, we provide all details for
constructing G(ρ), H(ρ). Then, in Subsection 3.3, we show that u, v are indeed (G(ρ), H(ρ))-exchangeable from the
identity permutation. Further, Subsection 3.4 uses the lemma of Alon, Defant, and Kravitz that, for an appropriate
choice of q1, . . . qm, the graphs (G(ρ), H(ρ)) are, with high probability, (q1, . . . , qm)-bipartite-embeddable in X,Y .
Then Subsection 3.5 shows how to use (q1, . . . , qm)-bipartite-embeddability in order to construct embeddings ψG, ψH

satisfying the conditions of Proposition 3.2. Finally, in Subsection 3.6 we complete the proof by putting together
all ingredients.

3.2. Construction of G(ρ) and H(ρ). In this subsection, we describe the details of the construction of graphs
G(ρ), H(ρ). We set the number of vertices of G(ρ), H(ρ) to be m(ρ) + 2, where m(1) = m(2) is the smallest integer
larger than (log n)4/5 divisible by 8 and m(3) = m(4) = m(1) + 3.

Throughout this subsection, we will simplify the notation G(ρ), H(ρ),m(ρ) and only write G,H,m, where the
index ρ will be understood. As the constructions in the four cases will be essentially the same, we present them
together and note where the differences arise.

Let ℓ = ⌊ 1
4m

1/4⌋ + ǫ, where ǫ ∈ {0, . . . , 7} is chosen so that 8|ℓ . In what follows, we will only deal with
asymptotics as m,n→ ∞, and hence we will omit the floor symbols and ǫ.

1Although these four cases are reminiscent of the four cases in the proof of Proposition 4.5 of [1], there is a slight difference. Namely,
[1] seems to miss the subtle difference between cases (C3) and (C4) presented here, and accounts for both of them in the case (IV).
Further, [1] does not make use of the symmetry σ 7→ σ−1 which allows us to reduce their cases (II) and (III) to a single case (C2).
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As previously noted, the vertex set of G,H will be [m] ∪ {u, v}. In the cases (C1) and (C2), we denote the
elements of [m] by

x1, . . . , xℓ, y1, . . . , yℓ, z1,1, . . . , zℓ,k, t1, . . . , ts, s1, s2, s3, r1, r2, r3, w,

where k = 2ℓ and s = m− 7− ℓ(k + 2). In the cases (C3) and (C4), we denote the elements of [m] by

x1, . . . , xℓ, y1, . . . , yℓ, z1,1, . . . , zℓ,k, z̃1,1, . . . , z̃3,k, t1, . . . , ts, s1, s2, s3, r1, r2, r3, w,

where s = m− 7− ℓ(k + 2)− 3k.
Introducing such notation for elements of [m] primarily serves to distinguish the neighbors of u and v from

other vertices of the graph. For example, we will have NG(u) = S = {s1, s2, s3}, NG(v) = R = {r1, r2, r3},
NH(u) = X = {x1, . . . , xℓ}, NH(v) = Y = {y1, . . . , yℓ}. For the sake of completeness, we also introduce notation
Z = {z1,1, . . . , zℓ,k} in the cases (C1) and (C2), and Z = {z1,1, . . . , zℓ,k, z̃1,1, . . . , z̃3,k} in the cases (C3) and (C4).
We will also assume that G,H have bipartitions V (G) = AG

⊔
BG and V (H) = AH

⊔
BH , with u ∈ AG, AH and

v ∈ BG, BH .
We begin by describing the construction of H , since is much simpler than that of G. In the cases (C1) and (C2),

we let H have a bipartiton AH , BH , with

AH = {u, y1, . . . , yℓ, w}, BH = {v, z1,1, . . . , zℓ,k, x1, . . . , xℓ, t1, . . . , ts, s1, s2, s3, r1, r2, r3}

and the edges {uxi : i ∈ [ℓ]}, {vyi : i ∈ [ℓ]}, {yi, zi,j : i ∈ [ℓ], j ∈ [k]}, {wa : a ∈ BH}. In the cases (C3) and (C4),
we let H have a bipartiton AH , BH , with

AH = {u, y1, . . . , yℓ, w, s1, s2, s3}, BH = {v, z1,1, . . . , z̃3,k, x1, . . . , xℓ, t1, . . . , ts, r1, r2, r3}

and the edges {uxi : i ∈ [ℓ]}, {vyi : i ∈ [ℓ]}, {yi, zi,j : i ∈ [ℓ], j ∈ [k]}, {wa : a ∈ BH}, {si, z̃i,j : i ∈ [3], j ∈ [k]}.
Figure 4 illustrates this.
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Figure 4. Diagrams of graphs H , for ρ = 1, 2 on the left and for ρ = 3, 4 on the right.

Now, we describe the construction of G. Set g to be the smallest integer greater than m3/4/4 that is divisible by
4. In the cases (C1) and (C2), let G consist of a big cycle containing all vertices but u, v, y1, . . . , yℓ. In the cases
(C3) and (C4), on top of these, the big cycle does not contain z̃1,1, z̃2,1, z̃3,1. As the big cycle is of even length, it
is bipartite. We also introduce a notational convention that, if a, b are vertices of the big cycle of G, [a, b] denotes
clockwise interval from a to b, including all vertices between a and b as well as the endpoints. Further, we denote
the clockwise distance between a and b by d(a, b).

As previously noted, the vertices u, v are adjacent to s1, s2, s3 and r1, r2, r3, respectively. We arrange s1, s2, s3
and r1, r2, r3 so that d(si, ri) = ℓ′ = ℓ − 1, d(s2, s1) = d(s3, s2) = m/4. Since 2|d(si, sj) and 2 6 |d(si, rj), we
conclude that s1, s2, s3 lie in the same bipartite set, and that r1, r2, r3 lie in the other partite set of G. Let the
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partite set of G containing s1, s2, s3 be BG, and let the other partite set be AG. Since u ∈ AG, v ∈ BG, even after
adding edges usi and vrj , the graph G is still bipartite.

Let S0 be the set of vertices of the big cycle that are in one of the intervals [si, ri], or whose neighbors on the
big cycle are either si or ri. For each vertex of a ∈ S0, we will add two edges to vertices of the interval [r3, s2].
We add these edges so that the graph remains bipartite and so that all of their endpoints and s2, r3 have pairwise
distance at least m/(10ℓ) ≥ g. The reason for adding these edges is to ensure that G remain Wilsonian even upon
removing a set of vertices from the intervals [si, ri].

We also place the vertices x1, . . . , xℓ to the interval [r3, s2], making sure that their distance from each of the
edge endpoints discussed in the previous paragraph is at least m/(20ℓ). Additionally, in the cases (C1), (C2) and
(C3) we ensure xi ∈ AG for i ∈ [ℓ] and in the case (C4) we ensure xi ∈ BG. Finally, we ensure that the distance
between all xi and s2 or r3 is at least g. Since d(r3, s2) = m/4 − ℓ′, the interval [r3, s2] is long enough for this to
be done.

Similarly, we place z1,1, . . . , zℓ,k, w (and also z̃i,j, i ∈ [3], j ∈ [2, k] in the cases 3 and 4) onto [r2, s1], ensuring
that the distance between any two of them is at least m/(10ℓk) and distance between any of them to s1 is at least
g.

The vertices yi will be adjacent to exactly two vertices on the big cycle — we denote them t2i−1 and t2i. Let us
set d(t2i−1, t2i) = g and d(t2i, t2i+1) = k′ = k− 2. Since both g and k are even, this means all ti for i ∈ {1, . . . , 2ℓ}
are in the same partite set of G, meaning that all vertices yi are in the other partite set of G. Further, we set
d(s1, t1) = k − 1 in the cases (C2), (C3), while d(s1, t1) = k − 2 in the cases (C1), (C4). These choices ensure that
Y ⊆ AG in the cases (C1), (C4) and that Y ⊆ BG in the cases (C2), (C3) for i ∈ [ℓ].

Finally, we ensure that s1 is adjacent to a vertex q whose distance from is t2ℓ is k − 2 in the cases (C1), (C4)
and k − 1 in the cases (C2), (C3). In either case, we have q ∈ AG, and hence G remains bipartite after adding the
edge s1q.

In the cases (C3) and (C4), the graph G has additional vertices z̃1,1, z̃2,1, z̃3,1, z̃1,2 outside the big cycle. Let

t̃1, . . . , t̃6 be vertices of the big cycle satisfying d(t̃2i−1, si) = k′ = k − 2, d(t̃2i, t̃2i−1) = g, for i = 1, 2, 3. Then,

we add edges t̃1z̃1,1, z̃1,1t̃2, t̃3z̃2,1, z̃2,1t̃4, t̃5z̃3,1, z̃3,1t̃6 to the graph G. It is simple to check that all of these edges
run between different partite sets of G, which completes the description of the graphs G in all the cases. The
constructions are illustrated in Figure 5.

u v

s1

s2

s3

r1

r2

r3

t1

t2

y1

t3

t4

y2

...
t2ℓ−1

t2ℓ

yℓ

q

z1,1

zℓ,k

. .
.

x1

xℓ
. . .

g

g

g

k′

ℓ′

ℓ′

ℓ′

k′

u v

s1

s2

s3

r1

r2

r3

t1

t2

y1

t3

t4

y2

...
t2ℓ−1

t2ℓ

yℓ

q

t̃1

t̃2

z̃1,1

z1,1

zℓ,k

. .
.

x1

xℓ . . .

t̃3

t̃4
z̃2,1

t̃5
t̃6

z̃3,1

g

g

g

k′

ℓ′

ℓ′

ℓ′

k′

Figure 5. Construction of graphs G(1) and G(2) on the left and G(3) and G(4) on the right

Since the above construction describes the graphs G fully, we will now enumerate several important properties of
these graphs which will be used in the subsequent proofs. These properties should also help in understanding why
the graphs G,H have been constructed in this way.

(P1): The graph G|[m] has only one cycle shorter than g − this cycle contains the vertices [s1, t1], y1, [t2, t3],
y2, . . . , yℓ, [t2ℓ, q], s1 and has length k · (l + 1)− 2 ≥ lk.
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(P2): The smallest distance, in the graph G between any two elements of the set X ∪ Y ∪ Z ∪ S ∪ R is at least
ℓ′ = ℓ− 1.

(P3): Let P = {y1, . . . , yℓ, u, v}∪
⋃3

i=1[si, ri] in the cases (C1) and (C2) and P = {y1, . . . , yℓ, u, v}∪
⋃3

i=1[si, ri]∪
{z̃1,1, z̃2,1, z̃3,1} in the cases (C3) and (C4). If S1 is a subset of P , we note that G|V (G)\S1

is Wilsonian. In
other words, removing a vertices of P from G does not change the fact G is Wilsonian.

(P4): The number of edges of G is |E(G)| ≤ |V (G)| + 4ℓ+ 15 ≤ |V (G)| + 5ℓ. Moreover, for any J ⊆ V (G), the
subgraph G|J has at most |J |+ 5ℓ edges.

3.3. Showing that u and v are (G(ρ), H(ρ))-exchangeable from the identity permutation. Now, we will
prove the most important property of graphs (G(ρ), H(ρ)) — that the vertices u and v are (G(ρ), H(ρ))-exchangeable
starting from the identity permutation.

Lemma 3.3. For ρ ∈ {1, 2}, the vertices u and v are (G(ρ), H(ρ))-exchangeable from the identity permutation.

Proof. Again, for simplicity of notation, we omit the index (ρ) in this proof. The general strategy of the proof of
this lemma hinges on repeated applications of Wilson’s theorem, exploiting the fact that H |{w}∪BH−{v} is a star
centered at w.

Let us fix two vertices a1 and a2 in the same partite set of G, and let τ : V (G) → V (H) be an arbitrary
arrangement. If τ ′ : V (G) → V (H) is any arrangement differing from τ only on elements of τ−1({w}∪BH−{v}), and
if the graphG|τ−1({w}∪BH−{v}) is Wilsonian and contains a1, a2, then τ is in the same connected component as either
τ ′ or τ ′◦(a1 a2). To see why this is true, note that the arrangements τ ′ and τ ′◦(a1 a2) are not in the same connected
component, due to Proposition 2.4. Since Wilson’s theorem implies the graph FS(G|τ−1({w}∪BH−{v}), H{w}∪BH−{v})
has exactly two connected components, one of τ ′ and τ ′ ◦ (a1 a2) must be in the same connected component as τ .

We will the above apply simple fact with a1, a2 being vertices satisfying d(a1, q) = 4 and d(a2, q) = 2. The
fact that G|τ−1({w}∪BH−{v}) is Wilsonian will follow from τ−1(AH − {w} ∪ {v}) ⊆ P and property (P3) of the

graph G. Hence, whenever we can ensure that the vertices of τ−1(AH − {w} ∪ {v}) all lie in P , we can obtain any
arrangement of the remaining vertices, up to possibly transposing a1 and a2 (we will omit this clause in the future,
but it will be understood whenever we apply Wilson’s theorem).

We will think of arrangements τ : V (G) → V (H) as placing the labels corresponding to vertices of H onto the
vertices of G so that the label p ∈ V (H) is placed onto the vertex τ−1(p) ∈ V (G). Moreover, when we refer to
the (G,H)-friendly swap ab, it will be understood the swap involves labels a, b ∈ V (H). Finally, the reader is
encouraged to draw out the following steps which transform Id into (u v).

Let τ1 be an arrangement in which τ−1
1 (z1,1), . . . , τ

−1
1 (z1,k−1) appear consecutively in clockwise order on [s1, t1].

By Wilson’s theorem, there exists a sequence of (G,H)-friendly swaps transforming Id to τ1.
Let τ2 be an arrangement obtained from τ1 by performing swaps y1z1,k−1, y1z1,k−2, . . . , y1z1,1. Note that τ2

satisfies τ−1
2 (y1) = s1, and that it can be obtained from Id by a sequence of (G,H)-friendly swaps. In essence, we

can think of this sequence as moving the label y1 ∈ V (H) from the vertex y1 ∈ V (G) to the vertex s1 ∈ V (G).
Let τ3 be the arrangement which differs from τ2 only on values τ−1

2 ({z2,1, . . . , z2,k−1}) ∪ {y1} ∪ [t2, t3], and in

which the vertices τ−1
3 (z2,2), . . . , τ

−1
3 (z2,k−1) appear consecutively in clockwise order on [t2, t3] and which satisfies

τ−1
3 (z2,1) = y1. By Wilson’s theorem, there exists a sequence of (G,H)-friendly swaps transforming τ2 to τ3.
Let τ4 be an arrangement obtained from τ3 by performing swaps y2z2,k−1, y2z2,k−2, . . . , y2z2,1. Note that τ4

satisfies τ−1
4 (y2) = y1. Intuitively, τ4 is obtained from τ2 by performing a sequence of swaps which moves the label

y2 ∈ V (H) from the vertex y2 ∈ V (G) to the vertex y1 ∈ V (G).
Repeatedly applying sequences of swaps analogous to those taking y1 to s1 or y2 to y1, one can arrive at an

arrangement τ5 in which vertices τ−1
5 (y1), . . . , τ

−1
5 (yℓ) appear consecutively in clockwise order on [s1, r1].

Let τ6 be the arrangement obtained from τ5 by performing the swaps vyℓ, . . . , vy1 which satisfies τ−1
6 (v) = s1

and τ−1
6 (yℓ) = v.

Let τ7 be the arrangement which differs from τ6 only on values τ−1
6 ({x1, . . . , xl}) ∪ [s3, r3], and in which the

vertices τ−1
6 (x1), . . . , τ

−1
6 (xℓ) appear consecutively in clockwise order on [s3, r3]. By Wilson’s theorem, there exists

a sequence of (G,H)-friendly swaps transforming τ6 to τ7.
Let τ8 be the arrangement obtained from τ7 by performing the swaps ux1, . . . , uxℓ−1 which satisfies τ−1

8 (x1) = u
and τ−1

8 (u) is adjacent to the vertex r3 ∈ V (G).
Let τ9 = (zℓ,1 x1) ◦ τ8. By Wilson’s theorem, there exists a sequence of (G,H)-friendly swaps transforming τ8

to τ9. The arrangement τ9 satisfies τ−1
9 (zℓ,1) = u.

Let τ10 be the arrangement arising from τ9 after performing swaps yℓzℓ,1, yℓv. In τ10, the vertices τ
−1
10 (yℓ), τ

−1
10 (y1),

τ−1
10 (y2), . . . , τ

−1
10 (yℓ−1) appear consecutively in clockwise order on [s1, r1]. Also, τ

−1
10 (v) = u.
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Let τ11 be the arrangement which differs from τ10 only on values τ−1
10 ({x1, x2}) ∪ {r3, v}, and which satisfies

τ−1
11 (x1) = r3, τ

−1
11 (x2) = v. By Wilson’s theorem, there exists a sequence of (G,H)-friendly swaps transforming

τ10 to τ11.
Let τ12 be the arrangement obtained from τ7 by performing the swap ux1, satisfying τ12(u) = v and τ12(v) = u.

It remains to show that all other labels can be returned to their original positions. By applying the reverse of
the process which brought the labels y1, . . . , yℓ−1 onto the vertices [s1, r1], it is simple to see that there exists an
arrangement τ13 which satisfies τ13|{u,v} = τ12|{u,v} and τ13(yi) = yi for i ∈ [l− 1].

Let τ14 be the arrangement which differs from τ13 only on values τ−1
13 ({zℓ,1, . . . , zℓ,k−1}) ∪ [t2ℓ, q] ∪ {yℓ}, and in

which vertices τ−1
14 (zℓ,k−1), . . . , τ

−1
14 (zℓ,2) appear consecutively in clockwise order on [t2ℓ, q] and τ

−1
14 (zℓ,1) = yℓ. By

Wilson’s theorem, there exists a sequence of (G,H)-friendly swaps transforming τ13 to τ14.
Let τ15 be the arrangement obtained from τ14 by performing the swaps yℓzℓ,k−1, . . . , yℓzℓ,1 which satisfies

τ−1
15 (yℓ) = yℓ.
Finally, note that τ−1

15 fixes all elements of AH − {w} ∪ {v}, except u and v which are swapped. Hence, using
Wilson’s theorem, we conclude that there exists a sequence of (G,H)-friendly swaps transforming τ14 to (u v).
However, note that we actually obtain τ15 = (u v) only up to possibly transposing a1 and a2, even though we did
not explicitly state this after every application of Wilson’s theorem in the proof.

Hence, we either have τ15 = (u v) or τ15 = (u v)◦ (a1 a2). However, note that it is not possible that we obtained
the latter arrangement, starting from the identity permutation, due to parity constraints. Therefore, we conclude
τ15 = (u v) and the proof is complete. �

Lemma 3.4. For ρ ∈ {3, 4}, the vertices u and v are (G(ρ), H(ρ))-exchangeable from the identity permutation.

Proof. In the cases (C3) and (C4), the identity permutation satisfies AH − {w} ∪ {v} ⊆ P , and hence there exists
a sequence of (G(ρ), H(ρ))-friendly swaps taking Id to τ0 where τ0 has the property that τ−1

0 (z̃1,1), . . . , τ
−1
0 (z̃1,k−2)

are consecutively arranged in counterclockwise order on the big cycle, τ−1
0 (z̃1,1) being the neighbor of s1 and

τ−1
0 (z̃1,k−2) = t̃1. Moreover, assume τ−1

0 (z̃1,k−1) = z̃1,1. Using Wilson’s theorem as described above, we conclude

that τ0 can be obtained from Id by a sequence of (G(ρ), H(ρ))-friendly swaps. If we consider the sequence of swaps
s1z̃1,1, s1z̃1,2, . . . , s1z̃1,k−1 applied on τ0, we obtain an arrangement τ1 having τ1(s1) = z̃1,1 and τ1(z̃1,1) = s1.

Finally, using one more application of Wilson’s theorem, there exists a sequence of (G(ρ), H(ρ))-friendly swaps
which transforms τ1 into an arrangement τ2 = (s1 z̃1,1). Applying the same argument to s2, s3, we obtain an
arrangement τ3 which transposes elements si and z̃i,1, and leaves all other elements fixed. Since the elements u
and v were not involved in any of the swaps transforming Id to τ3, it is not hard to see that the same sequence of
swaps transforms (u v) to τ3 ◦ (u v).

The important thing to note now is that eliminating s1, s2, s3 from H(ρ) and z̃1,1, z̃2,1, z̃3,1 from G(ρ) essentially
reduces to the case ρ ∈ {1, 2}. Let us now explain why more formally.

Note that G(ρ) − {z̃1,1, z̃2,1, z̃3,1} for ρ ∈ {3, 4} is isomorphic, as an unlabeled graph, to G(5−ρ), and that

H(ρ) − {s1, s2, s3} for ρ ∈ {3, 4} is isomorphic, again in the unlabeled sense, to H(5−ρ). In other words, there
exist embeddings ϕG : G(5−ρ) → G(ρ) and ϕH : H(5−ρ) → H(ρ) which map between the arrangement Id on
(G(5−ρ), H(5−ρ)) and arrangement τ3 on (G(ρ), H(ρ)). Alternatively, we may say that τ3 ◦ ϕG = ϕH ◦ Id and
ϕH(u) = u, ϕH(v) = v. Since Lemma 3.3 shows that u and v are (G(5−ρ), H(5−ρ))-exchangeable from Id, using
Proposition 3.2 translates to u and v being (G(ρ), H(ρ))-exchangeable from τ3. Combining the sequences obtaining
transformations Id → τ3, τ3 → τ3 ◦ (u v) and τ3 ◦ (u v) → (u v), we conclude that Id and (u v) are connected in
the friends-and-strangers graph FS(G(ρ), H(ρ)), which implies u, v are (G(ρ), H(ρ))-exchangeable from Id. �

3.4. Showing that G(ρ), H(ρ) are (q1, . . . , qm)-bipartite-embeddable in X,Y . In this section, we will prove
that, with high probability, the graphs G(ρ)|[m], H

(ρ)|[m] are (q1, . . . , qm)-bipartite-embeddable in (X,Y ) with high
probability. The main technical tool which allows us to show this is Lemma 4.2 from [1], which states the following.

Lemma 3.5 ([1]). Let G′ and H ′ be bipartite graphs on the vertex set [m] with bipartitions V (G′) = AG′

⊔
BG′ ,

V (H ′) = AH′

⊔
BH′ . Let n, q1, . . . , qm be positive integers such that Q := q1+ · · ·+qm ≤ 2n. For every set J ⊆ [m],

let β(J) = |E(G′|J)|+ |E(H ′|J)|. Choose p ∈ [0, 1], and let X,Y be independently chosen random bipartite graphs
in G(Kn,n, p). Suppose that for every J ⊆ [m] with β(J) ≥ 1 we have

(2) pβ(J)
∏

j∈J

qj ≥ 3 · 2m+1Q log(2n).

Then, the probability that the pair (G′, H ′) is (q1, . . . , qm)-bipartite-embeddable in (X,Y ) is at least 1− (2n)−Q.
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In Lemma 3.6, we check that condition (2) indeed holds for G(ρ)|[m], H
(ρ)|[m] under the appropriate choice of values

q1, . . . , qm. Let Γ = NH(u) ∪NH(v) ∪NG(u) ∪NG(v) = X ∪ Y ∪ S ∪ R.

Lemma 3.6. Let X,Y be random bipartite graphs, independently chosen from G(Kn,n, p), where p satisfies (1).
Moreover, suppose that qi =

n
2m for i ∈ [m] − Γ and qi =

pn
3ℓ for i ∈ Γ. Then, for any ρ ∈ {1, 2, 3, 4}, the pair of

graphs (G(ρ)|[m], H
(ρ)|[m]) is (q1, . . . , qm)-bipartite-embeddable in (X,Y ) with high probability.

Proof. This proof is inspired by the proof of Lemma 3.4 in [1], with the main difference coming only from the
complexity of our construction. To simplify notation, let G′ = G(ρ)|[m], H

′ = H(ρ)|[m], and Q =
∑m

i=1 qi. Using
Lemma 3.5, the statement about embeddability of (G′, H ′) reduces to checking that

pβ(J)
∏

j∈J

qj ≥ 3 · 2m+1Q log(2n),

for all J with β(J) ≥ 1. Letting γ(J) = |Γ ∩ J | and using Q ≤ n, the above inequality reduces to

pβ(J)
(pn
3ℓ

)γ(J) ( n

2m

)|J|−γ(J)

≥ 3 · 2m+1n log 2n.(3)

Since 2m > 3ℓ, one can bound the left hand side of equation (3) in the following way:

pβ(J)
(pn
3ℓ

)γ(J) ( n

2m

)|J|−γ(J)

≥ pβ(J)+γ(J)−2|J|

(
p2n

2m

)|J|(
2m

3ℓ

)γ(J)

≥ pβ(J)+γ(J)−2|J|

(
p2n

2m

)|J|

We will now bound β(J) and γ(J) by analyzing the structure of the graphs G′ and H ′. Recall that H ′ has a
bipartition V (H ′) = AH′

⊔
BH′ , where AH′ = AH − {u} and BH′ = BH − {v}. With this is mind, we can

express the number of edges of H ′|J as the sum of degrees of vertices in one of the partite classes, |E(H ′|J)| =∑
a∈J∩AH′

|NH′(a) ∩ J |. Expanding out this expression gives:

|E(H ′|J)| = 1w∈J |NH′(w) ∩ J |+
∑

a∈AH′−{w}

|NH′(a) ∩ J | ≤ 1w∈J |J ∩BH′ |+ |J ∩ Z|,(4)

where 1w∈J denotes the indicator variable which equals 1 when w ∈ J and 0 otherwise.
Let Γ′ = (X ∪Z ∪S ∪R)∩BH′ , and define γ′(J) = |J ∩Γ′| and α(J) = |E(G′|J )|. Then, the bound (4) applied

to give:

β(J) + γ(J)− 2|J | = (|E(G′|J )|+ |E(H ′|J)|) + (γ′(J) + |J ∩ (AH′ − {w})| − |J ∩ Z|)− 2|J |

≤ α(J) + 1w∈J |J ∩BH′ |+ γ′(J) + |J ∩ (AH′ − {w})| − 2|J |

≤ α(J) + γ′(J)− |J | − 1w∈J .(5)

We now consider five cases and apply the above bounds in resolving them.

Case 1: Suppose that |J | ≥ g. Since |E(G′)| ≤ |V (G′)| + 5ℓ, by the property (P4) of the graphs G′ and since G′

is a connected graph, we also have α(J) = |E(G′|J )| ≤ |J |+ 5ℓ. Therefore, one can apply the bound (5) and show
(3) in the following way:

pβ(J)+γ(J)−2|J|

(
p2n

2m

)|J|

≥ pα(J)+γ′(J)−|J|

(
p2n

2m

)|J|

≥ p5ℓ+|Γ′|

(
exp

(
20(logn)4/5

)

2m

)g

≥ n−(6ℓ+k(ℓ+3)+6)/2 exp
(
5(logn)4/5m3/4 − g log(2m)

)

≥ exp

(
5(logn)7/5 −

3

2
ℓ2 logn

)
≥ exp

(
3(logn)7/5

)
≫ 3 · 2m+1n log(2n).

Case 2: Suppose that |J | < g and γ′(J) > c(J), where c(J) is the number of connected components of J . Since
there exists exactly one cycle of length less than g in G, we must have α(J) ≤ |J | − c(J) + 1. On the other hand,
since the distance between any two elements of Γ′ is at least ℓ′ = ℓ− 1, we have |J | ≥ (γ′(J) − c(J))ℓ′. Therefore

pβ(J)+γ(J)−2|J|

(
p2n

2m

)|J|

≥ pα(J)+γ′(J)−|J|

(
p2n

2m

)|J|

≥ pγ
′(J)−c(J)+1

(
exp

(
20 logn4/5

)

2m

)(γ′(J)−c(J))ℓ′

≥ n−1/2
(
n−1/2 exp(4 logn)

)γ′(J)−c(J)

≥ n3 ≫ 3 · 2m+1n log(2n).



15

Case 3: Suppose that γ′(J) ≤ c(J) and ℓ ≤ |J | < g. As discussed in the previous case, we have α(J) ≤ |J |−c(J)+1,
which implies

pβ(J)+γ(J)−2|J|

(
p2n

2m

)|J|

≥ pα(J)+γ′(J)−|J|

(
p2n

2m

)|J|

≥ pγ
′(J)−c(J)+1

(
exp

(
20(logn)4/5

)

2m

)ℓ

≥ n−1/2 exp
(
5 logn− (logn)1/5 log(2m)

)
≥ n4 ≫ 3 · 2m+1n log(2n).

Case 4: Suppose that γ′(J) ≤ c(J), |J | < ℓ and w ∈ J . Since |J | is smaller than the girth of G′, G′|J must
be a forest and therefore α(J) = |J | − c(J). Also, as β(J) ≥ 1, J must induce at least one edge in G′ or H ′,
and hence |J | ≥ 2. Finally, since elements of (Γ′ ∪ {w}) are at mutual distance at least ℓ′, we conclude that every
connected component of G′|J contains at most one element of Γ′∪{w}, implying γ′(J)+1 = |J∩(Γ′∪{w})| ≤ c(J).
Combining these facts, one has:

pβ(J)+γ(J)−2|J|

(
p2n

2m

)|J|

≥ pα(J)+γ′(J)−|J|−1

(
p2n

2m

)|J|

≥ pγ
′(J)−c(J)−1

(
p2n

2m

)|J|

≥ p−2

(
p2n

2m

)2

=
p2n2

(2m)2
≥

exp
(
20(logn)4/5

)
n

4m2
≫ 3 · 2m+1n log 2n.

Case 5: Suppose that γ′(J) ≤ c(J), |J | < ℓ, and w 6∈ J . As in the previous case, we infer that J is a forest, and
that α(J) = |J | − c(J). If J induces no edges on H ′ we have

β(J) + γ(J)− 2|J | = α(J) + γ(J)− 2|J | = γ(J)− c(J)− |J |.

Note that every two elements of Γ are at distance at least ℓ′ = ℓ− 1, which gives γ(J) ≤ c(J), and hence

pβ(J)+γ(J)−2|J|

(
p2n

2m

)|J|

≥ p−2

(
p2n

2m

)2

=
p2n2

(2m)2

≥
exp

(
20(logn)4/5

)
n

4m2
≫ 3 · 2m+1n log 2n.

In the case that J induces an edge in H ′ one can use the fact that w 6∈ J to improve the bound (4)

β(J) + γ(J)− 2|J | = α(J) + γ(J) + |J ∩ Z| − 2|J |

= γ′(J)− c(J) + |J ∩ AH′ | − |J | = γ′(J)− c(J)− |J ∩BH′ |.

Since |J | < ℓ and the distance between any two vertices of (AH′ −{w})∪Z is at least ℓ′ = ℓ− 1, we conclude that
c(J) ≥ |J ∩ (AH′ ∪Z)|. Noting that J intersects both AH′ and BH′ , we see that c(J) ≥ γ′(J)+1 and |J ∩BH′ | ≥ 1.
Hence, γ′(J)− c(J)− |J ∩BH′ | ≤ −2 and so

pβ(J)+γ(J)−2|J|

(
p2n

2m

)|J|

≥ p−2

(
p2n

2m

)2

=
p2n2

(2m)2

≥
exp

(
20(logn)4/5

)
n

4m2
≫ 3 · 2m+1n log 2n,

which completes the proof of Lemma 3.6. �

3.5. Constructing ψG and ψH . Before showing how to construct ψG, ψH and completing the proof, we have one
additional step. Namely, in the construction of ψG, ψH , we will need that the arrangement σ sends approximately
the same number of vertices from AX to AY and BY . More precisely, we say that an arrangement σ : V (X) → V (Y )
is balanced if 2n/3 ≥ |σ(AX) ∩ AY | ≥ n/3. Otherwise, σ is unbalanced . Although it may seem at first that this
definition is not symmetric in AX and BX , the symmetry comes from the fact that |σ(AX) ∩AY | = n− |σ(BX) ∩
AY | = |σ(BX)∩BY | = n−|σ(AX)∩BY |. Together with Proposition 2.2, the following result essentially shows that
we may, without loss of generality, assume that we are exchanging u0 and v0 starting from a balanced arrangement.
Although Proposition 3.7 is stated as a result about exchangeability in various arrangements, the underlying
argument is really about large matchings in random bipartite graphs.

Proposition 3.7. Let X,Y be random bipartite graphs, independently chosen form G(Kn,n, p). With high prob-
ability, the following statement holds: for any unbalanced arrangement σ : V (X) → V (Y ) and any vertices
u0, v0 ∈ V (Y ), there exists a sequence of (X,Y )-friendly swaps, not involving the vertices u0 and v0, which trans-
forms the arrangement σ into a balanced arrangement σ′ : V (X) → V (Y ).
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Proof. The first step of the proof will be to show that for a fixed permutation σ : V (X) → V (Y ), the required

sequence exists with probability at least 1− e−Ω(p2n2). After showing this, a simple application of the union bound
will suffice to complete the proof.

Having fixed an unbalanced arrangement σ : V (X) → V (Y ), we will consider the case when |σ(AX )∩AY | > 2n/3.
Note that the other case, when |σ(AX ) ∩AY | < n/3, can be reduced to the first one by exchanging labels AY and
BY . The main idea of the proof will be to show that, with high probability, there exist many pairs of vertices
a ∈ AY , b ∈ BY with σ(a) ∈ AX , σ(b) ∈ BX which can be swapped using a (X,Y )-friendly swap, since performing
roughly n/3 such swaps will transform σ into a balanced arrangement σ′. We will then show that choosing many
such disjoint pairs (a, b) corresponds to finding a large matching in a certain random bipartite graph, which will in
turn be accomplished using König’s theorem.

Before passing to the proof, let us introduce some additional notation. Define CY = σ(AX) ∩ AY and DY =
σ(BX) ∩ BY , and let CX , DX be the preimages of these sets under σ, CX = σ−1(CY ), DX = σ−1(DY ). Also, let
us denote the size of each of the sets CX , DX , CY , DY by n′, where n′ ≥ 2n/3.

For a fixed permutation σ : V (X) → V (Y ) and random X,Y ∼ G(n, p), we construct a bipartite graph Z with
the bipartition V (Z) = CY

⊔
DY such that cd ∈ E(Z) if and only if cd ∈ E(Y ) and σ−1(c)σ−1(d) ∈ E(X). Since

σ is fixed, the events cd ∈ E(Z) are mutually independent for all c ∈ CY , d ∈ DY , and they occur with probability
p2. Hence, Z has a distribution of a random bipartite graph G(Kn′,n′ , p2).

Suppose that Z has a matchingM = {c1d1, . . . , ckdk} of size k > n/2. Assuming u0, v0 6∈ {c1, d1, . . . , cn/3, dn/3},
we see that performing the (X,Y )-friendly swaps c1d1, . . . , cn/3dn/3 gives a sequence of swaps which transforms σ
into a balanced arrangement σ′. Hence, it suffices to show that the size of the maximum matching of Z, denoted

by ν(Z), is at least n/2 with probability at least 1− e−Ω(p2n2).
By König’s theorem, the size of the largest matching in Z is equal to the size of the smallest vertex cover of Z,

which is denoted by τ(Z). Therefore, we will begin by bounding the probability that a fixed set V , of size n/2, is
a vertex cover of Z. Note that a set V covers at most |V |n′ edges of the graph Kn′,n′ . Hence, the probability that
V is a vertex cover of Z is equal to the probability that none of the remaining n′(n′ − |V |) edges exist in E(Z). In
other words, we have;

P[V is a vertex cover of Z] ≤ (1− p2)n
′(n′−|V |) ≤ e−Ω(p2n2).

Hence, the probability that there exists a vertex cover of Z of size ≤ n/2 is at most

P[ν(Z) ≤ n/2] ≤

(
n

n/2

)
e−Ω(p2n2) ≤ 2ne−Ω(p2n2) ≤ e−Ω(p2n2).

The above computation shows that the probability that the required sequence exists for a fixed choice of σ is at

least 1 − e−Ω(p2n2). Hence, a union bound over all choices of σ shows that the statement of the proposition fails

with probability ≤ n!e−Ω(p2n2) = o(1), as n→ ∞. This completes the proof of the Proposition 3.7. �

The last prerequisite we need for the proof is the way to construct ψG and ψH when G(ρ)|[m], H
(ρ)|[m] are

(q1, . . . , qm)-bipartite-embeddable in X,Y .

Proposition 3.8. Let X,Y be random bipartite graphs, independently chosen from G(Kn,n, p). With high prob-
ability, the following statement holds: For any two vertices u0, v0 ∈ V (Y ) satisfying u0v0 ∈ E(Y ), σ−1(u0) ∈
AX , σ

−1(v0) ∈ AY and every balanced σ : V (X) → V (Y ) satisfying the assumptions of the case (Cρ), for

ρ ∈ {1, 2, 3, 4}, there exist embeddings ψG : V (G(ρ)) → V (X̃) and ψH : V (H(ρ)) → V (Y ) with σ ◦ ψG = ψH ◦ Id
and ψH(u) = u0, ψH(v) = v0.

Proof. The main idea of the proof is to carefully choose the sets V1, . . . , Vm such that the adjacency of the corre-
sponding vertices of X,Y with u0, v0, u

′
0, v

′
0 is guaranteed by the choice of V1, . . . , Vm. For the sake of concreteness,

we will describe in detail how these sets are chosen only in the case ρ = 1, as the choices are made in a completely
analogous way in all other cases.

From the condition σ ◦ ψG = ψH ◦ Id and ψH(u) = u0, ψH(v) = v0, we must have ψG(u) = σ−1(u0) = u′0 and
ψG(v) = v′0.

Since p ≫ logn
n , we have that, with high probability, all vertices of X,Y have degrees at least 2pn/3, which we

assume to be the case. For i ∈ NG(1)(u), we choose Vi of size
pn
3ℓ to lie in σ(NX(u′0)) ∩ BY , and for i ∈ NG(1)(v),

we choose Vi of size
pn
3ℓ to lie in σ(NX(v′0)) ∩BY . By assumption σ majority-maps NX(u′0) and NX(v′0) to BY , so

the sizes of the intersections σ(NX(u′0)) ∩BY and σ(NX(v′0)) ∩BY are at least pn
3 . Hence, one can indeed choose

l disjoint sets Vi of size
pn
3ℓ satisfying the required properties.

Similarly, for i ∈ NH(1)(u) we choose a set Vi ⊂ NY (u0) ∩ σ(AX) of size pn
3ℓ and for i ∈ NH(1)(v) we choose

Vi ⊂ NY (v)∩σ(AX ), again of size pn
3ℓ . For vertices i ∈ [m] which are not neighbors of u, v in either G(1) or H(1), say
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for i ∈ AG∩AH −Γ, we choose a set Vi ⊂ σ(AX)∩AY , of size
n
4m . Since σ is balanced, we have |σ(AX)∩AY | ≥ n/3

and hence the sets Vi for i ∈ AG ∩ AH − Γ can be chosen to be disjoint from all previously chosen sets. The sets
corresponding to vertices i ∈ AG ∩BH , BG ∩ AH , BG ∩BH are chosen analogously.

From our choice of V1, . . . , Vm it is clear that this list is admissible, and that |Vi| = qi, where qi is defined in the
statement of Lemma 3.6. Hence, by Lemma 3.6, we conclude there are embeddings ψG : [m] → V (X), ψH : [m] →
V (Y ). By the choice of Vi, it is clear that ψH(i) is adjacent to u0 whenever iu ∈ E(H), etc. Furthermore, since

σ−1(u0)σ
−1(v0) ∈ E(X̃), we conclude that setting ψH(u) = u0, ψH(v) = v0, ψG(u) = σ−1(u0), ψG(v) = σ−1(v0)

extends ψG, ψH to the embeddings ψG : V (G(ρ)) → V (X̃) and ψH : V (H(ρ)) → V (Y ), thus completing the
proof. �

3.6. Completing the proof. Having presented all prerequisites in the previous sections, we now put everything
together and present the whole proof of Proposition 3.1, which implies Theorem 1.3.

Proof of Proposition 3.1. Since, with high probability, any arrangement σ can be transformed into a balanced
arrangement without ever swapping u0, v0, Proposition 2.2 shows that it suffices to check the statement of Proposi-
tion 3.1 only for balanced arrangements σ. If σ satisfies the assumptions of the case (Cρ), for some ρ ∈ {1, 2, 3, 4},
combining Proposition 3.8 and Lemma 3.6, one concludes that, with high probability, there exist embeddings
ψG : V (G(ρ)) → V (X), ψH : V (H(ρ)) → V (Y ) with the properties required by Proposition 3.2. Since Lemmas 3.3
and 3.4 show that the vertices u, v ∈ V (H(ρ)) are (G(ρ), H(ρ))-exchangeable, Proposition 3.2 applies to show that

u0 and v0 are indeed (X̃, Y )-exchangeble, which completes the discussion when σ satisfies the conditions of one of
the cases (Cρ).

If σ does not satisfy any of these cases, a symmetry argument reduces to the previously discussed case. There
are three essential symmetries we use. Firstly, swapping the names of u0 and v0 does not affect the fact that these
vertices are (X,Y )-exchangeable from σ. This symmetry has the effect of changing AX and AY into BX and BY ,
and vice versa. Further, noting that u0, v0 are exchangeable from σ if and only if they are exchangeable from
(u0 v0) ◦σ allows us to change AY into BY and vice versa without altering AX and BX . Finally, noting that u0, v0
are (X,Y )-exchangeable from σ if and only if σ−1(u0), σ

−1(v0) are (Y,X)-exchangeable from σ−1 allows us to swap
labels AX and BX into AY and BY , and vice versa. We apply these symmetries as follows.

If σ majority-maps NX(u′0), NX(v′0) into the same partite set of Y and σ−1 majority-maps NY (u0), NY (v0)
into the same partite set of X , we first apply the first symmetry, if needed, in order to have both NY (u0) and
NY (v0) majority-mapped into AX . Then, we apply the second symmetry, if needed, to have both AX and BX

majority-mapped into BY , without affecting the labels of AX and BX . This reduces σ to the case (C1).
If σ majority-maps NX(u′0), NX(v′0) to different partite sets of Y , and σ−1 majority-maps NY (u0), NY (v0) to

different partite sets of X , we perform a second symmetry, if needed, in order to ensure that NX(u′0) is majority-
mapped into BY and NX(v′0) is majority-mapped into AY . Depending on where NY (u0) and NY (v0) are mapped,
we either reduce to the case (C3) or case (C4).

Finally, if one pair of sets NX(u′0), NX(v′0) and NY (u0), NY (v0) is majority-mapped into the same partite set
while the other pair is majority-mapped into different sets, we apply the third symmetry to ensure that NY (u0)
and NY (v0) are mapped to different sets. Then, by applying a combination of the first two symmetries, we can
reduce to the case (C2).

The above discussion shows that all cases can be reduced to the four distinguished cases, and hence it suffices
to consider only these cases. Since the discussion for these was already presented, the proof is complete. �

4. Generalizations of Wilson’s theorem

The goal of this section is to characterize multiplicity lists c ∈ Z
m
>0 for which the graphs FSm(X, Starm) and

FSm(Starn, X) are connected, by showing Theorems 1.8 and 1.9. Let us begin by addressing the case in which X
is a multiplicity graph.

Proof of Theorem 1.8. Suppose first X is Wilsonian. It is simple to check that the lift X ′ of a Wilsonian graph X
with any multiplicity list c ∈ Z

m
>0 is still Wilsonian, and hence Wilson’s theorem implies that the graph FS(Starn, X

′)
is connected. Using Corollary 2.9, this shows that FSm(Starn, X) is also connected. In the case X is biconnected
but not Wilsonian and at least one vertex v ∈ V (X) has multiplicity cv ≥ 2, we will again show that the lift of
X is Wilsonian. If v is not an isolated vertex, replacing it with a clique of size at least 2 induces a triangle in the
lift graph X ′. Since X ′ is biconnected, and neither cycles of length at least 4 nor the graph θ0 contain triangles,
we conclude that X ′ must be Wilsonian. As in the previous case, this suffices to show FSm(Starn, X) is connected.
On the other hand, if all multiplicities cv are 1, the graph FSm(Starn, X) is isomorphic to the classical version
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FS(Starn, X), which has no multiplicities. Wilson’s theorem then shows that FS(Starn, X) is not connected, which
completes this case.

Finally, we address the case when X is not biconnected. Suppose that all cut vertices of X have multiplicities
at least 2. Again, the goal is to show X ′ is Wilsonian. Since the lift X ′ contains a triangle, it cannot be either a
cycle of length at least 4 or θ0. Similarly, since all cut vertices of X have multiplicities at least 2, the graph X ′ has
no cut vertices and hence it is biconnected. Therefore, X ′ is Wilsonian and FSm(Starn, X) is biconnected. On the
other hand, when X has a cut vertex of multiplicity one, Proposition 2.3 applies because the center of Starn is a cut
vertex. Therefore, we conclude that FSm(Starn, X) is disconnected, which completes the proof of Theorem 1.8. �

Now, we focus on the case when Starn is the multiplicity graph, and prove Theorem 1.9. The proof will be split
into three propositions — Proposition 4.1 will consider the case when X contains a k-bridge, Proposition 4.4 will
consider the case when X does not contain a k-bridge, and Proposition 4.5 will consider the case when X is a cycle.

Throughout the whole discussion, we will consider vertices σ ∈ V (FSm(X, Starm)) as assignments of labels,
represented by vertices of Starm, to the vertices of X , with the condition that the label i ∈ V (Starm) appears ci
times. Moreover, following Wilson’s notation from [13], we denote the center of the star by ∅ and we denote the
multiplicity of ∅ by k = c∅.

Proposition 4.1. Let X be a simple graph containing a k-bridge and let Starm be the star graph, along with
the multiplicity list c ∈ Z

m
>0, in which the center has multiplicity c∅ = k. Then, the friends-and-strangers graph

FSm(X, Starm) is not connected.

Proof. Since X contains a k-bridge a1, . . . , ak, its subgraph X |V (X)−{a2,...,ak−1} splits into connected components
A0 and B0, where a1 ∈ A0 and ak ∈ B0. We also set A = A0 − {a1}, B = B0 − {ak}. As k is fixed throughout the
proof, we call this specific k-bridge just the bridge. Without loss of generality, we may assume |A| ≥ |B|.

Since the star Starm has at least two leaves, there exists a leaf whose multiplicity is at most |A|; let us denote this
leaf by l. Consider the assignment σ : V (X) → V (Starm), σ ∈ V (FSm(X, Starm)), which satisfies σ−1(l) ⊂ A and
σ−1(∅) = {a1, . . . , ak}, and let C denote the connected component containing σ in FSm(X, Starm). We will show
that any vertex τ ∈ C satisfies τ−1(l) ⊂ A∪{a1, . . . , ak}. Showing this would immediately imply that FSm(X, Starm)
is disconnected, since there are assignments τ ′ ∈ V (FSm(X, Starm)) violating this property.

In fact, we show a stronger statement. For an assignment of labels τ : V (X) → V (Starm), we let x(τ) =
|τ−1(∅) ∩ A| and we let 1 ≤ i1 < i2 · · · < ir ≤ k be the complete set of indices for which τ(aij ) 6= ∅. Letting
I(τ) = {i1, . . . , ix(τ)}, we will show that for any τ ∈ C we have

(6) τ−1(l) ⊆ A ∪ {ai : i ∈ I(τ)}.

Intuitively, x(τ) is the number of blank symbols assigned to the vertices of A, and we claim that all vertices labeled
l under τ appear either in A or among the first x(τ) non-blank labels on the bridge. Note that there are indeed
at least x(τ) non-blank labels on the bridge, i.e., r ≥ x(τ), because there are at most k − x(τ) blank labels on the
bridge.

It suffices to check that, if τ1 and τ2 differ by a (X, Starm)-friendly swap, then τ1 satisfies the property (6) if and
only if τ2 also does. Let I(τ1) = {i1, . . . , ix(τ1)} and I(τ2) = {j1, . . . , jx(τ2)}. Let uv ∈ E(X) be the edge on which
the (X, Starm)-friendly swap is performed. We consider several cases, based on the position of the edge uv.

Case 1: Suppose that uv = aνaν+1 for some ν ∈ {1, . . . , n − 1}. Since u, v /∈ A, we have x(τ1) = x(τ2). As τ1
and τ2 are symmetric and one of the swapped labels is ∅, we may assume that τ1(aν) = ∅ = τ2(aν+1). Since
τ1(aν+1) 6= ∅, we must have ν + 1 = it for some t ∈ {1, . . . r}. Furthermore, since τ2(ai) 6= ∅ and τ1, τ2 agree on
V (X)− {aν , aν+1}, we must also have ν = jt, and iλ = jλ for λ 6= t. Since τ1 = τ2 ◦ (ait ait+1) = τ2 ◦ (ait , ajt), it
is not hard to see that τ−1

1 (l) ⊆ A ∪ {ai1 , . . . , aix(τ1)
} is equivalent to τ−1

2 (l) ⊆ A ∪ {aj1 , . . . ajx(τ2)
}, which is what

we aimed to show.
Case 2: Suppose that u = a1, v ∈ A. If we assume, by symmetry, that τ1(a1) = ∅, we see that τ−1

2 (∅) ∩ A =
(τ−1

1 (∅) ∩ A) ∪ {v}, implying x(τ2) = x(τ1) + 1. Since τ2(a1) 6= ∅, we also have j1 = 1 and jt = it+1 for

t ∈ {1, . . . , x(τ1)}. Since the transposition (a1 v) fixes the set A∪{a1, ai1 , . . . , aix(τ1)
} and we have τ−1

1 (a1) 6= l, we

have the equivalence τ−1
1 (l) ⊆ A ∪ {ai1 , . . . , aix(τ1)

} ⇐⇒ τ−1
2 (l) ⊆ A ∪ {a1, ai1 , . . . , aix(τ2)

}.
Case 3: Suppose that u, v ∈ A or u, v ∈ B. Then, x(τ1) = x(τ2) and {i1, . . . , ix(τ1)} = {j1, . . . , jx(τ2)}. Since the
transposition (u v) fixes the set A ∪ {ai1 , . . . , aix(τ1)

}, the equivalence is clear.

Case 4: Suppose that u = ak, v ∈ B. By symmetry, we assume that τ1(ak) = ∅, and consequently ix(τ1) ≤ k − 1,
i.e., the last non-blank label is at position at most k − 1. Since neither of u, v is in A, the number of blank labels
in A remains constant and so x(τ2) = x(τ1). Furthermore, as none of the first x(τ1) non-blank labels on the bridge
is involved in the swap, we have {i1, . . . , ix(τ1)} = {j1, . . . , jx(τ2)}. Therefore, we also see that the last non-blank
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label in τ2 is at position at most jx(τ2) ≤ k − 1. This means that the transposition (ak v) involves no elements of
A ∪ {ai1 , . . . , aix(τ1)

}, which concludes this case.

Having completed all the cases, we conclude that τ−1(l) ⊆ A ∪ {ai1 , . . . , aix(τ)
} for all τ ∈ C, which shows that the

graph FSm(X, Starm) is not connected when X contains a k-bridge. �

Remark 4.2. The proof of Proposition 4.1 is reminiscent of Theorem 6.1 from [6], although the technical details of
the proof are slightly more general in our proof, due to the multiplicities. Proposition 4.1 can be generalized even
further, with almost the same proof, to give the following statement: suppose X is a simple graph containing a k-
bridge and Y is a multiplicity graph containing vertices v1, . . . , vt whose removal disconnects Y . If cv1+· · ·+cvt ≤ k,
then FSm(X,Y ) is disconnected.

Now, we focus on showing that the graph FSm(X, Starm) is connected whenever X has no k-bridges, which is shown
in Proposition 4.4. Before presenting the proof of this proposition, we present two simple results which will be used
throughout the proof.

Lemma 4.3. Suppose that X is a connected simple graph on k + 2 vertices, not isomorphic to a path or a cycle.
Then, the graph FSm(X, Starm) is connected.

Proof. By Proposition 2.1, it suffices to show that any two adjacent vertices u, v ∈ V (X) are (X, Starm)-exchangeable
from any assignment σ ∈ V (FSm(X, Starm)). This is clear if any of these vertices is labeled by ∅, or if σ(u) = σ(v).
Hence, let us assume that ∅ 6= σ(u) 6= σ(v) 6= ∅. Note that all vertices except u and v are labeled by ∅ un-
der σ. Since X is not a path or a cycle, it contains a vertex of degree at least 3 — let x1 be this vertex. By
symmetry of u and v, we may assume that there is a path from v to x1 with vertices v, u, xt, . . . , x2, x1. Sup-
pose also that x1 has neighbors y and z, which are different from x2. Then, the sequence of swaps uxt, . . . , x2x1,
x1y, vu, uxt, . . . , x2x1, x1z, x1y, x1x2, . . . , xtu, uv, zx1, x1x2, . . . , xtu exchanges u and v. �

Proposition 4.4. Suppose X is a simple graph that does not contain a k-bridge and is not isomorphic to a cycle.
Then, the graph FSm(X, Starm) is connected.

Proof. Our main tool will be the notion of exchangeability, which was defined in Section 2. Namely, Proposi-
tion 2.1 reduces showing that FSm(X, Starm) is connected to showing that any two adjacent vertices u, v ∈ V (X)
are (X, Starm)-exchangeable from any starting arrangement σ ∈ V (FSm(X, Starm)), which is done by explicitly
constructing a sequence of (X, Starm)-friendly swaps which transforms σ into σ ◦ (u v). If either σ(u) = ∅ or
σ(v) = ∅, it is easy to see that the swap along the edge uv itself is a (X, Starm)-friendly swap, thus accomplishing
the goal. Therefore, may we assume that σ(u), σ(v) 6= ∅ in the rest of the proof.

Following the notation from [13], for a path p = a1a2 · · ·al and an assignment τ with τ−1(a1) = ∅, we denote the
sequence of swaps along the edges a1a2, a2a3, . . . , al−1al by σp. Note that τ and τ ◦ σp are in the same connected
component of FS(X, Starm).

The first step of the proof will be move every blank symbol from its original position to obtain an arrangement
in which the set of vertices labeled by a blank symbol, together with u and v, forms a connected subgraph of X .
More formally, we will show there exists a sequence of (X, Starm)-friendly swaps, not including vertices u and v,
which transforms σ into an assignment σ′ for which X |σ′−1(∅)∪{u,v} is connected. After ensuring this subgraph is
not a path or a cycle, we will be in the position to apply Lemma 4.3, which will show that u and v are exchangeable.

We will achieve our first goal inductively. Suppose that after several swaps, the vertices u, v, and i other vertices
with blank labels form a connected subgraph C ⊂ X . If i < k, pick a vertex w ∈ V (X) labeled by ∅ and let p
be the shortest path from w to a vertex in the neighborhood of C. Applying the sequence of swaps σp transforms
the existing arrangement into an arrangement in which the vertices u, v, and i+1 other vertices with blank labels
form a connected subgraph of X . If we apply this procedure as long as i < k, we arrive at the arrangement σ′ with
the property that X |σ′−1(∅)∪{u,v} is connected.

Hence, X |σ′−1(∅)∪{u,v} is a connected subgraph of X on k + 2 vertices, and we denote it by H . Since vertices
u, v were not included in any of the swaps transforming σ into σk, by Proposition 2.2, it suffices to show that the
pair u, v is (X, Starm)-exchangeable from σ′.

In the case H is not isomorphic to a path, Lemma 4.3 applies to subgraphs of X and Starm spanned by the
vertices {u, v} ∪ σ′−1(∅) and {σ(u), σ(v),∅}, and it show that the vertices u and v are exchangeable with respect
to these subgraphs. However, this also means u, v are (X, Starm)-exchangeable from σ′. Since transforming σ into
σ′ did not involve swaps including u or v, Proposition 2.2 shows u, v are (X, Starm)-exchangeable from σ.

In the case H is isomorphic to a path or a cycle, we denote its vertices by a1, . . . , ak+2, having u = ai and
v = ai+1. We now consider two cases, based on whether any vertex of H has degree 3 in X .
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Case 1: Suppose that a vertex of aj ∈ H has degree at least 3 in X . Then, we either have aj 6∈ {u, v} or
aj ∈ {u, v}. In the case aj 6∈ {u, v}, we may assume that j < i, by reversing the indices of a1, . . . , ak. Then, the
sequence of swaps yaj , ajaj−1, . . . , a2a1 transforms σk into σ′

k, in which X |σ′

k
−1(∅)∪{u} is not isomorphic to a path,

thus reducing this case to Lemma 4.3.
Suppose now that aj ∈ {u, v}. By potentially relabeling u and v or reversing indices of a1, . . . , ak, we may

assume that aj = ai = u and ai+1 = v. Since i = j ≤ k − 2, we have i+ 2 ≤ k and we may consider the following
sequence of swaps

(7) ai+2v, vu, aiy, ai−1u, ai−1ai−2, . . . , a2a1.

This sequence of swaps transforms σk into σ′
k in which X |σ′

k
−1(∅)∪{u} is not isomorphic to a path, thus reducing

this case to Lemma 4.3. After exchanging u, v using Lemma 4.3, it suffices to reverse the sequence (7) to show u, v
are (X, Starm)-exchangeable from σ′.

Case 2: Suppose that H does not contain a vertex of degree 3 in X . Since X is connected, H is not a cycle,
and because X does not contain a k-bridge, the graph X − {a3, . . . , ak} is connected. Hence, H must be an
interval on the cycle C, whose vertices we denote by a1, . . . , ak+2, ak+3, . . . , al. Since X is not a cycle, there exists
a vertex at ∈ C of degree at least 3 in X . If we pick any vertex aj of H labeled by ∅, performing swaps along
edges ajaj+1, . . . , al−1al, ala1, . . . , aj−2aj−1 has the effect of shifting all labels of C one position backwards. By
performing this sequence of swaps a sufficient number of times, we may assume that the labels σ(u) and σ(v) are
moved to vertices at and at+1. Now, a vertex labeled by σ(u) has degree at least 3, and hence Case 1 implies that
at and at+1 are (X, Starm)-exchangeable from the resulting arrangement. Reversing the counterclockwise shifts
previously performed shows that σ′ ◦ (u v) can be obtained from σ′ through a sequence of (X, Starm)-friendly
swaps, which completes the proof. �

Finally, to complete the discussion of FSm(X, Starm), we address the case when X is a cycle.

Proposition 4.5. Let Starm be a multiplicity graph with the multiplicity list c ∈ Z
m
>0 with c∅ = k and total

multiplicity n. Then, FSm(Cyclen, Starm) is connected if and only if m = 3 and one of the leaves of Starm has
multiplicity 1.

Proof. The key observation in this proof is that the cyclic order of non-blank labels remains unchanged after a
(Cyclen, Starm)-friendly swap. Hence, if FS(Cyclen, Starm) is connected, there must be only one possible cyclic order
of non-blank labels. Suppose that the multiplicities of the leaves of Starm are c1, . . . , cm−1. The number of cyclic

orders of elements 1, . . . ,m − 1 where element i appears with multiplicity ci is
(c1+···+cm−1−1)!

c1!···cm! , which equals 1 if
and only if m = 3 and either c1 = 1 or c2 = 1. On the other hand, if the cyclic order of non-blank labels matches
in two different assignments, it is not hard to see that one can be transformed into the other using a sequence of
(Cyclen, Starm)-friendly swaps. �

The combination of Propositions 4.1, 4.4 and 4.5 immediately yields the proof of Theorem 1.9, completing this
section.

5. Paths and cycles

5.1. Background and terminology. In this section, we investigate the structure of the friends-and-strangers
graphs arising when one of the graphs is a path or a cycle, while the other graph is a multiplicity graph. This extends
the results obtained by Defant and Kravitz in [6], who characterized the connected components of FS(Pathn, Y ),
FS(Cyclen, Y ) for a simple graph Y in terms of the acyclic orientations of its complement Y . Before presenting the
generalizations, we introduce relevant terminology and make a brief overview of the results obtained by Defant and
Kravitz.

For a simple graph G, an orientation of the graph corresponds to choosing a direction for each of its edges,
and an orientation is acyclic if the arising directed graph has no cycles. We denote the set of acyclic orientations
of G by Acyc(G). Further, if we think of Pathn and Cyclen as graphs on the vertex set [n], we see that every
bijection σ : [n] → V (G) induces an acyclic orientation αG(σ) in which an edge uv ∈ E(G) is directed from u→ v
if and only if σ−1(u) < σ−1(v). Finally, for a given acyclic orientation α ∈ Acyc(G), we define the set of its
linear extensions L(α) to be the set of all bijections σ : [n] → V (G) which induce the orientation α on G, i.e.,
L(α) = {σ : [n] → V (G)|αG(σ) = α}. Even more generally, for a set of acyclic orientations A ⊆ Acyc(G), we
may define the set of linear extensions of A to be L(A) =

⋃
α∈A L(α). In [6], Defant and Kravitz showed that

arrangements σ, τ : V (Pathn) → V (Y ) are in the same connected component of FS(Pathn, Y ) if and only if they
induce the same acyclic orientation of the complement of Y , i.e., αY (σ) = αY (τ).
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More work is needed to describe the connected components of Cyclen, since we need to introduce the notions
of toric and double flip equivalence. For a given acyclic α ∈ Acyc(G), a vertex u ∈ V (G) is a source of α if all
edges uv ∈ E(G) are oriented u → v, and a vertex u ∈ V (G) is a sink of α if all edges uv ∈ E(G) are oriented
v → u. Given an orientation α ∈ Acyc(G) and a vertex u which is either a source or a sink of α, reversing all edges
incident to u gives a new acyclic orientation of G. We refer to this operation as a flip, and which is called positive
if u is a source of α, and negative otherwise. This allows to define an equivalence relation called toric equivalence
by declaring that α, α′ are equivalent if one can be obtained from the other by a sequence of flips. If α, α′ are
torically equivalent, we write α ∼ α′. Also, we write Acyc(G)/ ∼ for the set of toric equivalence classes of acyclic
orientations, and we call elements of Acyc(G)/ ∼ toric acyclic orientations .

If u, v are non-adjacent vertices of G such that u is a source and v is a sink of α, respectively, performing two
simultaneous flips on α, at u and v, produces a new acyclic orientation. We call this operation a double flip,
and, as before, we define the equivalence relation ≈, called double flip equivalence, by declaring that two acyclic
orientations are double flip equivalent if one can be obtained from the other by a sequence of double flips. It is
worth noting that double flip equivalence implies toric equivalence of two orientations, whereas the reverse is not
always true. We denote the set of double flip equivalence classes by Acyc(G)/ ≈ and we denote the equivalence
class of an orientation α ∈ Acyc(G) by [α]≈.

In this language, one can describe the connected components of FS(Cyclen, Y ) in several ways. Theorem 4.1 of
[6] states that the arrangements σ, τ : V (Cyclen) → V (Y ) are in the same connected component of FS(Cyclen, Y ) if
and only if their induced acyclic orientations of Y are double flip equivalent, i.e., αY (σ) ≈ αY (τ). Investigating the
relation between double flip equivalence and toric equivalence further, Defant and Kravitz showed that every toric
equivalence class [α]∼ can be viewed as a union of double flip equivalence classes forming an orbit under an action
of a certain abelian group. This allows them to characterize all graphs Y for which FS(Cyclen, Y ) is connected, and
the answer turns out to be the set of all graphs Y whose complement is a forest of trees of coprime sizes.

In the process of showing these results, Defant and Kravitz also showed the following useful fact, which we will

also make use of. Namely, Corollary 4.2 of [6] shows that if α ≈ β and ~α, ~β arise from α, β, respectively, by flipping

one source into a sink, then ~α ≈ ~β. The following statement is a direct corollary of their result.

Corollary 5.1. Let α, β ∈ Acyc(G) be acyclic orientations, and assume that β is obtained from α through a
sequence of a+ positive flips and a− negative flips. Then, any sequence of a+ − a− positive flips transforms α into
β′, which is double flip equivalent to β.

In the rest of this section, we present a generalization of results from [6] to the multiplicity setting. First, we
discuss the graphs FSm(Pathn, X), and show that their connected components correspond to equivalence classes of
Acyc(X ′) under a certain equivalence relation. Then, we characterize the connected components of FSm(Cyclen, X)
and give a full characterization of graphs X for which FSm(Cyclen, X) is connected.

5.2. Connectivity of FSm(Pathn, X). We begin by describing the connected components of FSm(Pathn, X) for a
multiplicity graph X , which is analogous to Theorem 3.1 of [6]. The main technical tool we use is the notion of
permutation equivalence and the bulk of work lies in investigating how this equivalence relation interacts with toric
and double flip equivalence on the lift of X .

More precisely, the notion of permutation equivalence ≡, introduced in Section 2, can be extended to acyclic
orientations in the following way. If X ′ is the lift of X , having the clique decomposition V (X ′) =

⊔
v∈V (X) Sv, we

can define the action of SX on Acyc(X ′) by setting ρ(αX′(σ)) = αX′(ρ ◦ σ) for every σ : [n] → V (X ′). Recall that
SX =

∏
v∈V (X)SSv denotes the set of permutation which fix the cliques Sv of X ′.

We say that acyclic orientations α, β ∈ Acyc(X ′) are permutation equivalent , written as α ≡ β, if they are in
the same orbit of the action of SX on Acyc(X ′). In combinatorial terms, we have α ≡ β precisely when there is
a permutation ρ ∈ SX which transforms α into β, in the sense that u →α v is equivalent to ρ(u) →β ρ(v). A
simple consequence of this definition is that permutation equivalent arrangements σ, τ : V (Cyclen) → V (X ′) induce
permutation equivalent orientations αX′(σ) ≡ αX′(τ).

Theorem 5.2. Let X be a multiplicity graph of total multiplicity n and let X ′ be its lift. The arrangements
[σ]≡, [τ ]≡ ∈ V (FSm(Pathn, X)) are in the same connected component if and only if σ, τ induce permutation equivalent
orientations on X ′, i.e. αX′(σ) ≡ αX′(τ).

Proof. In this proof, we use Corollary 2.10 to reduce Theorem 5.2 to the Theorem 3.1 of [6].
From Corollary 2.10, we know that [σ]≡, [τ ]≡ are in the same connected component of FSm(Pathn, X) if and only

if σ, τ are in the same connected component of G, where G is the graph FS(Pathn, X
′) with the added set of edges

between pairs of permutation equivalent arrangements.
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Suppose now that σ, τ are indeed in the same connected component of G. To show αX′(σ) ≡ αX′(τ), it suffices
to check this in case σ and τ are adjacent. In case σ, τ differ by a (Pathn, X

′)-friendly swap, it follows from
Theorem 3.1 of [6] that αX′(σ) = αX′(τ). In case σ and τ are permutation equivalent, it follows from our previous
observation that so their induced orientations must be permutation equivalent as well.

To show the other direction, assume αX′(τ) ≡ αX′(σ). Then there exists a permutation ρ ∈ SX such that
αX′(τ) = αX′(ρ ◦ σ). Theorem 3.1 of [6] ensures that τ and ρ ◦ σ are connected in FS(Pathn, X

′), while σ ≡ ρ ◦ σ,
implying {σ, ρ ◦ σ} ∈ E0. Combining these, we see σ is connected to τ in G, completing the proof. �

5.3. Connectivity of FSm(Cyclen, X). We now focus on describing the connected components of FSm(Cyclen, X).
The proofs in this section add two new ingredients to the work of Defant and Kravitz. The first new idea is to
combine pairs of equivalence relations ∼,≡ and ≈,≡ into their finest common coarsening, while the second one is
to define the period of an acyclic orientation α ∈ Acyc(X ′).

More precisely, the first step is to define an equivalence relation ≃ on Acyc(X ′) in which α ≃ β if and only if there
exists a sequence of orientations α = α0, α1, . . . , αn = β in which αi and αi+1 are either permutation equivalent or
torically equivalent. Note that permuting moves and flips commute, in the sense that flipping a vertex u in α and
obtaining an orientation β ∈ Acyc(X ′) and then taking β to ρ(β) corresponds to flipping a vertex ρ(u) in ρ(α),
which also results in the orientation ρ(β). Hence, another way to define ≃ is to declare α ≃ β whenever there exists
an orientation γ ∈ Acyc(X ′) satisfying α ≡ γ ∼ β.

Following the same strategy, one can also define an equivalence relation ≅ as the finest common coarsening of ≈
and ≡. Since ≃ and ≅ are both coarser than ≡, they extend to equivalence relations on Acyc(X ′)/≡. Using these
notions, we can generalize Theorem 4.1 of [6] in the following way.

Theorem 5.3. LetX be a multiplicity graph and let X ′ be its lift. The arrangements [σ]≡, [τ ]≡ ∈ V (FSm(Cyclen, X))
are in the same connected component if and only if αX′(σ) ≅ αX′(τ).

Proof. The structure of the proof closely follows the proof of the Theorem 5.2. Recall that Corollary 2.10 guarantees
that the connected components of FS(X,Cyclen) correspond to projections under σ 7→ [σ]≡ of connected components
in G =

(
V (FS(X ′,Cyclen)), E(FS(X ′,Cyclen))∪E0

)
, where E0 = {στ : σ, τ ∈ V (FS(X ′,Cyclen)), σ ≡ τ}. Hence, to

show Theorem 5.3, it suffices to check that σ, τ ∈ V (G) are connected in G if and only if their induced orientations
αX′(σ) and αX′(τ) satisfy αX′(σ) ≅ αX′(τ).

To show the forward direction, assume that σ and τ are in the same connected component. Furthermore, if we
induct on the distance between σ and τ , without loss of generality we may assume στ ∈ E(G) = E(FS(X ′,Cyclen))∪
E0. If στ ∈ E0, we have σ ≡ τ , and hence αX′(σ) ≡ αX′(τ). If στ ∈ E(FS(X ′, Y ′)), we have αX′(σ) ≈ αX′(τ),
from Theorem 4.1 of [6]. In either case, we clearly have αX′(σ) ≅ αX′(τ).

On the other hand, if αX′(σ) ≅ αX′(τ), then there exists a permutation ρ ∈ SX and a sequence of double flip
moves transforming αX′(σ) into αX′(τ). As double flips correspond to edges of FS(X ′,Cyclen), and permuting with
ρ corresponds to an edge in E0, we conclude that σ and τ are connected in G, completing the proof. �

One of the key insights Defant and Kravitz used to understand the structure of FS(Cyclen, Y ) was the automorphism
ϕn : [n] → [n] of the graph Cyclen given by ϕn(k) = k + 1 for k < n and ϕn(n) = 1. Intuitively, one can think
of ϕn as a cyclically shifting Cyclen one place forward. Since ϕn is an automorphism of the cycle Cyclen, it also
induces an automorphism ϕ∗

n of the friends-and-strangers graph FS(Cyclen, Y ) (Proposition 2.3 of [6]). It is not
hard to see that these ideas extend to the multiplicity setting and that ϕ∗

n can be viewed both as an automorphism
of FS(Cyclen, X

′) and of FSm(Cyclen, X), which will be used extensively henceforth. For simplicity of notation, we
will suppress the index n when it is clear what the underlying cycle is. Using the automorphism ϕ∗, we define the
second main notion of this section, the period of an orientation.

Definition 5.4. Let σ : [n] → V (X ′) be a arrangement corresponding to a vertex of FS(Cyclen, X
′). The period

of σ is the smallest positive integer πσ for which σ ◦ ϕπσ ≡ σ. The period of an acyclic orientation α ∈ Acyc(X ′)
is equal to the smallest period πσ of any linear extension σ ∈ L(α).

Example 5.5. Consider a multiplicity graph X with V (X) = {u1, u2, u3} and E(X) = {u1u2, u2u3}. Moreover,
assume that u1 and u2 have capacity 2 and u3 has capacity 4. Then, the arrangement σ : [8] → V (X) sending
1, 5 7→ u1, 3, 7 7→ u2 and 2, 4, 6, 8 7→ u3 has period πσ = 4. On the other hand, the arrangement τ : [8] → V (X)
given by 2, 5 7→ u1, 3, 7 7→ u2, 1, 4, 6, 8 7→ u3 has period 8, even though it induces the same orientation α on X ′ as
σ. Moreover, the period of the induced orientation α is 4 in this case.

Proposition 5.6. Let σ : [n] → V (X ′) be an arrangement of period πσ, and let V (X ′) =
⊔

v∈V (X) Sv be the

clique decomposition of V (X ′). Consider the partition of [n] into congruence classes modulo πσ, given by [n] =
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⊔
j∈[πσ ]

{k ∈ [n] : k ≡πσ j} =
⊔

j∈[πσ ]
Pj. For every j ∈ [πσ], σ(Pj) is fully contained in one of the cliques and each

clique Sv contains the images of exactly cvn/πσ congruence classes Pj .

Proof. We begin by showing that, if σ(j) ∈ Sv, then σ(j + πσ) ∈ Sv as well. From the definition of πσ, we have
σ ◦ ϕπσ = ρ ◦ σ, for some ρ ∈ SX . Substituting j in this equality gives σ(j + πσ) = ρ(σ(j)). However, as ρ only
permutes the elements within the cliques, and σ(j) ∈ Sv, we infer σ(j + πσ) ∈ Sv. Repeated application of the
above argument now gives that j ∈ Sv implies σ(Pj) ⊆ Sv, which completes the proof of the first statement. The
second statement follows by comparing cardinalities of sets σ(Pj) and Sv. �

The following proposition shows that the period of torically or permutation equivalent orientations is the same.
Hence, we may talk about the period of a equivalence class [α]≃ ∈ Acyc(X ′)/≃.

Proposition 5.7. Let X be a connected graph and let α, β ∈ Acyc(X ′) be acyclic orientation satisfying α ≃ β.
Then πα = πβ.

Proof. It suffices to check that πα = πβ whenever α ≡ β and α ∼ β. Let us begin by addressing the case when
α ≡ β. We will show that πα ≥ πβ . By symmetry of α and β, this will also imply πβ ≥ πα, which suffices to
conclude πα = πβ .

As α ≡ β, we have a permutation ρ ∈ SX transforming α into β. Let σ be a linear extension of α with period
πα. Then, ρ ◦ σ is a linear extension of β, with period at most πα, because (ρ ◦ σ) ◦ ϕπα = ρ ◦ (σ ◦ ϕπα) = ρ ◦ σ.
Hence, πβ ≤ πα, which completes the discussion in the case α ≡ β.

If α ∼ β, the proof is more involved and needs the following auxiliary lemma.

Lemma 5.8. Let α ∈ Acyc(X ′), and let u be a source of α. Then, there exists a linear extension σ ∈ L(α) with
πσ = πα and σ(1) = u. Similarly, if v is a sink of α, there exists a linear extension σ ∈ L(α) with πσ = πα and
σ(n) = v.

Proof. As the two statements given in the lemma are completely analogous, we discuss only the case when u is a
source. Let τ : [n] → V (X ′) be a linear extension of α with πτ = πα, which does not necessarily satisfy τ(1) = u.

Consider the set of vertices of X ′ that are labeled by a number not larger than πα, which is given by S = {τ(i) :
i ≤ πα}. If we recall the decomposition [n] =

⊔
j∈[πσ ]

Pj from Proposition 5.6, we set S to be the set of images of

minimal elements of progressions Pj .
We note that u ∈ S. To see why, let Sv be the clique of X ′ which contains u. As the vertex u is a source, it is

the minimum of σ−1 on the clique Sv. By Proposition 5.6, we know that the minimum of σ−1 on each clique is at
most πσ, as the preimage of every clique contains at least one congruence class modulo πσ, which implies u ∈ S.

The restriction of α onto S still induces an acyclic orientation, of which τ |[πα] is still a linear extension. As u is
a source in α|S , we infer there exists a linear extension σ : [πα] → S of α|S which has σ(1) = u.

Then, we extend σ to the σ̃ : [n] → V (X ′) by setting σ̃(kπα + j) = τ
(
kπα + τ−1 ◦ σ(j)

)
, where j ranges through

[πα] and k ∈ {0, . . . , n/πα − 1}. It is not hard to check that σ̃ indeed agrees with σ on [πα], as for k = 0 we have
σ̃(j) = τ ◦ τ−1 ◦ σ(j) = σ(j). Hence, we have σ̃(1) = σ(1) = u. It remains to check that σ̃ is a proper linear
extension of α and that σ̃ has period πα.

Let us first check that σ̃ ∈ L(α). Suppose u1u2 is an edge of X ′, directed from u1 to u2 under α, and let
u1 = τ(k1πα + l1), u2 = τ(k2πα + l2). As τ ∈ L(α), we have

(8) k1πα + l1 < k2π + l2.

The goal is now to show σ̃−1(u1) < σ̃−1(u2). From the definition of σ̃, we know that u1 = σ̃(k1πα + j1), u2 =
σ̃(k2πα + j2), where j1 = σ−1 ◦ τ(l1), j2 = σ−1 ◦ τ(l2). To show that σ̃ ∈ L(α), we need to verify that

(9) k1πα + j1 < k2πα + j2.

From (8), we see that k1 ≤ k2. If k1 < k2, the inequality (9) follows immediately, as j1, j2 ∈ {1, . . . , πα}. On the
other hand, if k1 = k2, we have l1 ≤ l2. Hence, there is an edge in α|S from τ(l1) to τ(l2). As σ ∈ L(α|S), we must
also have σ−1(τ(l1)) < σ−1(τ(l2)), implying j1 < j2. Thus, σ̃ is a linear extension of α.

Now, we show that the period of σ̃ is πα. We have

σ̃ ◦ ϕπα(kπα + j) =σ̃((k + 1)πα + j mod n)

=τ((k + 1)πα + τ−1 ◦ σ(j) mod n)

=τ ◦ ϕπα(kπα + τ−1 ◦ σ(j)).

As the period of τ is πα, we infer that τ◦ϕπα(kπα+τ
−1◦σ(j)) is in the same clique as τ(kπα+τ

−1◦σ(j)) = σ̃(kπα+j),
meaning that σ̃ ◦ ϕπα(kπα + j) and σ̃(kπα + j) are in the same clique. This shows that the period of σ̃ is at most
πα, but since σ̃ is a linear extension of α, the period of σ̃ is exactly πα. �
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Now, we are ready to show that the period of an orientation is preserved under toric equivalence. If α ∼ β, the
orientation β can be obtained from α by applying a sequence of flip moves. By induction, it suffices to address the
case when α and β differ by a single flip on the vertex u, where we may assume that u is a sink in α and a source
in β. Using Lemma 5.8, we find a linear extension σ ∈ L(α) for which πσ = πα and σ(n) = u. As α and β differ
by a flip of u, we see that σ ◦ ϕ is a linear extension of β.

Note that σ ◦ϕ has period as most πα, because σ ◦ϕ ◦ϕπα = σ ◦ϕπα ◦ϕ ≡ σ ◦ϕ. Hence, πβ ≤ πα, which suffices
to complete the proof by applying symmetry. �

In Theorem 4.7 of [6], Defant and Kravitz obtain the following characterization of the connected components of
FS(Cyclen, Y ).

Proposition 5.9 ([6]). Let Y be a simple graph on the vertex set [n]. Let n1, . . . , nr denote the sizes of the
connected components of Y , and let ν = gcd(n1, . . . , nr). For each toric acyclic orientation [α]∼ ∈ Acyc(Y )/ ∼,
choose a linear extension σ[α]∼ , and let J[α]∼ be the connected component of FS(Cyclen, Y ) containing [σ[α]∼ ]. Then

J[α]∼ , . . . , (ϕ
∗)ν−1(J[α]∼),

are pairwise distinct, isomorphic connected components of FS(Cyclen, Y ). Moreover,

FS(Cyclen, Y ) =
⊕

[α]∼∈Acyc(Y )/∼

ν−1⊕

k=0

(ϕ∗)k(J[α]∼).

We obtain the following generalization of this result.

Theorem 5.10. Let X be a multiplicity graph and suppose X ′ has connected components Z1, . . . , Zr. An orientation
[α]≃ ∈ Acyc(X ′)/ ≃ induces orientations [α(1)]≃, . . . , [α

(r)]≃ on Z1, . . . , Zr. Let π1, . . . , πr be the periods of the
induced orientations, and let δα = gcd(π1, . . . , πr). For each toric acyclic orientation [α]≃ ∈ Acyc(X ′)/≃, choose
a linear extension σ[α]≃ : [n] → V (X ′), and let H[α]≃ be the connected component of FSm(Cyclen, X) containing
[σ[α]≃ ]≡. Then

H[α]≃ , . . . , (ϕ
∗)δα−1(H[α]≃),

are pairwise distinct, isomorphic connected components of FSm(Cyclen, X). Moreover,

FSm(Cyclen, X) =
⊕

[α]≃∈Acyc(X′)/≃

δα−1⊕

k=0

(ϕ∗)k(H[α]≃).

Before setting up the proof of the Theorem 5.10, we first present Proposition 5.11. The proof of Proposition 5.11
introduces the new element that distinguishes the proof of Theorem 5.10 from the proofs of Theorems 5.2 and 5.3,
and the proofs from [6].

Proposition 5.11. Let Zt be one of the connected components of X ′ and suppose Zt has q vertices. Let σ : [q] →
V (Zt) be an arrangement and suppose there exists a sequence Σ of (Cycleq, Zt)-friendly swaps transforming σ into

ρ ◦ σ ◦ ϕat
q , for some ρ ∈ SX and at ∈ Z>0. If α = αZt(σ) is the orientation induced by σ, we have πα|at.

2

Proof. Since Zt are connected components of X ′, they form a coarser partition of V (X ′) than the cliques Sv

corresponding to vertices v ∈ V (X). Hence, we may say that V (Zt) is a union of several cliques Sv, for v in some
set Xt ⊆ V (X). Hence, we will think of Zt as the complement of the lift of Xt.

The main idea of the proof is to find an orientation σ̃, which differs from σ by a sequence of (Cycleq, Zt)-friendly
swaps, and whose period πσ̃ divides at. Once this is established, a simple argument will complete the proof. Before
explaining how exactly we find such σ̃, let us say a few words about the combinatorial interpretation of the sequence
of swaps transforming σ into ρ ◦ σ ◦ ϕat

q .
Recall that the arrangement σ is a bijection σ : [q] → V (Zt). Hence, we can think of σ as labeling the graph

Cycleq, such that every position p ∈ [q] on the cycle receives a label u = σ(p) ∈ Zt. Since the condition imposed on
Σ is invariant under permuting the labels in the same clique Sv, we may assume that none of the swaps includes
two elements of the same clique. In other words, we may assume that the cyclic order of elements of the same
clique Sv is unchanged.

For an arbitrary position p, we define the weight of p, denoted by w(p), as the number of times the label σ(p)
moves counterclockwise in a swap minus the number of times it moves clockwise in Σ. This notion was originally

2Proposition 5.11 implies that πα|πσ for all σ ∈ L(α), since σ is permutation equivalent to σ ◦ϕπσ
q by definition and Σ can be taken

to be empty. Although this fact is not directly related to the notion of friends-and-strangers graphs, we do not see an easy way to prove
it without referencing Proposition 5.11.
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introduced by Defant and Kravitz in the proof of Proposition 4.4 of [6]. Since every swap involves one label moving
clockwise and one label moving counterclockwise, we must have

∑
p∈[q] w(p) = 0. The notion of weight turns out

to be very useful, because of its relation to adjacent pairs of vertices in E(Zt).
More precisely, suppose that p1, p2 ∈ [q] satisfy w(p1) ≥ w(p2) + d(p1, p2), where d(p1, p2) denotes the counter-

clockwise distance from p1 to p2 on Cycleq. It is not hard to see that the labels σ(p1), σ(p2) must have participated

in the same (Cycleq, Zt)-friendly swap, implying that σ(p1)σ(p2) /∈ E(Zt). It is natural to say that the positions p1
and p2 have intersecting trajectories if either w(p1) ≥ w(p2) + d(p1, p2) or w(p2) ≥ w(p1) + d(p2, p1) holds.

As stated earlier, the strategy of the proof is to find σ̃ by performing a sequence of (Cycleq, Zt)-friendly swaps

on σ. First of all, let us note that σ̃ can still be transformed into ρ̃ ◦ σ̃ ◦ ϕat
q , for some ρ̃ ∈ SX , using a sequence Σ̃

of (Cycleq, Zt)-friendly swaps. If σ̃ = σ ◦ (p p+ 1), then it is not hard to see that the sequence Σ̃ = (p p+ 1)Σ(p+
at p+at+1) satisfies the requirements. Hence, the notion of intersecting trajectories carries over to any σ̃ obtained
from σ through a sequence of (Cycleq, Zt)-friendly swaps.

Using the notion of the intersecting trajectories, we can finally state precisely and formally our strategy for
finding σ̃. Namely, the first step of the proof will be showing that one can transform σ into σ̃ using a sequence
of (Cycleq, Zt)-friendly swaps such that σ̃ satisfies the same conditions as σ and such that no two positions have
intersecting trajectories in σ̃. Then, we show that for every σ̃ is chosen in this way we have πσ̃|at.

Before we present the details of how these two steps are accomplished, let us introduce the permutation fσ :
[q] → [q] given by fσ = σ−1 ◦ ρ−1 ◦ σ. Intuitively, fσ(p) + at indicates the position at which the label σ(p) ends
up at after the sequence of swaps Σ. When σ is clear from the context, or when we are working with only one
arrangement, we will write f instead of fσ. The permutation f splits [q] into orbits, or cycles, and all elements of
an orbit are in the same clique of Zt. Let us denote the orbit of p by Op = {p, f(p), f2(p), . . . }. Next, we show
that all orbits have the same size.

Lemma 5.12. For any two positions p1, p2 ∈ [q], the orbits Op1 and Op2 have the same size.

Proof. Since Zt is connected, it suffices to show the statement is true when σ(p1) and σ(p2) are adjacent in Zt.
Suppose this is indeed the case and let Op1 = {p1, f(p1), . . . } and Op2 = {p2, f(p2), . . . } be their orbits. Without
loss of generality, we may choose p1 and p2 from their orbits such that no elements of Op1 or Op2 lie in (p1, p2),
where (p1, p2) denotes the open counterclockwise from p1 to p2 on Cycleq.

This choice also implies (Op1 ∪ Op2) ∩ (f(p1), f(p2)) = ∅. To see why, suppose there is another element of Op1 ,

say f i(p1), in (f(p1), f(p2)). Since σ(p1) and σ(f
i−1(p1)) are in the same clique of Zt, σ(f

i−1(p1)) is adjacent to
σ(p2) in Zt, meaning that the trajectories of p2 and f i−1(p1) do not intersect. Similarly, by assumption that the
labels of the same clique do not change the cyclic order, the trajectories of p1 and f i−1(p1) do not intersect. Since
f i(p1) is in the interval (f(p1), f(p2)), f

i−1(p1) must also be in the interval (p1, p2). As this is assumed not the be
the case, we conclude (Op1 ∪Op2) ∩ (f(p1), f(p2)) = ∅.

This argument inductively extends to show that (Op1 ∪ Op2) ∩ (f i(p1), f
i(p2)) = ∅, for all i ≥ 0. In particular,

plugging in i = |Op1 | lets us conclude that f |Op1 |(p2) = p2, meaning |Op2 | divides |Op1 |. By symmetry, we also
have that |Op1 | divides |Op2 |, implying |Op1 | = |Op2 |. �

p1 p2 f(p1) f(p2)

f(p1) f(p2) f2(p1)f2(p2)

Figure 6. Graphical representation of the orbits of f , along with the trajectories of
p1, p2, f(p1), f(p2). The positions in the top row represent the arrangement σ before perform-
ing the sequence of (Cycleq, Zt)-friendly swaps, while the bottom row represents the positions in
the permutation after this sequence is performed. The arrows in the diagram represent schemati-
cally how to labels move throughout this process. Note that in this picture, the trajectories of p1
and p2 do not intersect, while the trajectories of f(p1) and f(p2) intersect.

Lemma 5.13. For any p ∈ [q] we have
∑|Op|−1

k=0 w(fk(p)) = 0.
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Proof. In fact, we will show that for arbitrary p1, p2 ∈ [q] with σ(p1)σ(p2) ∈ E(Zt) we have

(10)

|Op1 |−1∑

k=0

w(fk(p)) =

|Op1 |−1∑

k=0

w(fk(q)).

Since Zt is connected, relation (10) suffices to show that the sums of weights in all orbits are the same. Because
the sum of all weights is 0, the sum of weights in each orbit must also be 0.

To show (10), we note that since the trajectories of fk(p1) and f
k(p2) do not intersect, we can write w(fk(p1)) =

w(fk(p2)) + d(fk(p1), f
k(p2)) − d(fk+1(p1), f

k+1(p2)). Summing over all k ∈ {0, . . . , |Op1 | − 1}, the summands
d(fk(p1), f

k(p2)) telescope and we obtain (10). �

Lemma 5.14. Suppose that the trajectories of p1 and p2 intersect. Then, there exists some k ∈ {1, . . . , |Op1 | − 1}
for which the trajectories of fk(p1) and f

k(p2) also intersect.

Proof. Since the trajectories of p1 and p2 intersect, without loss of generality we may suppose that w(p1) ≥
w(p2) + d(p1, p2). Hence, equation (10) gives

w(f(p1)) + · · ·+ w(f |Op1 |−1(p1)) + d(p1, p2) ≤ w(f(p2)) + · · ·+ w(f |Op1 |−1(p2)).

Assuming the trajectories of fk(p1) and fk(p2) do not intersect for k ∈ {1, . . . , |Op1 | − 1}, we deduce that
w(fk(p1)) = w(fk(p2)) + d(fk(p1), f

k(p2))− d(fk+1(p1), f
k+1(p2)). Summing over k ∈ {1, . . . , |Op1 | − 1} gives

w(f(p1)) + · · ·+ w(f |Op1 |−1(p1)) = w(f(p2)) + · · ·+ w(f |Op1 |−1(p2)) + d(f(p1), f(p2))− d(p, q).

Combined with the previous inequality, this implies d(f(p), f(q)) ≤ 0, which is absurd. The conclusion is that there
exists another index k ∈ {1, . . . , |Op| − 1} for which the trajectories of fk(p) and fk(q) intersect. �

Lemma 5.15. There exists an arrangement σ̃, differing from σ by a sequence of (Cycleq, Zt)-friendly swaps, which
has no intersecting trajectories.

Proof. Suppose that σ̃ is the arrangement with the minimal number of intersecting trajectories among all arrange-
ments obtainable from σ through a sequence of (Cycleq, Zt)-friendly swaps. Under the assumption that σ̃ has a
pair of intersecting trajectories, we will show how to reduce the number of pairs having intersecting trajectories.

Before presenting the algorithm which accomplishes this, let us briefly discuss the effects of a (Cycleq, Zt)-friendly

swap on the orbit structure of fσ and intersecting trajectories. Suppose that σ1 = σ ◦ (p p + 1) is a (Cycleq, Zt)-
friendly swap, and that the trajectories of p, p+1were intersecting for σ. Then, these trajectories are not intersecting
in σ1. Moreover, if the trajectories of f−1

σ (p), f−1
σ (p + 1) are intersecting for σ, they are not intersecting for σ1

and vice versa. This shows that the number of intersecting pairs does not increase after performing a (Cycleq, Zt)-
friendly swap on a pair with intersecting trajectories. Moreover, the number of intersecting pairs decreases if the
pair f−1

σ (p), f−1
σ (p+ 1) is also intersecting in σ. These changes are visually presented in Figure 7.

u′

f−1
σ (p)

v′

f−1
σ (p+ 1)

u
p

v
p+ 1

u′

p
v′

p+ 1
u

fσ(p)
v

fσ(p+ 1)

u′

f−1
σ (p)

v′

f−1
σ (p+ 1)

v
p

u
p+ 1

v′

p
u′

p+ 1
u

fσ(p)
v

fσ(p+ 1)

Figure 7. For a given arrangement σ, the left diagram represents the trajectories of σ, while
the right one represents the trajectories of σ1 = σ ◦ (p p + 1). The letters u, v, u′, v′ represent
labels assigned to relevant positions before and after the sequence of swaps is performed, under
the convention that u = σ(p), v = σ(p+ 1), u′ = σ(f−1

σ (p)), v′ = σ(f−1
σ (p+ 1)).

Suppose now that σ̃ contain an intersecting pair of positions, say p1, p2. By Lemma 5.14 the trajectories of fk(p)
and fk(q) intersect for some k ∈ {1, . . . , |Op| − 1}. Let us consider the smallest such k.

The main goal of the sequence of swaps we will construct is to obtain an arrangement σ′ in which fk(p1) and
fk(p2) are adjacent, and then perform a (Cycleq, Zt)-friendly swap on these two positions. In case k = 1, by the
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above discussion, this will reduce the intersection number, which is exactly what we want. For k > 1, this will
reduce to the case when the trajectories of fk−1(p1) and f

k−1(p2) intersect, which can be dealt with by repeating
the above procedure.

Let us now explain how we make fk(p1), f
k(p2) adjacent. It is simple to see that if the trajectories of a

and b intersect, then for every c ∈ (a, b) the trajectory of c intersects that of either a or b. Hence, for every
x ∈ (fk(p2), f

k(p1)), we either have that the trajectory of w intersects the trajectory of fk(p1) or the trajectory
of fk(p2). For i ∈ {1, 2}, let Si be the set of those x whose trajectories intersect the trajectory of fk(pi). By
applying the above argument again, we see that the trajectory of s1 ∈ S1 intersects the trajectory of every
s2 ∈ S2 ∩ (s1, f

k(p1)). Hence, every such pair (s1, s2) has labels which are adjacent in Zt. Therefore one may
perform a sequence of (Cycleq, Zt)-friendly swaps to obtain an arrangement in which all positions which have

intersecting trajectories with fk(p2) come before those positions which have intersecting trajectories with fk(p1),
in the interval (fk(p2), f

k(p1)). Then, we may perform a sequence of (Cycleq, Zt)-friendly swaps which makes

fk(p2), f
k(p1) adjacent. As explained above, this suffices to complete the proof. �

a b

f(a)f(b)

c fk(p1)fk(p2)

fk+1(p1) fk+1(p2)

s1 s2

f(s1)f(s2)

fk(p1)fk(p2)

fk+1(p1) fk+1(p2)

S1S2

Figure 8. Schematic representation of the proof of Lemma 5.15. The left diagram illustrates the
fact that if the trajectories of a and b intersect and c ∈ (a, b), then the trajectory of c intersects
the trajectory of either a or b. The middle and the right diagram represent steps in transforming
σ̃ into an arrangement in which fk(p1) and f

k(p2) are adjacent.

Lemma 5.16. If σ̃ is an arrangement in which no pair of positions has intersecting trajectories, then πσ̃|at.

Proof. We begin by showing that w(p) is the same for all p ∈ [q]. Let p and p + 1 be two adjacent vertices of
Cycleq. Since their trajectories do not intersect, we have w(p) ≤ w(p + 1) and w(p + 1) ≤ w(p) + (q − 1). In case
w(p) 6= w(p + 1), we must have w(p + 1) ≥ w(p) + 1. It is not hard to see that, in this case, the trajectory of
f−1(f(p)+1) must intersect either the trajectory of p or the trajectory of p+1. As σ̃ has no pairs with intersecting
trajectories, this is impossible and therefore w(p) = w(p + 1). As this holds for all positions p ∈ [q], we conclude
that w(p) is the same for all p ∈ [q]. Since

∑
p∈[q] w(p) = 0, we have w(p) = 0 for all p ∈ [q].

p p+ 1

f(p) f(p+ 1)f(p) + 1

Figure 9. Graphical representation of the fact that the trajectory of f−1(f(p) + 1) intersects
either the trajectory of p or the trajectory of p+ 1 in the proof of Lemma 5.16.

This means that f(p) = p for all p ∈ [q], and hence the empty sequence of (Cycleq, Zt)-friendly swap transforms σ̃
into ρ ◦ σ̃ ◦ ϕat

q . In other words, σ̃ ≡ σ̃ ◦ ϕat , implying πσ̃|at, which completes the proof of Lemma 5.16. �

Combining Lemmas 5.15 and 5.16 shows that there exists an arrangement σ̃, differing from σ by a sequence of
(Cq, Zt)-friendly swaps, and having πσ̃|at. Let us now argue why this suffices to conclude πα|at, and assume,
towards contradiction, that this is not the case.

We have argued previously that replacing σ with any arrangement τ differing from it by a sequence of (Cq, Zt)-
friendly swaps does not change the property that τ can be transformed into ρ′ ◦ τ ◦ ϕat

q through a sequence of
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(Cq, Zt)-friendly swaps, for some ρ′ ∈ SX . Let τ ∈ L(α) be the arrangement with the minimal period πτ = πα.
Since τ ◦ ϕat

q = τ ◦ ϕat−mπα
q for any m ≥ 0, we may assume that 1 ≤ at < πα and that τ can be transformed into

ρ′ ◦ τ ◦ϕat
q through a sequence of (Cq, Zt)-friendly swaps. However, since σ̃ differs from τ by a sequence of (Cq, Zt)-

friendly swaps, we conclude that σ̃ also satisfies the same property as τ with at < πα. This presents a contradiction,
since πσ̃|at and πσ̃ ≥ πα by definition of πα. This contradiction completes the proof of Proposition 5.11. �

Equipped with Proposition 5.11, we are ready to prove Theorem 5.10.

Proof of Theorem 5.10. We structure the proof in a similar way to the proofs of Theorems 5.2 and 5.3. However,
the analysis of the arising graph G is more involved than earlier and uses Proposition 5.11 in an important way.

Let G be the graph arising from FS(Cyclen, X
′) after adding the set of edges E0 = {στ : σ ≡ τ}. Corollary 2.10

states that the connected components of the graph FSm(Cyclen, X) are the images of the connected components of
G under the projection σ 7→ [σ]≡. Hence, the main focus of the proof is to describe the connected components of
G. More precisely, if L[α]≃ = G|{σ:[σ]≡∈V (H[α]≃ )} is the preimage of H[α]≃ under the discussed projection, we aim
to show that

(11) G =
⊕

α∈Acyc(X′)/≃

δα−1⊕

i=0

(ϕ∗)iL[α]≃ .

Since the projection operation commutes with the automorphism ϕ∗, which is to say that the projection of
(ϕ∗)iL[α]≃ is (ϕ∗)iH[α]≃ , showing (11) would suffice to prove the second part of the theorem. The fact that

H[α]≃ , . . . , (ϕ
∗)δα−1H[α]≃ are distinct isomorphic connected components follows directly, since ϕ∗ is an automor-

phism of the graph FSm(Cyclen, X).
Let us begin the proof of (11) by noting that there are no edges of G out of the set L([α]≃). To see why, we

pick an arbitrary edge στ ∈ E(G) and show αX′(σ) ≃ αX′(τ). If στ ∈ E0, we must have σ ≡ τ , and hence
αX′(σ) ≡ αX′(τ). On the other hand, if στ ∈ E(FS(Cyclen, X

′)), we have αX′(σ) ≈ αX′(τ), and therefore also
αX′(σ) ∼ αX′(τ). Hence, all edges of G must be fully contained within one of the sets L([α]≃), which gives the
following decomposition of G:

(12) G =
⊕

α∈Acyc(X′)/≃

G|L([α]≃).

In order to infer (11) from (12), we need to show that

(13) G|L([α]≃) =

δα−1⊕

i=0

(ϕ∗)iL[α]≃ .

Since the equivalence relation ≃ is coarser than ∼, the equivalence class [α]≃ can be written as a disjoint union of
equivalence classes [α1]∼, . . . , [αk]∼. Proposition 5.9 implies that

(14) FS(Cyclen, X
′)|L([α]≃) =

k⊕

j=1

ν−1⊕

i=0

(ϕ∗)iJ[αk]∼ ,

where J[αk]∼ is the connected component of FS(Cyclen, X
′) containing an arbitrarily chosen vertex σ[αk]∼ ∈

L([αk]∼). Since α1, . . . , αk are all equivalent under ≃, we may choose σ[α1]∼ , . . . , σ[αk]∼ to be equivalent under

≡. We now present two lemmas, which show that there exists an edge of E0 between components (ϕ∗)iJ[αl]∼ and

(ϕ∗)jJ[αm]∼ if and only if δα|i− j.

Lemma 5.17. If δα divides i− j, then there exists an edge of E0 between components (ϕ∗)iJ[αl]∼ and (ϕ∗)jJ[αm]∼ .

Proof. Let us first consider the case l = m, as the case l 6= m can be easily deduced from it. The main idea
is to show that, for every arrangement σ ∈ (ϕ∗)iJ[αl]∼ , there exists an edge of E0 between σ and a vertex of

(ϕ∗)i+πtJ[αl]∼ , where πt is the period of an induced orientation α(t) on Zt.

Let β be the orientation induced by σ on X ′, and let β(t) be its restriction to Zt. Because σ ∈ L([α]≃), and
consequently β(t) ≃ α(t), the period of β(t) must be πt.

Since the period of β(t) is πt, there exists a sequence of πt positive single flips that transforms β(t) into β
(t)
1

which is permutation equivalent to β(t). Since there are no edges of X ′ leaving Zt, the same sequence of πt flips
can be performed on β to get a orientation β1 with β1 ≡ β. In particular, this means that there exists a linear
extension σ1 ∈ L(β1) for which σ ≡ σ1. The goal is now to show σ1 ∈ (ϕ∗)i+πtJ[αl]∼ .
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Let β2 be the orientation induced on X ′ by σ◦ϕπt . Note that β2 can also be obtained from β through a sequence
of πt positive single flips. Using Corollary 5.1, this implies β1 ≈ β2.

Since σ ◦ ϕπt ∈ (ϕ∗)πt+iJ[αl]∼ , Theorem 4.1 of [6] shows that the vertex σ1 also lies in (ϕ∗)πt+iJ[αl]∼ . Since

σ1 ≡ σ, we see there exists an edge of E0 between σ and a vertex of (ϕ∗)πt+iJ[αl]∼ .
By repeating the above argument and using the transitivity of the relation ≡, we conclude that there exists an

edge of E0 between σ and a vertex of (ϕ∗)i+
∑r

t=1 λtπtJ[αl]∼ , where λ1, . . . , λr are arbitrary integer coefficients. Using

Bezout’s theorem, we conclude there exist coefficients λ1, . . . , λt for which
∑r

t=1 λtπt = u gcd(π1, . . . , πr) = uδα,
where u is an arbitrary integer. Hence, if δα divides i − j, we have an edge between components every vertex of
(ϕ∗)iJ[αl]∼ and (ϕ∗)jJ[αl]∼ . Since σ[α1]∼ , . . . , σ[αk]∼ are all permutation equivalent, we have an edge of E0 between

(ϕ∗)iJ[αl]∼ and (ϕ∗)iJ[αm]∼ , for all l,m ∈ [k]. As before, since every vertex of (ϕ∗)iJ[αm]∼ has an edge of E0 to

(ϕ∗)jJ[αm]∼ , when δα|i − j, by transitivity of ≡ we conclude that there exists an edge of E0 between (ϕ∗)iJ[αl]∼

and (ϕ∗)jJ[αm]∼ whenever δα divides i− j. This completes the proof of Lemma 5.17. �

Lemma 5.18. If there exists an edge of E0 between components (ϕ∗)iJ[αl]∼ and (ϕ∗)jJ[αm]∼ , then δα divides i− j.

Proof of Lemma 5.18. As in the proof of Lemma 5.17, we begin by focusing on the case l = m, and then reduce
the general case to this one. Our argument has two main steps – in the first step, we separate the problem into
smaller subproblems, by restricting it to one of the connected components Zt. Then, we apply Proposition 5.11 to
solve each of the subproblems.

Suppose there exists an edge of E0 between σ ∈ ϕiJ[αl]∼ and ρ ◦ σ ∈ ϕjJ[αl]∼ , for some ρ ∈ SX . In other
words, there exists a sequence of a = j − i positive single flips and b double flips that transforms β = αX′(σ) into
a permutation equivalent orientation ρ(β) = αX′(ρ ◦ σ).

The first step is to associate every flip to the component Zt in which it is performed. More precisely, if the
sequence of flips Σ transforming σ into ρ ◦ σ consists of single flips at vertices u1, . . . , ua, and double flips at pairs
(v1, w1), . . . , (vb, wb), we consider three different types of flips: single flips, double flips with both vi and wi in the
same connected component Zt, and double flips with vi and wi in different connected components. We split the
flips of Σ into r subsequences of flips, denoted Σ1, . . . ,Σr, so that Σt contains only flips at vertices of Zt. Hence,
the first two types of flips are simply associated to the component they are performed in. For each flip of the third
type (vi, wi), we split it into a positive single flip at vi and a negative single flip at wi, which are then placed into
subsequences corresponding to their respective components. The result of this process is splitting Σ into Σ1, . . . ,Σr,
where Σt is a legal sequence of single and double flips performed on the restriction β|Zt . Moreover, the result of
applying Σt to β

(t) = β|Zt is precisely the orientation ρ(β)|Zt .
Let at,+ (at,−, resp.) denote the number of positive (negative, resp.) single flips in Σt, and let at = at,+ − at,−

denote their difference. Because the number of positive flips in Σ is a, and since splitting every double flip amounts
to adding one positive and one negative single flip, we conclude that a1 + · · · + ar = a. The main goal now is to
show that πt|at, which will immediately imply δα|a.

Let us now rephrase the problem in the setting of a single connected component Zt. As discussed earlier, by
Corollary 4.2 of [6], Σt is equivalent to a sequence of at positive flips (or −at negative flips, if at < 0). The problem
now simplifies to showing that, if β(t), ρ(β(t)) ∈ Acyc(Zt) are permutation equivalent orientations and, and ρ(β(t))
is obtained from β(t) after a sequence of at positive single flips and some double flips, we must have πt|at. This is
precisely what Proposition 5.11 states, albeit in slightly different terminology.

If we denote |V (Zt)| by q, Corollary 4.2 of [6] shows that ρ(β(t)) must be double flip equivalent to the acyclic
orientation induced by σ(t) ◦ϕq

at , where we think of the arrangement σ(t) as mapping Cycleq to Zt. In other words,

the orientations induced by σ(t) and ρ−1 ◦ σ(t) ◦ ϕat
q are double flip equivalent. Proposition 5.9 implies that these

two arrangement differ by a sequence of (Cycleq, Zt)-friendly swaps. In this context, Proposition 5.11 shows that
πt|at, which is exactly what we need to complete the proof in the case l = m.

Suppose now that there exists an edge of E0 between vertices σ ∈ (ϕ∗)iJ[αl]∼ and τ ∈ (ϕ∗)jJ[αm]∼ . Since

σ[αl]∼ ≡ σ[αm]∼ , we know that there exists an edge from every vertex of ρ ◦ τ ∈ (ϕ∗)jJ[αl]∼ to a vertex of

τ ∈ (ϕ∗)jJ[αm]∼ . Hence, by transitivity of ≡, we conclude there exists an edge of E0 between σ ∈ (ϕ∗)iJ[αl]∼ and

ρ◦ ∈ (ϕ∗)jJ[αl]∼ , which is possible only if δα|j − i, as desired. �

Combining Lemmas 5.17 and 5.18 with (14), we conclude that G|L([α]≃) contains exactly δα connected components,

with the vertex sets corresponding to
⋃k

j=1

⋃
i≡i0 mod δα

V
(
(ϕ∗)iJ[αk]∼

)
. Moreover, these δα connected components

differ only by an application of ϕ∗.
Since L[α]≃ is one of these δα connected components, decomposition (13) now becomes obvious. As discussed

above, this suffices to infer (11), and to complete the proof of Theorem 5.10. �



30

Corollary 5.19. The graph FSm(Cyclen, X) is connected if and only if the complement of the lift of X is a forest
of trees of coprime sizes.

Proof. Note that ifX ′ is the complement of a forest of trees of coprime sizes, by the Corollary 4.14 of [6] we have that
FS(Cyclen, X

′) is connected. Hence, Corollary 2.9 implies that FSm(Cyclen, X) must be connected. Establishing
the other direction is somewhat trickier, and requires the machinery developed in this section.

By Theorem 5.10, if the graph FSm(Cyclen, X) has only one connected component, we must have |Acyc(X ′)| = 1
and δα = 1 for the unique element [α]≃ ∈ Acyc(X ′)/≃. Unlike the proof of Corollary 4.14 in [6], which uses a
systematic way to count the number of toric acyclic orientations of a graph using its Tutte polynomial, we present
a direct and straightforward argument characterizing all graphs with a single orientation up to ≃ equivalence.

Let us begin by showing the complement of X has no cycles. If there was a cycle in X , consisting of vertices
v1, . . . , vk in this order, consider the orientation α ∈ Acyc(X ′) which directs all edges from u ∈ Svi to w ∈ Svj

whenever i < j. If we imagine Sv1 , . . . , Svk are placed in the plane in the counterclockwise order, it is not hard to
see that every cycle of X ′, having one vertex in each of the cliques Svi , has exactly one edge oriented clockwise. For
each fixed cycle of this type, it is not hard to see that even after several flips are performed, there is still exactly
one edge oriented clockwise. We have thus shown that this property is maintained for every orientation α′ obtained
from α through a sequence of flips. However, there exist orientations of X ′ which do not have this property,
meaning that Acyc(X ′)/≃ has more than one element, which is impossible. An example of such orientations is an
orientation in which all edges of α are reversed.

Since X has no cycles, it is a forest. Suppose v ∈ X is a vertex of capacity c ≥ 2. We will show that it can be
adjacent to a single vertex of capacity 1. For every vertex u adjacent to Sv, we let p(u, α) be the number of edges
directed from u to Sv under α. We note that throughout a sequence of flips the quantity p(u1, α)−p(u2, α) remains
constant modulo c, for any vertices u1, u2 in the neighborhood of Sv. If Sv is adjacent to at least two vertices, we
consider the orientation α in which all edges incident to Sv are oriented away from Sv and an orientation α′ in
which exactly one edge incident to Sv is reversed. By the above remark, α and α′ do not differ by a sequence of
flips as long as there are at least 2 neighbors of Sv in X ′. Again, this is impossible since Acyc(X ′)/≃ is assumed
to have only one equivalence class.

We conclude X ′ is a forest, consisting of trees T1, . . . , Tm. Since FSm(Cyclen, X) is connected, every α ∈
Acyc(X ′)/≃ has δα = 1. Recall that δα is defined as the greatest common divisor of periods of orientation α(i),
where α(i) is the restriction of α to Ti. We will show now that the period of α(i) is |Ti|. Since, up to toric
equivalence, there is only one acyclic orientation of X ′, we may choose a root ui in every tree Ti and assume that
α(i) directs the edges of Ti away from the root. For this specific orientation, it is clear that at least |Ti| positive
flips are needed in order to transform it back into α. Hence, the period of α(i) is |Ti|. Since δα = 1, this implies
gcd(|T1|, . . . , |Tm|) = 1, which completes the proof. �

6. Further research directions

As mentioned in the introduction, Theorem 1.3 determines the correct dependence, up to a factor of no(1), of the
threshold probability pbip = pbip(n) for which FS(X,Y ) has exactly two connected components, when X,Y ∼
G(Kn,n, p). It would be interesting to close the gap, in both bipartite and non-bipartite settings, and determine
the exact threshold.

If one believes that the main obstruction to the connectivity of randomly generated friends-and-strangers graphs
are isolated vertices (as in the case of the usual random graphs), then one would conjecture that the threshold
probabilities pgen and pbip for the connectivity of friends-and-strangers graphs would be the same as for containing

isolated vertices, i.e. pgen, pbip =
(

logn
n

)1/2
(cf. Remark 2.5). Hence, we make the following conjecture, which

would determine the threshold probabilities precisely.

Conjecture 6.1. For p = ω
(

log1/2 n
n1/2

)
and large n we have the following two statements:

• if X,Y ∼ G(n, p), then FS(X,Y ) is connected with high probability.
• if X,Y ∼ G(Kn,n, p), then FS(X,Y ) has exactly two connected components with high probability.

In the context of multiplicity graphs, there exists a further generalization of this concept which allows for both
graphs X and Y to have multiplicities. More precisely, if X , Y are multiplicity graphs with lists of multiplicities
c(X), c(Y ), having the same total capacity, then we can define the double multiplicity friends-and-strangers graph
FSm,m(X,Y ) whose vertices are arrangements of labels represented by the vertices of X which are being placed

onto the vertices of Y , such that the label u ∈ V (X) appears exactly c
(X)
u times and such that exactly c

(Y )
v

labels are placed onto every vertex of v ∈ V (Y ). Many of the questions addressed in this paper can be posed for
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double-multiplicity friends-and-strangers graphs. For example, since this paper exactly characterizes all multiplicity
lists for which FSm(X, Starn) and FSm(Starn, X) are connected, it is natural to ask for an characterizations of all
multiplicity lists c(X), c(Starn) which make FSm,m(X, Starn) connected. In particular, we believe that the following
characterization can be derived.

Conjecture 6.2. Let X be a connected simple graph, and let c(X), c(Starn) be two multiplicity lists, in which the

center of Starn receives multiplicity k = c
(Starn)
∅

. Then FSm,m(X, Starn) is connected if and only if X contains no
k-bridge in which all vertices have multiplicity 1.

Finally, this paper mainly investigates connectivity of various models of friends-and-strangers graphs. However,
one can still ask questions about higher connectivity of FS(X,Y ) and FSm(X,Y ). For example, one can pose the
following question in case X,Y are random graphs.

Question 6.3. Let p(n) = n−1/2+o(1) and let X,Y be random graphs from G(n, p). For which values of k is the
graph FS(X,Y ) is k-connected with high probability?
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