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Abstract

We show that there exists an absolute constant γ > 0 such that for every A ⊆ Z>0 we have

min
x∈[0,2π]

∑
a∈A

cos(ax) ≤ −Ω(|A|γ).

This gives the first polynomial bound for Chowla’s cosine problem from 1965. To show this, we prove
structural statements about graphs whose smallest eigenvalue is small in absolute value. As another
application, we show that any graph G with m edges and no clique of size m1/2−δ has a cut of size at
least m/2 +m1/2+ε for some ε = ε(δ) > 0. This proves a weak version of a celebrated conjecture of
Alon, Bollobás, Krivelevich, and Sudakov. Our proofs are based on novel spectral and linear algebraic
techniques, involving subspace compressions and Hadamard products of matrices.

1 Introduction

The central question in spectral graph theory is how the structural properties of a graph influence its
spectrum and, conversely, what information about the graph the spectrum encodes. Here and throughout,
the spectrum of the graph refers to the set of eigenvalues of its adjacency matrix. Some of the most
prominent relations between eigenvalues and structural properties of a graph are the Expander Mixing
Lemma [4] (which connects pseudorandomness properties of the graph to its eigenvalues) and the Hoffman
bound [43] (which bounds the size of the largest independent set based on the smallest eigenvalue). The
question which concerns us in this paper is the following: what can be said about the graphs whose last
eigenvalue is small in absolute value?

The prime examples of such graphs are cliques, since all of their eigenvalues are at least −1. As
taking disjoint unions of graphs corresponds to taking a union of their spectra, and changing a small
number of edges does not affect the spectrum significantly, it is not hard to see that graphs which are
close to disjoint unions of cliques also have small |λn|, where λn denotes the smallest eigenvalue of the
graph. The main technical result of our paper is a converse to this statement: we prove that already a
mild restriction |λn| ≤ n1/4−o(1) on the smallest eigenvalue λn of an n-vertex graph forces the graph to
be close to a disjoint union of cliques, and the exponent 1/4 is best possible.

We also obtain a variant of this result which applies to sparse graph. More precisely, we show that
graphs of average degree d and smallest eigenvalue |λn| ≤ dγ contain cliques of size d1−O(γ). Perhaps
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surprisingly, this simple graph-theoretic statement has a powerful application to Chowla’s cosine problem
[21] from 1965. In fact, it allows us to prove that if A is a finite set of positive integers, then the function

f(x) =
∑
a∈A

cos(ax)

takes values as small as −|A|Ω(1). For a more detailed overview of Chowla’s cosine problem and related
work, consult Section 1.1.

Our methods can also be used to study graphs with small maximum cut, allowing us to make
substantial progress on a celebrated conjecture of Alon, Bollobás, Krivelevich, and Sudakov [3]. This is a
central problem in the study of the maximum cut in H-free graphs, initiated by Erdős and Lovász [35] in
the 1970’s. If H is a fixed graph, this conjecture states that any graph G with m edges and no subgraph
isomorphic to H has a cut of size at least m/2 +m1/2+εH for some εH > 1/4. Here, a cut is a partition
of a vertex set of G into two parts, and its size is the number of edges crossing the partition. We prove
that forbidding a clique of size as large as m1/2−δ in G already allows to show that G has a cut with at
least m/2 +m1/2+ε edges, for some ε = ε(δ) > 0. The problem of estimating the size of the maximum
cut is discussed in further detail in Section 1.2.

Finally, our results have further implications about graphs of small second eigenvalue. A classical
result of Alon and Boppana [63] gives a bound on the second-largest eigenvalue λ2 of d-regular n-vertex
graphs, and it states that λ2 ≥ 2

√
d− 1(1 − 1

⌊D/2⌋), where D is the diameter of the graph. Note that
this bound is trivial for graphs of diameter at most 3, which could happen already when d ≥ n1/3. In
this paper, we extend Alon–Boppana theorem to dense graphs, and we show that if an n-vertex regular
graph is far from a Turán graph, then its second eigenvalue satisfies λ2 ≥ n1/4−o(1), with the exponent
1/4 being optimal. Finally, we prove similar structural results about graphs of large bisection width.
Our proofs introduce novel spectral and linear-algebraic techniques based on subspace compressions of
matrices and the use of Hadamard products, which may be of independent interest.

1.1 Chowla’s cosine problem

In 1948, in the study of certain Dedekind zeta functions, Ankeny and Chowla came across the the following
question, see [20] — is it true that for every K > 0 and sufficiently large n > 0, if a1, . . . , an are distinct
integers, then the minimum of the function f(x) = cos(a1x) + · · · + cos(anx) is less than −K ? This
was proved by Uchiyama and Uchiyama [74], albeit with poor quantitative dependencies. Soon after this
work, in 1965, Chowla [21] revisited the problem and made a more precise conjecture, today known as
Chowla’s cosine problem. He asked to show that minx∈[0,2π] f(x) = minx∈[0,2π]

∑n
i=1 cos(aix) ≤ −Ω(

√
n).

The bound −Ω(
√
n) comes from the fact that in case A = {a1, . . . , an} can be written as A = B − B,

where B is a Sidon set, one has minx∈[0,2π] f(x) = −Θ(
√
n), see [62] for a detailed proof. The bounds of

Uchiyama and Uchiyama were later improved by Roth [67], who showed a lower bound of minx f(x) ≤
−Ω(

√
log n/ log log n).

An important observation in the early study of Chowla’s cosine problem was its connection to
Littlewood’s L1-problem, which asks to show that for each n-element set A ⊆ Z, the L1-norm of the
Fourier transform of 1A is bounded below by log n, i.e.

∥1̂A∥1 =
∫ 1

0

∣∣∣∑
a∈A

e2πiax
∣∣∣ d x = Ω(log n).

Indeed, any lower bound on Littlewood’s L1-problem gives a comparable upper bound for the cosine
problem (see [67] for a detailed derivation). Thus, the resolution of the Littlewood L1-problem by
Konyagin [53] and McGehee, Pigno and Smith [61] immediately implies that minx f(x) ≤ −Ω(log n).

It was Bourgain [14] who first broke this logarithmic barrier, and then his method was further refined
by Ruzsa [68] to give the previously best known bound minx f(x) = − exp

(
Ω(

√
log n)

)
. Chowla’s cosine
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problem also appears on Green’s 100 problems list [41] as problem number 81. Here, we give the first
polynomial bound.

Theorem 1.1. There exists an absolute constant γ > 0 such that for any A of positive integers, there
exists x ∈ [0, 2π] such that ∑

a∈A
cos(ax) ≤ −Ω(|A|γ).

Following our proof, one can take γ = 0.01, so it remains an interesting open problem to decide
whether γ = 1/2 is the best exponent. Our graph theoretic machinery has a hard theoretical barrier at
the exponent 1/4, and possibly substantial new ideas are needed to move beyond this point (however, we
do not claim that γ = 1/4 is reachable either with our methods). We now say a couple of words about
the proof of Theorem 1.1. The key ingredient of the proof is the following purely graph-theoretic result.

Theorem 1.2. For every γ > 0, the following holds for every sufficiently large d. Let G be a graph of
average degree d and assume that |λn| ≤ dγ. Then G contains a clique of size at least d1−O(γ).

The first idea is to embed A into the group Z/nZ for a sufficiently large prime n and to consider
the Cayley graph Γ = Cay(Z/nZ, A ∪ −A). It is well-known that the eigenvalues of Cayley graphs
correspond to the Fourier coefficients of the generating set, and thus the smallest eigenvalue λn satisfies
λn =

∑
a∈A∪−A exp(2πiak/n) = 2

∑
a∈A cos(2πak/n) for some k ∈ [n]. Hence, 1

2λn ≥ minx f(x). In
other words, unless the minimum of f(x) is very negative, |λn| is small. But then we can use Theorem
1.2 to conclude that G contains very large cliques. However, the transitive symmetry of the Cayley graph
does not allow such large cliques, without violating the property of having small |λn|.

We conclude the discussion of Chowla’s cosine problem by remarking some other interesting questions
about cosine polynomials. For example, the problem of estimating the number of zeros of such polynomials
have also attracted lots of attention recently. Namely, an old problem of Littlewood [59] asks study
the minimum number of zeros of the function f(x) =

∑n
i=1 cos(aix) in the interval [0, 2π]. Although

Littlewood guessed that this number should always be linear in n, Borwein, Erdélyi, Ferguson and
Lockhart [15] showed that the there are integers a1, . . . , an such that f(x) has at most n5/6 zeros. This
result was later improved to (n log n)2/3 by Juškevičius and Sahasrabudhe [49] and, independently, by
Konyagin [54]. A complementary bound has been proven by Sahasrabudhe [69] and Erdélyi [33, 34],
who showed that f(x) always has at least (log log log n)1/2−ε roots, and this was later improved to
(log log n)1−o(1) by Bedert [13].

In the Appendix, we discuss further extensions of Chowla’s problem in arbitrary finite groups. The
proof of Theorem 1.1 is presented in Section 3, and the proof of Theorem 1.2 is presented in Section 12.

1.2 Maximum Cut

Given a graph G, a cut in G is a partition (U, V ) of the vertex set together with all the edges having
exactly one endpoint in both parts. The size of the cut is the number of its edges. The MaxCut of G
is the maximum size of a cut, denoted by mc(G). The MaxCut is among one the most studied graph
parameters, lying at the intersection of theoretical computer science [32, 40, 51], extremal combinatorics
[2, 3, 30, 35] and probabilistic graph theory [23, 22, 27]. In theoretical computer science, one is usually
interested in approximating the size of the MaxCut efficiently, and in extremal combinatorics the goal
is often to establish good bounds on the MaxCut depending on various graph parameters, such as the
number of edges or vertices of the graph.

A simple probabilistic argument shows that every graph with m edges has a cut of size at least m/2.
Indeed, a random cut, chosen from the uniform distribution on all cuts, has size m/2 in expectation. The
constant 1/2 cannot be improved in general, and therefore when measuring the size of the MaxCut in G,
it is often more natural to talk about the surplus of G, which is defined as surp(G) = mc(G)−m/2. The
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trivial bound can be improved, a fundamental result of Edwards [30, 31] shows that any graph G with
m edges has mc(G) ≥ m

2 +
√
8m+1−1

8 or, equivalently, that surp(G) ≥
√
8m+1−1

8 , which is sharp when G
is a clique on an odd number of vertices.

In general, if G is a disjoint union of constantly many cliques, then the MaxCut of G is of size
m/2 +O(

√
m). This raises the following natural question.

Can this bound be improved if G is far from a disjoint union of cliques?

One way to ensure that a graph is far from a disjoint union of cliques is to assume that it does
not contain some fixed graph H as a subgraph. The study of the size of the MaxCut, and in turn the
surplus, in such graphs was initiated by Erdős and Lovász in the 1970’s (see [35]). One of the first major
results in the area is due to Alon [2], who proved that if a graph G has m edges and no triangles, then
surp(G) = Ω(m4/5), and this bound is tight. There are two natural ways to generalize this result - one is
to study graphs without short cycles and the other is to study graphs avoiding Kr, the complete graph
on r vertices.

The surplus in graphs without short cycles, studied in [3, 6, 10, 39], proved to be the easier of these
two problems, and [10, 39] achieve tight bounds for this problem. On the other hand, finding the size
of the minimum surplus in Kr-free graphs seems to be much more difficult. Alon, Bollobás, Krivelevich,
and Sudakov [6] proved that for every r, there exists εr > 0 such that every Kr-free graph has surplus
at least m1/2+εr . This was improved by Carlson, Kolla, Li, Mani, Sudakov, and Trevisan [18], and then
Glock, Janzer, and Sudakov [39] established surp(G) ≥ m

1
2
+ 3

4r−2 .
However, these results seem to be far from the truth, since Alon, Bollobás, Krivelevich and Sudakov

conjectured in [3] that the answer should be surp(G) ≥ m3/4+εr for some εr > 0. This conjecture is still
wide open, and, in fact, for a long time, it was a tantalizing open problem to find any absolute constant
ε > 0 (independent of r), such that every Kr-free graph has surplus Ωr(m

1/2+ε). Glock, Janzer and
Sudakov [39] write “Arguably, the main open problem is to decide whether there exists a positive absolute
constant ε such that any Kr-free graph with m edges has surplus Ωr(m

1/2+ε).” Our next main result not
only proves this, but shows that we can achieve such a large surplus by forbidding extremely large cliques
as well.

Theorem 1.3. For every δ > 0 there exists ε > 0 such that the following holds for every sufficiently
large m. Let G be a graph with m edges such that G contains no clique of size m1/2−δ. Then G has a
cut of size at least m

2 +m1/2+ε.

In the very extreme case, Balla, Hambardzumyan, and Tomon [9] recently showed that graphs with
clique number o(

√
m) already have surplus ω(m1/2). Despite the similarity between this result and the

previous theorem, there is no implication between the two due to the hidden dependencies. The methods
achieving these results are also very different, despite both being algebraic in nature.

Coming back to the motivating question of whether graphs with small surplus must necessarily look
like unions of cliques, we also prove the following stability result.

Theorem 1.4. There exists ε > 0 such that the following holds for every sufficiently large n. If G is an
n-vertex m-edge graph with no cut of size larger than m

2 +n1+ε, then G is n−ε-close to the disjoint union
of cliques.

There is a close relationship between the MaxCut of a graph G and its smallest eigenvalue. It is
well known that surp(G) ≤ |λn|n (see e.g. Claim 5.1 for a short proof). For many algebraically defined
graph families, we also have surp(G) = Θ(|λn|n), but in general these quantities can be far apart. A
good way to think about the surplus as a robust version of the smallest eigenvalue: in many natural
cases surp(G) = Θ(|λn|n), but surp(G) is much less sensitive to local modifications. Therefore, it is not
unexpected that we obtain similar results as in the smallest eigenvalue case, as we present in the next
section.

The proof of Theorem 1.3 is presented in Section 12, and the proof of Theorem 1.4 in Section 13.2.
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1.3 Smallest eigenvalue

A central topic of spectral graph theory is understanding the structure of graphs, whose adjacency matrix
has large smallest eigenvalue. Let G be an n-vertex graph and let λn denote the smallest eigenvalue of its
adjacency matrix. A simple consequence of the Cauchy-interlacing theorem is that if G is non-empty, then
λn ≤ −1 with equality if and only if G is the disjoint union of cliques. In the 1970’s, Cameron, Goethels,
Seidel, and Shult [17] gave a complete characterization of graphs satisfying |λn| ≤ 2, which are exactly
generalized line graphs and some sporadic examples with at most 36 vertices. More recently, Koolen, Yang
and Yang [58] obtained a partial characterization in the case |λn| ≤ 3 by integral lattices. Beyond these
specific values, much less is known. Kim, Koolen, and Yang [52] proved the following structure theorem
for regular graphs satisfying |λn| ≤ λ. One can find dense induced subgraphs Q1, . . . , Qc in G such that
each vertex lies in at most λ of Q1, . . . , Qc, and almost all edges are covered by the union of Q1, . . . , Qc.
However, the proof of this is based on certain forbidden subgraph characterizations and Ramsey theoretic
arguments, and the results are no longer meaningful if λ grows faster than polylogarithmic in n. For
highly structured graphs, such as strongly regular graphs (SRG), it is known [57] that if |λn| is at most a
small polynomial of the average degree, then the graph belongs to one of two special families. However,
these results rely on the highly structured nature of SRGs. We refer the interested reader to the survey
of Koolen, Cao, and Yang [56] for a general overview of the topic.

The smallest eigenvalue of the adjacency matrix also has theoretical importance. The celebrated
Hoffman bound (see e.g. [43]) states that it controls the independence number of the graph. In particular,
if G is an n-vertex d-regular graph, then α(G) ≤ n|λn|

|λn|+d . Furthermore, the maximum of |λn| and the
second largest eigenvalue λ2 determines the expansion and mixing properties of the graph [4], and as we
will discuss later, λn controls the maximum cut.

Many of these results show that the property of having small |λn| and the existence of large trivial
substructures, such as cliques, are interconnected. However, such results were previously only known
when |λn| is bounded by a constant, or growing very slowly with n. We prove that this phenomenon
already starts to appear when |λn| < n1/4−o(1), and we show that graphs with smallest eigenvalue below
this threshold converge to a trivial structure: a disjoint union of cliques. The exponent 1/4 is also sharp,
a celebrated construction of de Caen [26] related to equiangular lines provides a graph with smallest
eigenvalue |λn| = Θ(n1/4) which is far from the disjoint union of cliques. We say that an n-vertex graph
G is µ-close to some family of graphs F if the edit distance of G to some member of F is at most µn2.

Theorem 1.5. Let ε, δ > 0, then the following holds for every sufficiently large n. Let G be an n-vertex
graph such that |λn| ≤ n1/4−ε. Then G is δ-close to the disjoint union of cliques.

The previous theorem only ensures o(1)-closeness in case |λn| ≤ n1/4−o(1). However, by requiring a
slightly stronger upper bound on |λn|, we can also establish polynomial proximity to a disjoint union of
cliques.

Theorem 1.6. Let ε > 0, then there exists α > 0 such that the following holds for every sufficiently
large n. Let G be an n-vertex graph such that |λn| ≤ n1/6−ε. Then G is n−α-close to the disjoint union
of cliques.

While these results give strong structural results about somewhat dense graphs with small |λn|, they
are no longer meaningful for sparse graphs G. On the other hand, it is not possible to formulate any
reasonable extension of the previous theorems for sparse graphs, as the following example shows. The
line graph of a graph always satisfies that |λn| ≤ 2, but the line graph of the complete graph Ks has
m = Θ(s3) edges and it is not possible to add/remove o(m) edges to get a disjoint union of cliques.

Despite this, we recall that Theorem 1.2 shows that large cliques, with size comparable to the average
degree, do emerge in graphs of any sparsity and small |λn|. This suggests that such graphs might be close
to the blow-up of much smaller graphs, and shows that trivial structures start to appear at any sparsity,
assuming |λn| is sufficiently small.
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We prove Theorem 1.5 in Section 9, Theorem 1.6 in Section 13.1.

1.4 Alon–Boppana theorem

The Alon–Boppana theorem [63] is a cornerstone result of spectral graph theory. It states that if G is an
n-vertex d-regular graph, then the second largest eigenvalue λ2 of the adjacency matrix is at least

λ2 ≥ 2
√
d− 1− on(1).

This result is often misquoted, with the on(1) term forgotten or not understood properly. In its precise
formulation, the Alon–Boppana theorem states that if D is the diameter of G, then λ2 ≥ 2

√
d− 1− 2

√
d−1

⌊D/2⌋ .

In particular, if D → ∞, which is satisfied in case d = no(1), one gets the former lower bound. For fixed d,
families of graphs satisfying max{|λn|, λ2} ≤ 2

√
d− 1 are called Ramanujan graphs, and their existence is

known for many different values of d [47]. A breakthrough of Friedman [38] shows that random d-regular
graphs are close to being Ramanujan. Since the spectral gap d − λ2 controls the expansion properties
of the graphs, the Ramanujan graphs are optimal expanders. For this reason, such graphs are of great
interest in the design of resilient networks, with countless further applications in theoretical computer
science and extremal combinatorics.

In the case where the diameter D is at most three, which can already happen if d ≈ n1/3, the
Alon–Boppana bound is no longer meaningful. Also, one cannot hope for the bound λ2 = Ω(

√
d) to hold

unconditionally; for example the complete bipartite graph has λ2 = 0. Recently, a number of authors
[8, 11, 48, 64] studied the second eigenvalue in the case of denser graphs, and uncovered some highly
unexpected behavior of its extremal value. In particular, [64] (see also [11] for a short note) proved
that λ2 = Ω(d1/2) continues to hold for d ≤ n2/3, however, λ2 = Ω(n/d) for d ∈ [n2/3, n3/4], and this
is (essentially) sharp by an old strongly regular graph construction of Metz (see [75]). Moreover, for
d ∈ [n3/4, (1/2− ε)n], we have λ2 ≥ Ωε(d

1/3), which is also sharp for d = Ω(n) by recent constructions of
Davis, Huczynska, Johnson, and Polhill [25]. As we observed earlier, if d = n/2, we might have λ2 = 0
by the complete bipartite graph. In general, when d = (1 − 1/r)n for some positive integer r, then the
Turán graph Tr(n), the complete r-partite graph with parts of size n/r, is d-regular and satisfies λ2 = 0.

However, what happens when d is not of the form (1− 1/r)n, or G is far from a Turán graph? The
methods of [64] and related papers no longer apply when d > n/2, and there are no obvious further
obstructions for having large second eigenvalue. In [64], it was conjectured that the answer to the second
question is Ω(n1/4), which is then sharp by the equiangular lines construction of de Caen [26]. Considering
complements, Theorem 1.5 immediately implies an almost complete solution of this conjecture. If G is a
regular graph with second eigenvalue λ2, then the complement of G has smallest eigenvalue −λ2 − 1.

Theorem 1.7. Let ε, δ > 0, then the following holds for every sufficiently large n. Let G be an n-vertex
d-regular graph such that λ2 ≤ n1/4−ε. Then G is δ-close to a Turán graph. Thus, if λ2 < n1/4−ε, then

d

n
∈
{
1− 1

r
: r ∈ Z+

}
+ [−δ, δ].

1.5 Bisection width

The bisection width of a graph is defined as the minimum number of edges crossing a balanced partition
of the vertex set, and it is denoted by bw(G). As a natural dual to the maximum cut, this parameter
is also of central interest in theoretical computer science [45, 46, 50], probabilistic [12, 28, 27, 29] and
extremal graph theory [1, 64, 66].

It is convenient to measure the bisection width via the deficit, which is defined as

dfc(G) = e(G)

(
1

2
+

1

2n− 2

)
− bw(G).

6



By the uniform random balanced cut, the deficit is always non-negative, and if G is a regular graph that
is neither empty nor complete, then dfc(G) = Ω(n), see e.g. [64]. This is optimal if G is a Turán graph.

A classic result of Alon [1] states that if G is d-regular, and d = O(n1/9), then dfc(G) = Ω(
√
dn),

which is optimal for random d-regular graphs. Recently, Räty, Sudakov, and Tomon [64] greatly extended
this bound by showing that

dfc(G) =


Ω(

√
dn) if d ≤ n2/3,

Ω(n2/d) if d ∈ [n2/3, n4/5],

Ω̃(d1/4n) if d ∈ [n4/5, (1/2− ε)n].

These results are sharp for d ∈ [1, n3/4], and there are d-regular graphs for d ≈ n/3 with deficit O(n4/3).
For d = n(1 − 1/r), where r is a positive integer, the Turán graph Tr(n) shows that we cannot hope
for a bound better than Ω(n). Räty, Sudakov, and Tomon [64] conjectured that Turán graphs are the
only obstruction to large deficit. Using the terminology of positive discrepancy, they conjectured that if
dfc(G) = o(n5/4), then G is o(1)-close to a Turán graph. We prove that this conjecture holds qualitatively,
by establishing the bisection width analogue of our MaxCut result (Theorem 1.4).

Theorem 1.8. There exists ε > 0 such that the following holds for every sufficiently large n. Let G be
an n-vertex d-regular graph. If the bisection width of G is more than dn

4 − n1+ε, then G is n−ε-close to
a Turán graph. Thus, if dfc(G) ≤ n1+ε, then

d

n
∈
{
1− 1

r
: r ∈ Z+

}
+ [−n−ε, nε].

The proof of Theorem 1.8 is presented in Section 13.2.

2 Proof overview

First, we outline the proof of Theorem 1.5, that is, that if a graph G has smallest eigenvalue |λn| ≤ n1/4−ε,
then G is δ-close to a disjoint union of cliques. Let A be the adjacency matrix of G. We study the identity
A = A ◦A from a spectral perspective, where ◦ denotes the Hadamard product (see Section 4 for formal
definitions). Writing A =

∑n
i=1 λiviv

T
i for the spectral decomposition, we get that

n∑
i=1

λiviv
T
i =

n∑
i=1

n∑
j=1

λiλj(vi ◦ vj)(vi ◦ vj)T . (1)

But how to use this identity? An instructive case is when G is a Cayley graph on some finite abelian group
(Γ,+). In this case, (1) reduces to a clean convolution relation: λa = 1

n

∑
b+c=a λbλc for all a ∈ Γ. Here,

the eigenvalues are re-indexed by the group elements, and the identity follows from special properties
of the characters of the group, which are also the eigenvectors of G. See Brouwer and Haemers [16] for
further details. We can almost ignore the negative terms in the sum since the smallest eigenvalue is
bounded. Hence, this convolution relation basically tells that large eigenvalues reinforce each other, i.e.
if λb, λc ≥ T , then λb+c ≳ T 2/n. This motivates the definition ST =

∑
λi≥T λi, the spectral weight above

threshold T . Summing over all λb ≥ T and λc ≥ T , the above observation essentially gives that

ST 2/n =
∑

λa≥T 2/n

λa ≳
1

n

∑
λb,λc≥T

λbλc =
1

n
S2
T .

Surprisingly, this does generalize to arbitrary graphs to give the curious recursive inequality on the sum
of large eigenvalues: for all T ≥ 2|λn|

√
n,

4nST2

2n

≥ S2
T . (2)

7



We achieve this by compressing both sides of (1) to the subspace W spanned by the vectors vi ◦ vj where
λi, λj ≥ T ; see Section 6.1 for a detailed argument. In terms of the quadratic sum of the eigenvalues,
this implies that most contribution comes from large eigenvalues; we show this in Section 6.3. But this
means that A is close to a low-rank positive semidefinite matrix in the Frobenius norm, which is only
possible if G is close to a disjoint union of cliques. We prove this in Section 9.

Now we discuss the proof of Theorem 1.6, which requires a lot more work. Recall that this theorem
states that if a graph G has smallest eigenvalue |λn| ≤ n1/6−ε, then G is n−α-close to a disjoint union of
cliques. The bottleneck in the previous argument is the last part, it requires that the rank of the low-rank
approximation of A is at most constant, in which case we can establish o(1)-closeness to a disjoint union
of cliques. In order to overcome this, we first aim to show that either G is already sparse (in which
case G is n−α-close to the empty graph), or G contains very large cliques. If we are able to do this,
then we repeatedly pull out large cliques, which gives enough structure to easily conclude the desired
result. In order to find our large cliques, we go through 4 phases of densification, i.e. we find denser and
denser subgraphs of G. We keep in mind that the Cauchy interlacing theorem ensures that the induced
subgraphs of G also have large smallest eigenvalue. In what follows, we use c to denote a small positive
constant depending only on ε and α, and different occurrences of c might denote different quantities.

Phase 1. We show that G contains an unusually high number of triangles. We count triangles by the
cubic sum of eigenvalues, and we argue that this sum is large because most of the mass of the
quadratic sum of eigenvalues is concentrated on the few largest eigenvalues. Having many triangles
means that we can find a vertex whose neighbourhood is much denser than G. We repeat this
process until we find a subgraph G1 on n1−c vertices of positive constant density. This phase of
the argument requires |λn| ≤ n1/6−ε. This can be found in Section 8.

Phase 2. In Theorem 1.5, we already established that G1 is o(1)-close to a disjoint union of cliques.
Therefore, if G1 has positive constant edge density, this implies that G1 contains a linear size
subgraph G2 of edge density 1− o(1). This can be found in Section 9.

Phase 3. For very dense graph, we employ a new method, inspired by the works of [64]. Let G be an
n-vertex graph of density 1 − p, with 10−5 > p > n−1/2, and |λn| ≤ n1/6−o(1). We consider the
matrix

B = A− λ1v1v
T
1 + |λn|I,

and we study the triple Hadamard product B ◦ B ◦ B. The matrix B is positive semidefinite,
so the Schur product theorem ensures that B ◦ B ◦ B is also positive semidefinite. But then
xT (B ◦ B ◦ B)x ≥ 0 for every vector x. We choose x to be the characteristic vector of a carefully
chosen, linear sized set U ⊂ V (G), and argue that the previous inequality can be only satisfied
if the density of G[U ] is at least 1 − O(p3). Therefore, repeating this argument on G2, we get a
rapid density increment until we reach a graph G3 of edge density 1− n−1/2. This can be found in
Section 10.

Phase 4. Above edge density 1−n−1/2, we may consider simple identities involving the eigenvalues. Let
G be a graph of edge density at least 1− n−1/2 and |λn| ≤ n1/6, and consider the four identities

∆(G) ≥ λ1,

n∑
i=1

λi = 0,

n∑
i=1

λ2
i = 2e(G),

n∑
i=1

λ3
i ≥ 0.

We find an almost regular subgraph G4 of G3, and use simple algebraic manipulations to argue
that the expressions above can be only satisfied if G4 has density at least 1−n−1+c. At this point,
we simply apply Turán’s theorem to find a clique of size n1−c. This can be found in Sections 11
and 12.
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Next, we discuss Theorem 1.2, which states that any graph with average degree d and smallest
eigenvalue |λn| ≤ dγ contains a clique of size d1−O(γ). In order to prove this, we introduce a phase 0
of the densification process, which immediately lets us move to density at least n−c, assuming |λn| is
sufficiently small with respect to the average degree. Then, we apply the previous four densification steps
to conclude the proof.

Phase 0. Let G be a graph of average degree d, then we show that G contains a subgraph on d vertices
of edge density Ω(1/|λn|). This follows by picking a vertex x with a set of d neighbours S, and
then analyzing vTAv for an appropriately chosen v with support {x} ∪ S. This can be found in
Section 7.

In order to prove our results concerning graphs with small maximum cut, that is, Theorems 1.3 and
1.4, we follow the same steps. In Section 5, we present a toolkit that gives various lower bounds on the
MaxCut based on the negative eigenvalues of the graph. With the help of these, instead of having a
bound on |λn|, we can bound the sum, quadratic sum, and cubic sum of the negative eigenvalues. This
allows us to transfer most of the machinery developed for graphs with bounded smallest eigenvalue to
graphs with bounded MaxCut, but with the cost of incurring some losses quantitatively.

3 Chowla’s cosine problem

In this section, we give a short self–contained proof of Theorem 1.1, assuming Theorem 1.2. We begin
the section by recalling some standard notation. Let G be a finite group, A ⊂ G be a symmetric subset
(i.e. a set satisfying A = A−1), and let Γ = Cay(G,A). Recall that Cay(G,A) is the Cayley graph on G
generated by A, that is, the graph on vertex set G in which x, y ∈ G are joined by an edge if xy−1 ∈ A.
In case G is abelian, we use + to denote the group operation. In this case, it is well known that the
eigenvalues of G are the values of the discrete Fourier transform 1̂A. In the special case G = Z/nZ, this
gives that the eigenvalues of the Cayley graph are∑

a∈A
e

2πi
n

·aξ =
∑
a∈A

cos

(
2πaξ

n

)
for ξ ∈ Z/nZ. We restate Theorem 1.1 for the reader’s convenience.

Theorem 3.1. There exists an absolute constant γ > 0 such that for any set A of positive integers, there
exists x ∈ [0, 2π] such that ∑

a∈A
cos(ax) ≤ −Ω(|A|γ).

Proof. Without loss of generality, we may assume |A| is sufficiently large. Let n > 4|A| be a prime larger
than all elements of A, and let Γ = Cay(Z/nZ, A ∪ −A) be the Cayley graph with the generating set
A ∪ −A (where −A = {−a : a ∈ A}). Then Γ is an n-vertex d-regular graph with d = 2|A|. Each
ξ ∈ Z/nZ corresponds to an eigenvalue of Γ given by

λξ =
∑

a∈A∪−A

e2πiaξ/n = 2
∑
a∈A

cos

(
2πaξ

n

)

for some ξ ∈ Z/nZ. Hence, if we denote by λn the smallest eigenvalue of Γ, there exists x = 2πξ
n such

that ∑
a∈A

cos(ax) =
1

2
λn.

9



Thus, our aim is to show that |λn| ≥ dγ , for an absolute constant γ > 0, since this implies that∑
a∈A cos(ax) ≤ −dγ ≤ −Ω(|A|γ), as needed. Assume, for the sake of contradiction, that |λn| < dγ .

We use Theorem 1.2 to find a clique S of size |S| = d1−cγ for some absolute constant c, assuming d is
sufficiently large with respect to γ. We now argue that Γ cannot contain such large cliques.

Claim 3.2. There exists a non-zero t ∈ Z/nZ such that |(t+ S) ∩ S| ≥ |S|(|S| − 1)/d.

Proof. As S is a clique in Γ, we have S − S ⊂ A ∪ −A ∪ {0}. By a simple averaging argument, there
exists t ∈ A ∪ −A such that s− s′ = t for at least |S|(|S|−1)

2|A| = |S|(|S|−1)
d pairs (s, s′) ∈ S × S. Hence, for

at least |S|(|S| − 1)/d values of s ∈ S we have s+ t ∈ S, and therefore |(t+ S)∩ S| ≥ |S|(|S| − 1)/d.

For a positive integer k, let Hk is the graph that is formed by a clique of size 2k, and an additional
vertex connected to half of the vertices of the clique.

Claim 3.3. The smallest eigenvalue µ of Hk satisfies µ < −
√

k/2.

Proof. Let X ∪ Y be the partition of C, where X is the neighbourhood of x0. Let B be the adjacency
matrix of Hk and let v ∈ RV (Hk) be the vector defined as v(x0) = 1/

√
2, v(y) = − 1

2
√
k

if y ∈ X, and
v(y) = 1

2
√
k

if y ∈ Y . Then ||v||2 = 1 and

vTBv = 2
∑

ab∈E(Hk)

v(a)v(b) = 2k · 1√
2
·
(
− 1

2
√
k

)
+ 4 ·

(
k

2

)
· 1

4k
− 2 · k2 · 1

4k
= −

√
k

2
− 1

2
< −

√
k

2
,

where the first term is the contribution of the edges x0y, y ∈ X, the second term is the contribution of
edges yy′ with y, y′ ∈ X or y, y′ ∈ Y , and the third term is the contribution of edges yy′ with y ∈ X and
y′ ∈ Y .

By Claim 3.3, the smallest eigenvalue µ of Hk satisfies µ < −1
2

√
k. Therefore, by the Cauchy

interlacing theorem, Γ does not contain Hk as an induced subgraph for k = 4d2γ . As |S| > 2k, each
vertex of Γ sends either at most k edges to S, or at least |S| − k edges. We prove that every vertex in Γ
must send at least |S| − k edges to S. This easily leads to a contradiction for n sufficiently large: this
implies that there are at least (n−|S|)(|S|−k) ≥ n

2 ·
|S|
2 > d|S| edges with an endpoint in S, contradicting

that Γ is d-regular.

Claim 3.4. Every v ∈ V (Γ) sends at least |S| − k edges to S.

Proof. We prove by induction on ℓ that every vertex of ℓt+S sends at least |S| − k edges to S. As every
vertex v ∈ V (Γ) is contained in some ℓt + S, this finishes the proof. The base case ℓ = 0 is trivial, so
let ℓ ≥ 1. By our induction hypothesis and translation invariance, every vertex v ∈ ℓt+ S sends at least
|S| − k edges to t+ S. But then v sends at least

|S ∩ (t+ S)| − k = Ω(|S|2/d)− k = Ω(d1−2cγ)− 4d2γ > 4d2γ = k

edges to S ∩ (t+ S), and in particular, more than k edges to S. Here the last inequality holds if we take
γ = 1

3+2c and |A| sufficiently large. Therefore, as Γ contains no induced copy of Hk, v must send at least
|S| − k edges to S, and we are done.
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4 Preliminaries

We recall some basic facts and standard notation from linear algebra and graph theory. The edge density
of a graph G is m/

(
n
2

)
, where m = e(G) is the number of edges. Given a subset U of the vertices, G[U ]

denotes the subgraph of G induced on vertex set U . Also, if V ⊂ V (G) is disjoint form U , then G[U, V ]
is the bipartite subgraph of V (G) induced between U and V . The complement of G is denoted by G.
The maximum degree of G is denoted by ∆(G), and the average degree by d(G). If G has n vertices, we
will often identify the set of vertices of G with [n].

The MaxCut of G, denoted by mc(G), is the maximum size of a cut, where a cut is a partition (U, V )
of the vertices into two parts, with all the edges having exactly one endpoint in both parts. The size of
a cut is the number of its edges. The surplus of G is defined as surp(G) = mc(G)−m/2, where m is the
number of edges of G. Note that surp(G) is always nonnegative. A useful property of the surplus is that
if G0 is an induced subgraph of G, then surp(G0) ≤ surp(G), see e.g. [39].

Given an n× n real symmetric matrix M , we denote by λ1(M) ≥ · · · ≥ λn(M) the eigenvalues of M
with multiplicity. As we will see, the surplus of G is controlled by the negative eigenvalues of the graph.
If G is an n-vertex graph whose adjacency matrix is A, then we denote by λi = λi(A) the eigenvalues
of A, sometimes also calling them the eigenvalues of G. We also denote by v1, . . . , vn a corresponding
orthonormal basis of eigenvectors. By the Perron–Frobenius theorem, we may take v1 to be a vector
with non-negative entries, which we call the principal eigenvector of A. Furthermore, the corresponding
eigenvalue satisfies λ1 ≥ d(G). See the survey [24] as a general reference on the principal eigenvector.

Given two n× n matrices A and B, their scalar product is defined as

⟨A,B⟩ = tr(ABT ) =
∑

1≤i,j≤n

Ai,jBi,j .

The Frobenius-norm of an n× n matrix A is

∥A∥2F = ⟨A,A⟩ =
n∑

i,j=1

A2
i,j .

If A is symmetric with eigenvalues λ1, . . . , λn, then we also have

∥A∥2F = ⟨A,A⟩ = tr(A2) =
n∑

i=1

λ2
i .

The Hadamard product (also known as entry-wise product) of A and B is the n × n matrix A ◦ B
defined as (A ◦ B)i,j = Ai,jBi,j . We denote the k-term Hadamard product A ◦ · · · ◦ A by A◦k. A useful
feature of the Hadamard product, which is a key component of our arguments, is that it preserves positive
semidefiniteness.

Theorem 4.1 (Schur product theorem). If A and B are positive semidefinite matrices, then A ◦ B is
also positive semidefinite.

We also exploit the simple observation that if A is an adjacency matrix, then A = A ◦ A. Another
useful identity involving the Hadamard product is that if x, y, u, v are vectors, then

(xyT ) ◦ (uvT ) = (x ◦ u)(y ◦ v)T .

We also use the Hadamard product for vectors: for u, v ∈ Rn, their Hadamard product vector u ◦ v ∈ Rn

is defined by (u ◦ v)(i) := u(i)v(i) for all i ∈ {1, . . . , n}.
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5 Spectral lower bounds for the surplus

In this section, we present bounds on the MaxCut of a graph in terms of its spectrum. These inequalities
will be crucial in transferring our results for the smallest eigenvalue to the MaxCut setting.

Claim 5.1. For an n-vertex graph G with the smallest eigenvalue λn, we have surp(G) ≤ |λn|n/4.

Proof. Let A be the adjacency matrix of G. We can assign a vector with entries ±1 to each cut V (G) =
X ∪ Y , by setting xu = 1 if u ∈ X and xu = −1 otherwise. Then, the surplus of this cut equals
1
2

(
e(X,Y )− e(X)− e(Y )

)
= −1

2

∑
{u,v}⊆V (G) xuAuvxv = −1

4

∑
u,v∈V (G) xuAuvxv. Hence, we have

surp(G) =
1

4
max

x∈{−1,1}n
−xTAx =

1

4
max

x∈[−1,1]n
−xTAx.

But, we have −xTAx ≤ |λn|∥x∥22 for every vector x ∈ Rn, and so surp(G) ≤ 1
4 |λn|

√
n
2
= |λn|n/4.

The key ingredient of the above proof is the relation surp(G) = 1
4 maxx∈[−1,1]n −xTAx, which can also

be written as surp(G) = 1
4 maxx∈[−1,1]n⟨−A, xxT ⟩, where we observe that xxT is a positive-semidefinite

matrix with diagonal entries bounded by 1. As we will see, it will be very convenient to define the
semidefinite relaxation of the surplus as follows. Given an n-vertex graph G with adjacency matrix A,
define

surp∗(G) = max
X

−⟨A,X⟩,

where the maximum is taken over all n× n positive semidefinite matrices X such that Xi,i ≤ 1 for every
i ∈ [n]. The following inequality between surp(G) and surp∗(G) can be found in [65], and it is a simple
application of the graph Grothendieck inequality of Charikar and Wirth [19].

Claim 5.2 ([65]). For every graph G, we have surp∗(G) ≥ surp(G) ≥ Ω
(
surp∗(G)

logn

)
.

The semidefinite relaxation surp∗(G) allows us to obtain lower bounds on the surplus using the
negative eigenvalues of a graph G. Parts of the following lemma and similar bounds can be also found
in [64, 65]. Given a graph G, let

∆∗(G) := min{∆(G),∆(G)}.

Lemma 5.3. There exists an absolute constant c > 0 such that the following holds. Let G be a graph on
n vertices with eigenvalues λi = λi(G), and let ∆∗ = ∆∗(G). Then

(i) surp∗(G) ≥
∑
λi<0

|λi|

(ii) surp∗(G) ≥ c√
∆∗+1

∑
λi<0

λ2
i

(iii) surp∗(G) ≥ c
∆∗+1

∑
λi<0

|λi|3.

Before we prove Lemma 5.3, we briefly discuss two preliminary results. First, we show that the
entries of eigenvectors corresponding to large eigenvalues are smoothly distributed. Then, we show that
the entries of the principal eigenvector are especially well behaved.

Lemma 5.4. Let G be an n-vertex graph, and let λ be an eigenvalue with normalized eigenvector v. Then

||v||∞ ≤
√
n

|λ|
.
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Proof. For every b ∈ [n], we have λv(b) =
∑

b∼i v(i), where we use x ∼ y to denote that x is connected
to y by an edge in G. By the inequality between the arithmetic and quadratic mean,

1

n

∣∣∣∣∣∑
b∼i

v(i)

∣∣∣∣∣ ≤ 1

n

n∑
i=1

|v(i)| ≤
√∑

i v(i)
2

n
=

1√
n
,

where we used that
∑n

i=1 v1(i)
2 = 1. Hence |λ||v(b)| ≤

√
n.

Lemma 5.5. Let G be an n-vertex graph, whose complement has edge density p ≤ 1/10 and maximum
degree ∆̄ = ∆(G). If v1 is the principal eigenvector of G, then for each i ∈ [n] we have

1− 2∆̄/n√
n

≤ v1(i) ≤
1 + 2p+ 2/n√

n
.

Proof. Let d = d(G) = (1− p)(n− 1) be the average degree of G, and recall that λ1 ≥ d. By Lemma 5.4,

v1(b) ≤
√
n

λ1
≤

√
n

d
=

√
n

(1− p)(n− 1)
≤ 1 + 2p+ 2/n√

n
.

In the last inequality, we used that p < 1/10. To prove the lower bound, we first observe that

1 =

n∑
i=1

v1(i)
2 ≤ ∥v1∥∞

n∑
i=1

v1(i),

which implies that
∑n

i=1 v1(i) ≥
λ1√
n
. But then using the identity Av1 = λ1v1,

λ1v1(b) =
∑
i∼b

v1(i) ≥
n∑

i=1

v1(i)− ∆̄∥v1∥∞ ≥ λ1√
n
− ∆̄

√
n

λ1
=

λ1√
n

(
1− ∆̄

n

λ2
1

)
≥ λ1√

n

(
1− 2∆̄

n

)
,

where we used that λ2
1 ≥ d2 ≥ n2/2 in the last inequality. Canceling λ1 gives v1(b) ≥ 1−2∆̄/n√

n
.

Proof of Lemma 5.3. We begin by showing the inequalities (i) and (iii), which we then combine to derive
(ii). Let v1, . . . , vn be an orthonormal basis of eigenvectors corresponding to the eigenvalues λ1, . . . , λn;
so A =

∑n
i=1 λiviv

T
i . The inequalities (i) and (iii) will be shown by plugging in the appropriate test

matrix X in the formula surp∗(G) = maxX −⟨A,X⟩. Observe that, if we choose X =
∑n

i=1 αiviv
T
i for

some real numbers α1, . . . , αn, then

⟨A,X⟩ =
n∑

i=1

n∑
j=1

αiλj⟨vivTi , vjvTj ⟩ =
n∑

i=1

n∑
j=1

αiλj⟨vi, vj⟩2 =
n∑

i=1

αiλi.

(i) Let X =
∑

λi<0 viv
T
i . Then X is positive semidefinite, and as v1, . . . , vn is an orthonormal basis,

we have

Xj,j =
∑
λi<0

vi(j)
2 ≤

n∑
i=1

vi(j)
2 =

n∑
i=1

⟨vi, ej⟩2 = ∥ej∥2 = 1.

Therefore,
surp∗(G) ≥ −⟨A,X⟩ =

∑
λi<0

|λi|.

(iii) Let β = 1
100(∆∗+1) , and X = β

∑
λi<0 λ

2
i viv

T
i . Then X is positive semidefinite. It is enough to

prove that the diagonal entries of X are bounded by 1, as then surp∗(G) ≥ −⟨A,X⟩ = β
∑

λi<0 |λi|3.
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First, we consider the (easier) case ∆∗ = ∆(G). We observe that

βA2 −X = β
∑
λi>0

λ2
i viv

T
i

is positive semidefinite, so the diagonal entries of βA2 dominate the diagonal entries of X. But (A2)i,i is
the degree of vertex i, so (A2)i,i ≤ ∆ ≤ 1/β, and the claim follows.

Next, we consider the case ∆∗ = ∆(G). We may assume that the edge density of G is less than 1/10,
otherwise ∆∗ = Ω(n), and the previous case implies surp∗(G) = Ω( 1n)

∑
λi<0 |λi|3. To show that Xi,i ≤ 1,

we analyze the matrix B = A− λ1v1v
T
1 . Since

βB2 −X = β
∑

i ̸=0,λi>0

λ2
i viv

T
i ,

we have that βB2 −X is positive semidefinite. Hence, (βB2)i,i ≥ Xi,i for every i ∈ [n]. Therefore, it is
enough to show that (B2)i,i ≤ 1/β = 100(∆∗ + 1).

To show this, we first bound the entries of B. We denote by p the density of G, and observe that
p ≤ ∆∗n/2

(n2)
= ∆∗

n−1 . Then, Lemma 5.5 implies that for any i, j ∈ [n] we have

1− 5(∆∗ + 1)

n
≤ (n− 1)(1− p)

(
1− 2∆∗/n√

n

)2

≤ λ1v1(i)v1(j) ≤ n

(
1 + 2p+ 2/n√

n

)2

≤ 1 +
5(∆∗ + 1)

n
.

Therefore, for every i, j ∈ [n], if ij ∈ E(G) and Ai,j = 1, then |Bi,j | ≤ 5(∆∗+1)
n . Otherwise, we have

|Bi,j | ≤ 1 + 5(∆∗ + 1)/n ≤ 6. From this, we have

(B2)i,i =
n∑

j=1

(Bi,j)
2 ≤ 36∆∗ + n

25(∆∗ + 1)2

n2
≤ 100(∆∗ + 1).

(ii) We show that (i) and (iii) can be combined to give the desired lower bound on surp∗(G). Namely,
we have

surp∗(G)2 ≥ β

∑
λi<0

|λi|3
∑

λi<0

|λi|

 ≥ β

∑
λi<0

λ2
i

2

.

Note that the first inequality is the combination of (i) and (iii), while the second one is simply the
Cauchy-Schwartz inequality applied to the sequences (|λi|3)λi<0 and (|λi|)λi<0. Taking square roots then
proves (ii).

Finally, we remark two simple, but important properties of surp∗(·), that will be used repeatedly.

Claim 5.6. If G′ is an induced subgraph of G, then surp∗(G′) ≤ surp∗(G).

Proof. Let A′ be the adjacency matrix of G′ and let X ′ ∈ RV (G′)×V (G′) be a matrix such that X ′ is
positive semidefinite, Xi,i ≤ 1 for every i ∈ V (G′), and surp∗(G′) = −⟨A′, X ′⟩. Let X ∈ RV (G)×V (G) be
the matrix that agrees with X ′ on every entry (x, y) ∈ V (G′)× V (G′), and zero everywhere else. Then

surp∗(G) ≥ −⟨A,X⟩ = −⟨A′, X ′⟩ = surp∗(G′).

Claim 5.7. If G is an n-vertex graph with smallest eigenvalue λn, then surp∗(G) ≤ |λn|n.
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Proof. Let X ∈ Rn×n be a positive semidefinite matrix such that Xi,i ≤ 1 for every i ∈ [n]. Let
A =

∑n
i=1 λiviv

T
i be the spectral decomposition of A, then

−⟨A,X⟩ = −
n∑

i=1

λi⟨vivTi , X⟩ ≤
n∑

i=1

|λn|⟨vivTi , X⟩ = |λn|⟨I,X⟩ ≤ |λn|n.

In the first inequality, we used the fact that the scalar product of positive semidefinite matrices is
nonnegative (which follows easily by considering spectral decompositions).

6 Main lemmas

An important component of the proofs of our main results is the notion and properties of the subspace
compression of matrices. This is a special instance of the compression of linear operators, see the book
of Halmos [44] as a general reference.

W -compression and W -trace. Let W < Rn be a subspace. We denote by ΠW the orthogonal
projection matrix onto W . Given an n × n symmetric matrix M , the W -compression of M is the
symmetric matrix

MW := ΠWMΠW .

Furthermore, the W -trace of M is
trW (M) := tr(MW ).

Clearly, trW is a linear functional. Observe that if M = uuT , then MW = (ΠWu)(ΠWu)T and thus

trW (uuT ) = ||ΠWu||22.

Finally, given an orthonormal basis w1, . . . , wd of W , the W -trace can be calculated as

trW (M) =
d∑

i=1

wT
i Mwi.

From this equality, it also follows that trW (I) = dim(W ). We present an upper bound on the W -trace
that will be used repeatedly in our proofs.

Lemma 6.1. | trW (M)| ≤ dim(W )1/2||M ||F .

Proof. Let M =
∑n

i=1 µiviv
T
i be the spectral decomposition of M . Then

| trW (M)| =

∣∣∣∣∣
n∑

i=1

µi trW (viv
T
i )

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

µi||ΠW vi||22

∣∣∣∣∣ ≤
n∑

i=1

|µi| · ||ΠW vi||2

≤

(
n∑

i=1

µ2
i

)1/2

·

(
n∑

i=1

||ΠW vi||22

)1/2

= ||M ||F dim(W )1/2.

Here, the first inequality uses that ||ΠW vi|| ≤ 1 for every i ∈ [n], and the second inequality is due to the
Cauchy-Schwartz inequality.

The importance of the W -compression and W -trace is that it allows us to analyze the contribution of
the top eigenvalues of a matrix, by choosing an appropriate subspace W . Given a graph G with adjacency
matrix A, eigenvalues λ1 ≥ · · · ≥ λn and a real number T , we write

ST (G) =
∑

i:λi≥T

λi.
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If the graph G is clear from the context, we simply write ST instead of ST (G). Furthermore, let NT =
NT (G) denote the number of eigenvalues at least T . We will use repeatedly that

NT ≤ ST

T
.

The next lemma gives a simple upper bound on the trace of the W -compression of A.

Lemma 6.2. Let G be an n-vertex graph with adjacency matrix A and let W < Rn. Then for every
K > 0,

trW (A) ≤ SK +K dim(W ).

Proof. We have

trW (A) =

n∑
i=1

λi||ΠW vi||22 ≤
∑
λi≥K

λi +K

n∑
i=1

||ΠW vi||22 = SK +K dim(W ).

6.1 Main lemma - least eigenvalue version

The following lemma is the heart of our argument. It shows a curious recursive relation between the
sums of the largest eigenvalues. Later, we show how to use this relation to conclude that the quadratic
sum of all but the top eigenvalues are negligible. Considering the Frobenius norm, this is equivalent to
saying that the adjacency matrix is well approximated by the top part of the spectral decomposition.

Lemma 6.3. Let G be an n-vertex graph. If T ≥ 2|λn|
√
n, then

4nST2

2n

≥ S2
T .

Proof. The main idea is to analyze the identity

A = A ◦A.

Here, we further rewrite A ◦A as

A = (A+ |λn|I) ◦ (A+ |λn|I)− λ2
nI, (3)

where the advantage is that A+ |λn|I is a positive semidefinite matrix. Let v1, . . . , vn be an orthonormal
basis of eigenvectors corresponding to the eigenvalues λ1 ≥ · · · ≥ λn. By looking at the spectral
decompositions A =

∑n
i=1 λiviv

T
i and A+ |λn|I =

∑n
i=1(λi + |λn|)vivTi , the identity (3) is equivalent to

n∑
i=1

λiviv
T
i =

(
n∑

i=1

(λi + |λn|)vivTi

)◦2

− λ2
nI =

∑
i,j

(λi + |λn|)(λj + |λn|)(vi ◦ vj)(vi ◦ vj)T − λ2
nI.

We show that the desired inequality can be deduced by considering the W -traces of both sides of this
identity for an appropriately chosen W . Define W to be the subspace generated by those vectors vi ◦ vj ,
where λi and λj are both at least T . Formally,

W = ⟨vi ◦ vj : λi, λj ≥ T ⟩.

Note that

dim(W ) ≤ N2
T ≤

S2
T

T 2
.

16



Let K = T 2/2n. Then by Lemma 6.2, we have

trW (A) ≤ SK +K dim(W ) ≤ SK +K
S2
T

T 2
= ST2

2n

+
S2
T

2n
.

On the other hand

trW (A ◦A) = trW ((A+ |λn|I) ◦ (A+ |λn|I)− λ2
nI)

=
∑
i,j

(λi + |λn|)(λj + |λn|)||ΠW vi ◦ vj ||22 − λ2
n dim(W ). (4)

Note that if λi, λj ≥ T , then vi ◦ vj ∈ W , so ΠW vi ◦ vj = vi ◦ vj and

(λi + |λn|)(λj + |λn|)||ΠW vi ◦ vj ||22 ≥ λiλj ||vi ◦ vj ||22.

Also, each term in the sum is nonnegative, so if λi < T or λj < T , we simply lower bound the contribution
of (λi + |λn|)(λj + |λn|)||ΠW vi ◦ vj ||22 by 0. Hence the right-hand-side of (4) can be lower bounded as∑

λi,λj≥T

λiλj ||vi ◦ vj ||22 − λ2
n dim(W ).

We further lower bound this new sum as follows.

Claim 6.4. ∑
λi,λj≥T

λiλj ||vi ◦ vj ||22 ≥
S2
T

n
.

Proof. We have

∑
λi,λj>T

λiλj ||vi ◦ vj ||22 =
∑

λi,λj≥T

λiλj⟨vi ◦ vi, vj ◦ vj⟩ =

∥∥∥∥∥∥
∑
λi≥T

λivi ◦ vi

∥∥∥∥∥∥
2

2

.

Here, the right-hand-side is

n∑
k=1

∑
λi≥T

λivi(k)
2

2

≥ 1

n

∑
λi≥T

n∑
k=1

λivi(k)
2

2

=
S2
T

n
,

where the first inequality is due to the inequality between the quadratic and arithmetic mean.

Using this claim, we thus proved that

trW (A ◦A) ≥
S2
T

n
− λ2

n dim(W ).

Recalling that dim(W ) ≤ S2
T

T 2 , and that the conditions of the lemma imply λ2
n ≤ T 2

16n , we can further write

S2
T

n
− λ2

n dim(W ) ≥
S2
T

n
−

S2
T

4n
=

3S2
T

4n
.

In conclusion, we proved that

ST2

2n

+
S2
T

2n
≥ trW (A) = trW (A ◦A) ≥

3S2
T

4n
.

From this, the desired inequality follows.
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6.2 Main lemma - MaxCut version

In this section, we present a variant of the previous lemma for graphs with small MaxCut. In order to
prove this lemma, we employ a similar strategy as in the proof of Lemma 6.3. However, instead of writing
A = (A+ |λn|I)◦2−|λn|I, we write A = (A+E) ◦ (A+E)− 2A ◦E−E ◦E, where E is the contribution
of the negative eigenvalues. Then, most of the proof comes down to showing that if the surplus is small,
then trW (A ◦ E) and trW (E ◦ E) are also small for an appropriately chosen W .

Lemma 6.5. Let G be an n-vertex graph such that surp∗(G) ≤ n1+s. Let T ≥ Cn1− 1
24

+ s
4 for some

sufficiently large absolute constant C > 0. Then

4nST2

2n

≥ S2
T .

Proof. Let Q = surp∗(G). We again analyze the identity

A = A ◦A.

Let v1, . . . , vn be an orthonormal basis of eigenvectors corresponding to the eigenvalues λ1 ≥ · · · ≥ λn.
Set E to be the ”negative part” of A, that is,

E :=
∑
λi<0

|λi|vivTi .

Then we can rewrite the previous equality as

A = (A+ E) ◦ (A+ E)− 2A ◦ E − E ◦ E. (5)

Using the spectral decomposition of A, this is equivalent to

n∑
i=1

λiviv
T
i =

∑
λi>0

λiviv
T
i

 ◦

∑
λi>0

λiviv
T
i

− 2A ◦ E − E ◦ E,

which can be further written as
n∑

i=1

λiviv
T
i =

∑
λi,λj>0

λiλj(vi ◦ vj)(vi ◦ vj)T − 2A ◦ E − E ◦ E.

We bound the W -traces of both sides with separate methods for an appropriate subspace W . The terms
2A ◦ E and E ◦ E constitute as error terms, for which we wish to show that their contribution to the
W -trace is not too large.

Let W0 be the subspace generated by those vectors vi ◦ vj , where λi and λj are both at least T .
Formally,

W0 = ⟨vi ◦ vj : λi, λj ≥ T ⟩.

The subspace W0 is almost what we want. However, when we try to bound the contribution of the error
term trW0(E ◦E), large entries of E may cause trouble. In order to overcome this, we introduce a cutoff

β :=
Q1/4n7/8

T
> 1.

Let J ⊂ [n] be the set of indices i such that Ei,i > β. Note that as E is positive semidefinite, we have
maxi,j |Ei,j | = maxi,iEi,i, so |Ei,j | ≤ β for every i, j ∈ [n] \ J . We can bound the size of J as follows.

Claim 6.6. |J | ≤ Q/β.
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Proof. By Lemma 5.3, (i), we have

n∑
i=1

Ei,i = tr(E) =
∑
λi<0

|λi| ≤ Q.

From this, the claim follows immediately.

Let Y < Rn be the subspace of vectors that vanish on J , that is,

Y := {y ∈ Rn : ∀i ∈ J, y(i) = 0}.

Finally, define
W := ΠY (W0).

Note that

dim(W ) ≤ dim(W0) ≤ N2
T ≤

S2
T

T 2
.

Consider the trace of the W -compressions of both sides of (5). Let K = T 2

2n , then using Lemma 6.2 we
can upper bound the left hand side as

trW (A) ≤ SK +K dim(W ) ≤ SK +K
S2
T

T 2
= ST2

2n

+
S2
T

2n
.

Next, we consider the first term of the right hand side of (5), and write

trW ((A+ E) ◦ (A+ E)) =
∑

λi,λj>0

λiλj ||ΠW vi ◦ vj ||22 ≥
∑

λi,λj≥T

λiλj ||ΠW vi ◦ vj ||22.

Here, by definition, we have vi ◦ vj ∈ W0, so ΠW (vi ◦ vj) = ΠY (vi ◦ vj). Thus,

||ΠW (vi ◦ vj)||22 = ||ΠY (vi ◦ vj)||22 = ||vi ◦ vj ||22 −
∑
k∈J

(vi(k)vj(k))
2.

Using Lemma 5.4, the entries of vi and vj are bounded as |vi(k)|, |vj(k)| ≤
√
n

T , so we get

||ΠW vi ◦ vj ||22 = ||vi ◦ vj ||22 −
∑
k∈J

(vi(k)vj(k))
2 ≥ ||vi ◦ vj ||22 −

|J |n2

T 4
.

With this bound, we get

trW ((A+ E) ◦ (A+ E)) ≥
∑

λi,λj≥T

λiλj

(
||vi ◦ vj ||22 −

|J |n2

T 4

)

≥

 ∑
λi,λj≥T

λiλj ||vi ◦ vj ||22

− S2
T

|J |n2

T 4
≥

S2
T

n
−

QS2
Tn

2

βT 4
.

Here, the second inequality follows by writing
∑

λi,λj≥T λiλj = S2
T , and the last inequality follows by

Claim 6.4, and writing |J | ≤ Q/β.
Finally, we bound trW (E ◦A) and trW (E ◦ E). First, we have

||E ◦A||F ≤ ||E||F =

∑
λi<0

λ2
i

1/2

= O(n1/4Q1/2),
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where the last equality follows by Lemma 5.3, (ii). Therefore, by Lemma 6.1, we have

trW (A ◦ E) = dim(W )1/2||E ◦A||F ≤ O(dim(W )1/2n1/4Q1/2).

Now consider trW (E ◦ E). Let E′ = EY , then E′
i,j = Ei,j if i, j ̸∈ J , and E′

i,j = 0 otherwise. Therefore,

||E ◦ E||F = ||E′ ◦ E′||F =

∑
i,j ̸∈J

E4
i,j

1/2

≤ β

∑
i,j ̸∈J

E2
i,j

1/2

≤ β||E||F = O(βn1/4Q1/2).

From this, using Lemma 6.1,

trW (E ◦ E) ≤ dim(W )1/2||E ◦ E||F ≤ O(dim(W )1/2βn1/4Q1/2).

Hence, the total contribution from the error terms can be bounded as

2 trW (A ◦ E) + trW (E ◦ E) ≤ O(dim(W )1/2βn1/4Q1/2)

≤ O(dim(W )βn1/4Q1/2) ≤ O

(
S2
Tβn

1/4Q1/2

T 2

)
.

In the second inequality, we upper bounded dim(W )1/2 by dim(W ), which is quite wasteful, but it
simplifies upcoming calculations. Putting everything together, we proved that

trW (A ◦A) = trW ((A+ E) ◦ (A+ E))− 2 trW (A ◦ E)− trW (E ◦ E)

≥
S2
T

n
−

QS2
Tn

2

βT 4
−O

(
S2
Tβn

1/4Q1/2

T 2

)
= S2

T

(
1

n
− Qn2

βT 4
−O

(
βn1/4Q1/2

T 2

))
.

The parameter β was chosen such that the two negative terms have the same order of magnitude. After
substituting β = Q1/4n7/8

T , we get

S2
T

(
1

n
−O

(
Q3/4n9/8

T 3

))
≥

3S2
T

4
.

Here, the last inequality holds by our assumptions that Q ≤ n1+s and T ≥ Cn1− 1
24

+ s
4 . In conclusion,

comparing the left-hand-side and right-hand-side of (5), we get

ST2

2n

+
S2
T

2n
≥ trW (A) = trW (A ◦A) ≥

3S2
T

4n
.

From this, the desired inequality follows.

6.3 Recursion

In this section, we show what information can be extracted from the recursive relationship between the
sum of top eigenvalues, that is Lemmas 6.3 and 6.5. The proof is just a simple analysis on sequences.
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Lemma 6.7. Let n, k be integers, 0 < s < q real numbers, and let λ1 ≥ · · · ≥ λk ≥ 0. For every real
number T , define ST =

∑
λi≥T λi. Assume that λ1 + · · ·+ λk ≤ n1+s, and for every T ≥ n1−q,

S2
T ≤ 4nST2

2n

.

Then for every H ≤ n, ∑
λi≤H

λ2
i ≤

16q

q − s
n1+s/qH1−s/q.

Proof. Let T0 = n1−2q/2, and recursively define Ti+1 = (2nTi−1)
1/2 for i = 0, 1, . . . . Observe that

2n

Ti+1
=

(
2n

Ti

)1/2

.

The sequence T0, T1, . . . is monotone increasing, and we have T1 = (2nT0)
1/2 ≥ n1−q, so we get that

S2
Ti+1

≤ 4nSTi

for all i ≥ 0. We prove by induction on i that

STi ≤ 4n

(
2n

Ti+1

)s/q

.

For the base case i = 0, this is true as

ST0 ≤
k∑

i=1

λi ≤ n1+s = n
( n

n1−q

)s/q
≤ 4n

(
2n

T1

)s/q

.

Now let i > 0, then

STi+1 ≤
√

4nSTi ≤

√
16n2

(
2n

Ti+1

)s/q

= 4n

(
2n

Ti+2

)s/q

.

It is easy to see that limi→∞ Ti = 2n, so for every T ∈ [T0, n], there exists an index i such that
Ti ≤ T < Ti+1. As ST is decreasing in T , we have

ST ≤ STi ≤ 4n

(
2n

Ti+1

)s/q

≤ 4n

(
2n

T

)s/q

.

This inequality also holds for T ≤ T0 = n1−2p/2 as

ST ≤ ST0 ≤ n1+s ≤ 4n

(
2n

T

)s/q

.

Hence, we can write

∑
λi≤H

λ2
i ≤

∫ H

0
2Stdt ≤

∫ H

0
8n

(
2n

t

)s/q

dt =
8 · 2s/q

1− s/q
n1+s/pH1−s/q.

In the last equality, we use that s/q < 1. Moreover, the first inequality follows as∑
λi≤H

λ2
i =

∑
λi

∫ λi

0
2tdt =

∫ H

0
2Nttdt ≤

∫ H

0
2Stdt,

where Nt = #{i : λi ≥ t}.
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7 Densification — Phase 0

In this section, we prove that every graph of average degree d and smallest eigenvalue λn contains a
subgraph on d vertices of density Ω(1/|λn|).

Lemma 7.1. Let G be an n-vertex graph of average degree d with smallest eigenvalue λn satisfying
|λn| ≤ 1

2d
1/2. Then G contains an induced subgraph on d vertices with edge density Ω(1/|λn|).

Proof. Let x be a vertex with at least d neighbours, and let S be a set of exactly d neighbours of x.
Define the vector v ∈ Rn such that v(x) = 1, v(y) = λn

d if y ∈ Y , and v(z) = 0 if z ̸∈ S ∪ {x}. Then

vTAv = 2λn + 2
λ2
n

d2
e(G[S]).

On the other hand

vT v = 1 +
λ2
n

d
≤ 3

2
.

Therefore, we obtain that

2λn + 2
λ2
n

d2
e(G[S]) = vTAv ≥ λnv

T v ≥ 3

2
λn.

From this,

e(G[S]) ≥ d2

4|λn|
,

showing that G[S] is the desired subgraph.

8 Densification — Phase 1

Lemma 6.7, combined with earlier results, has a number of powerful consequences. First, we use it
to show that a graph with large smallest eigenvalue (or small surplus) contains a subgraph of positive
density. We prove this via the following density increment argument. We apply Lemma 6.7 to show that
the cubic sum of eigenvalues is large, which in turn coincides with six times the number of triangles. But
if a graph has too many triangles, it means that there is a vertex, whose neighborhood is dense, so we
pass to this neighborhood, and repeat. The main step of this argument is presented in the next lemma.

Lemma 8.1. Let s ∈ (0, 1/6), C > 2, and let G be a n-vertex graph with edge density p > n−1/2,
∆(G) ≤ Cpn, and smallest eigenvalue λn satisfying |λn| ≤ ns. Then G has a subgraph on at least pn
vertices of edge density at least c0p6s for some c0 = c0(s, C) > 0.

Proof. Let m = p
(
n
2

)
denote the number of edges. Let λ1 ≥ · · · ≥ λn be the eigenvalues of G, then∑

λi>0

λi =
∑
0<λi

|λi| ≤ n|λn| ≤ n1+s.

By Lemma 6.3, we also have
4nST2

2n

≥ S2
T

for every T ≥ 2n1/2+s. So applying Lemma 6.7 with q = 1/3 > s and the sequence of positive eigenvalues,
we get that for every H ≤ n, ∑

0<λi≤H

λ2
i ≤ cn1+3sH1−3s
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for some c > 1 depending only on s. Write u := 3s < 1/2, and set H := (8c)−1/(1−u)p1/(1−u)n, then
H ≤ n and the right-hand-side equals pn2/8. On the other hand, we have∑

λi<0

λ2
i ≤ nλ2

n ≤ n1+2s < pn2/8,

so ∑
λi≤H

λ2
i ≤ pn2/4.

But
∑n

i=1 λ
2
i = ||A||2F = 2m, so we conclude that∑

λi>H

λ2
i ≥ 2m−

∑
λi≤H

λ2
i ≥ pn2/2.

Writing N for the number of triangles, we have

6N =

n∑
i=1

λ3
i ≥ H

∑
λi≥H

λ2
i −

∑
λi<0

|λi|3 ≥ Hpn2/2− n|λn|3 ≥ c′p
2−u
1−un3 − n1+3s

for some constant c′ > 0 depending only on s. Here, using that s < 1/6, u < 1/2 and p > n−1/2, we have
n1+3s < c′

2 p
2−u
1−un3 for sufficiently large n. Hence, we get

N ≥ c′

12
p

2−u
1−un3.

Counting triangles by vertices, we observe that there is a vertex v ∈ V (G) whose neighborhood X
contains at least 3N

n edges. Here, note that |X| ≤ ∆(G) ≤ Cpn. Let X ′ be an arbitrary min{Cpn, n}
element subset of V (G) containing X, then the edge density of G[X ′] is

3N/n(|X′|
2

) ≥ c′p
2−u
1−un2

2C2p2n2
=

c′

2C2
p

u
1−u .

As u/(1− u) = 3s/(1− 3s) < 6s, this finishes the proof.

In the next lemma, we show how to handle the case when G has some vertices of too large degrees.

Lemma 8.2. Let C > 2, let G be an n-vertex graph of average degree d such that surp(G) ≤ 0.01dn.
Then either

(i) G contains a subgraph on at least n/2 vertices with average degree at least d/4, and maximum degree
at most Cd.

(ii) G contains a subgraph on at least n/C vertices of average degree at least 0.2Cd.

Proof. Let X ⊂ V (G) be the set of vertices of degree more than Cd, then |X| ≤ n/C. Let Y = V (G)\X.
The maximum degree of G[Y ] is at most Cd, so if G[Y ] has average degree at least d/4, then (i)
holds. Otherwise, there are at most nd/8 edges in G[X]. As surp(G) ≤ 0.1dn, we have e(G[X,Y ]) ≤
dn
4 + surp(G) ≤ 0.26dn. Hence, we must have that G[Y ] has at least dn/2 − dn/8 − 0.26dn > 0.1dn

edges. Let X0 be an arbitrary n/C sized subset of V (G) containing X, then X0 has average degree at
least 0.2Cd, so G[X0] satisfies the requirements.
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Lemma 8.3. Let s ∈ (0, 1/6), ε ∈ (0, 1/2), then there exists ρ = ρ(s, ε) > 0 and c1 = c1(s, ε) > 0
such that the following holds for every n > n0(s, ε). Let G be an n-vertex graph with edge density p and
smallest eigenvalue λn such that p > n−ρ and |λn| ≤ ns. Then G has a subgraph on at least n1−ε vertices
with edge density at least c1.

We may choose ρ = αε with some decreasing function α = α(s) > 0.

Proof. Let α = 1
3 − 2s > 0, then we show that ρ = αε suffices. Set C := 5, s′ = s

1−ρ , then s′ < 1/6 and
6s′ < 1 − 2α. Let c0 = c0(s

′, 8C) be the constant guaranteed by Lemma 8.1. Then there exists some
c1 = c1(s

′, ε) > 0 such that for every q ∈ (0, c1), we have c0q
6s′ > q1−2α.

We define the sequence of progressively denser induced subgraphs G = G0 ⊃ G1 ⊃ . . . as follows.
Assume that Gk is already defined on nk vertices with edge density pk. If pk > c1 or nk < n1−ε, we stop,
otherwise we define Gk+1 as follows. By Lemma 8.2 (noting that the condition surp(G) ≤ |λn|n < 0.01pn2

is trivially satisfied), either (i) Gk contains a subgraph G′ on at least nk/2 vertices with average degree at
least pknk/4 and ∆(G′) ≤ Cpknk, or (ii) G contains a subgraph G′′ on at least nk/C vertices of average
degree at least 0.2Cpknk.

First, consider the case if outcome (ii) happens. Then set Gk+1 := G′′, and note the nk+1 ≥ nk/C
and pk+1 ≥ 0.2C2pk > Cpk.

Now consider the case if outcome (i) happens. Let n′ = v(G′) and let p′ be the edge density of G′,
then n′ ≥ nk/2, p′ ≥ pk/4 and ∆(G′) ≤ Cpknk ≤ 8Cp′n′. As nk ≥ n1−ε, we have p′ ≥ p/4 ≥ n−ρ/4 ≥
(n′)−ρ/(1−ε)/8 > (n′)−1/2. Also, if λ′ is the smallest eigenvalue of G′, then

|λ′| ≤ |λn| ≤ ns ≤ (n′/2)s/(1−ρ) ≤ (n′)s
′
.

Hence, we can apply Lemma 8.1 to conclude that G′ contains a subgraph on at least p′n′ vertices of edge
density at least c0(p

′)6s
′ . Let Gk+1 be this subgraph. Then nk+1 ≥ p′n′ ≥ pknk/8 and

pk+1 ≥ c0(p
′)6s

′ ≥ (pk/8)
1−2α.

Here, the last inequality holds by our assumption that pk ≤ c1.
We can unite outcomes (i) and (ii) by observing that in both cases there is some qk > 1 such that

nk+1 > nk/qk and pk+1 > pkq
2α
k . Indeed, in case (i), we can choose qk = C, and in case (ii), we choose

qk = pk. From this, it is easy to see that the sequence n2α
k pk is monotone increasing, so we have n2α

k pk ≥
n2αp. Hence, as long as pk ≤ c1, we have nk ≥ n(p/c1)

1/2α > n1−ρ/2α/c
1/2α
1 = n1−ε/2/c

1/2α
1 > n1−ε.

Let K be the last index k for which Gk is defined, so either pK > c1 or nK < n1−ε. Then the previous
argument shows that we must have pK > c1 and nK > n1−ε, so the graph GK suffices.

Next, we prove a version of the previous lemmas for small surplus. As the proofs are more or less the
same, with only some parameters changed, we only highlight the key differences.

Lemma 8.4. Let s ∈ (0, 1/60), C > 2, and let G be a n-vertex graph with edge density p > n−1/3,
∆(G) ≤ Cpn, and surp∗(G) ≤ n1+s. Then G has a subgraph on at least pn vertices of edge density at
least c0p4/5 for some c0 = c0(s, C) > 0.

Proof. By Lemma 5.3, (i), we have∑
λi>0

λi =
∑
0<λi

|λi| ≤ surp∗(G) ≤ n1+s.

By Lemma 6.5, we also have
4nST2

2n

≥ S2
T
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for every T > C0n
1− 1

24
+ s

4 . So we can apply Lemma 6.7 with q = 3/80 > s and the sequence of positive
eigenvalues to get that for every H ≤ n,∑

0<λi≤H

λi ≤ cn1+s/qH1−s/q.

Furthermore, by Lemma 5.3, (ii), we have∑
λi<0

λ2
i ≤ O(n1/2 surp∗(G)) = O(n3/2+s).

Write u := s/q < 4/9, then setting H := (8c)−1/(1−u)p1/(1−u)n, we get
∑

λi<H λ2
i ≤ pn2/4. Thus, if N is

the number of triangles, then

6N =

n∑
i=1

λ3
i ≥ H

∑
λi≥H

λ2
i −

∑
λi<0

|λi|3 ≥ Hpn2/2−O(n surp∗(G)) ≥ c′p
2−u
1−un3 − n2+s.

Here, in the second inequality, we used Lemma 5.3, (iii). The rest of the proof is identical to the proof
of Lemma 8.1.

Lemma 8.5. Let s ∈ (0, 1/60), ε ∈ (0, 1/2), then there exists ρ = ρ(s, ε) > 0 and c1 = c1(s, ε) > 0 such
that the following holds for every n > n0(s, ε). Let G be an n-vertex graph with edge density p such that
surp∗(G) ≤ n1+s and p > n−ρ. Then G has a subgraph on at least n1−ε vertices with edge density at
least c1.

Proof. The proof of this is almost identical to the proof of Lemma 8.3, but we use Lemma 8.4 instead of
Lemma 8.1. We omit further details.

9 Densification — Phase 2

In this section, we prove that graphs of positive constant density and large smallest eigenvalue (or small
surplus) are o(1)-close to the disjoint union of cliques. In particular, this implies that such graphs must
contain subgraphs of density 1− o(1). Beyond the use of the main lemmas, Lemma 6.3 and 6.5, another
key component is showing that if the adjacency matrix of a graph is close to a small rank matrix (in
Frobenius norm), then G admits an ultra-strong regularity partition. These kind of partitions are closely
related to Szemerédi’s regularity lemma, but they provide substantially stronger quantitative bounds.
Ultra-strong regularity lemmas first appeared in relation to graphs of bounded VC-dimension, see the
seminal work of Lovász and Szegedy [60].

A partition V1, . . . , VK of a set of size n is an equipartiton, if |Vi| ∈ {⌊n/K⌋, ⌈n/K⌉} for i ∈ [K].
Given a graph G, δ ∈ (0, 1), and two disjoint sets X,Y ⊂ V (G), the pair (X,Y ) is δ-empty if there are
at most δ|X||Y | edges between X and Y . Also, (X,Y ) is δ-full if there are at least (1− δ)|X||Y | edges
between X and Y . Then (X,Y ) is δ-homogeneous if it is either δ-empty or δ-full.

A δ-regular partition of G is an equipartition V1, . . . , VK of the vertex set such that all but at most
δK2 of the pairs (Vi, Vj) for 1 ≤ i < j ≤ K are δ-homogeneous.

Lemma 9.1. For every δ > 0, there exists ε > 0 such that the following holds for every positive integer
r, and every n that is sufficiently large with respect to δ, r. Let G be a graph with adjacency matrix A.
Assume that there exists an n × n symmetric matrix B of rank r such that ||A − B||2F ≤ εn2. Then G
has a δ-regular partition into K parts, where 1/δ < K < Or,δ(1).
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Proof. We show that ε = δ2/100 suffices. Let B =
∑r

i=1 µiwiw
T
i be the spectral decomposition of B.

Then (
r∑

i=1

µ2
i

)1/2

= ||B||F ≤ ||A||F + ||B −A||F < 2n,

which shows that |µi| ≤ 2n for all i ∈ [r]. Next, we group the coordinates of the vectors w1, . . . , wr with
respect to how close they are, which then we use to form a partition of B into submatrices that are close
to constant matrices.

Let β := 10−3δ1/2r−3/2, and for ℓ ∈ Z, let

Xi,ℓ =

{
j ∈ [n] :

β√
n
ℓ ≤ wi(j) <

β√
n
(ℓ+ 1)

}
.

That is, for fixed i ∈ [n], the sets Xi,ℓ form a partition of the coordinates of wi into chunks that are
close to constant. Next, we show that most coordinates of wi are covered by Or,δ(1) of these sets. Set
h := 104r2/δ. As

∑n
j=1wi(j)

2 = 1, the number of j ∈ [n] not contained in
⋃h

ℓ=−hXi,ℓ is at most
n/(h2β2) < δn

8r .
Let I = {−h, . . . , h}r. For every ℓ ∈ I, let Xℓ =

⋂
i∈[r]Xi,ℓ(i). Then

⋃
ℓ∈I

Xℓ ≥ n

(
1− δ

8r

)r

≥ n(1− δ/8). (6)

Thus, the sets Xℓ form a disjoint covering of all but at most δn/8 of the indices. Next, our goal is to
show that if ℓ1, ℓ2 ∈ I, then the submatrix of B induced on Xℓ1

×Xℓ2
is close to a constant matrix. We

refer to the rectangles Xℓ1
×Xℓ2

as blocks. Let

γ = γℓ1,ℓ2 =
r∑

i=1

µi ·
β2

n
· ℓ1(i)ℓ2(i).

Note that for every (j1, j2) ∈ Xℓ1
×Xℓ2

, we have∣∣∣∣wi(j1)wi(j2)−
β2

n
ℓ1(i)ℓ2(i)

∣∣∣∣ ≤ 4h,

which we get from the general inequality |ab− cd| ≤ |a||b− d|+ |d||a− c|. Therefore, we have

|Bj1,j2 − γ| ≤
r∑

i=1

|µi| ·
∣∣∣∣wi(j1)wi(j2)−

β2

n
ℓ1(i)ℓ2(i)

∣∣∣∣ ≤ r∑
i=1

|µi| ·
β2

n
· 4h ≤ 8rβ2h <

1

3
. (7)

Observe that if X ⊂ Xℓ1
and Y ⊂ Xℓ2

are such that (X,Y ) is not δ-homogeneous, then

||A[X × Y ]−B[X × Y ]||2F ≥ δ

36
|X||Y |.

Indeed, if γℓ1,ℓ2 < 1/2, then Aj1,j2−Bj1,j2 ≥ 1/6 for every one entry Aj1,j2 , otherwise |Aj1,j2−Bj1,j2 | ≥ 1/6
for every zero entry Aj1,j2 .

Now let K = |I|/(8δ), and let V1, . . . , VK be an equipartition of V (G) as follows. Let V ∗ be the
set of elements not covered by any of the Xℓ for ℓ ∈ I. For each ℓ ∈ I, choose as many of the Vi

to be completely contained in Xℓ as possible, and then move the not covered elements of Xℓ to V ∗.
Then finally partition V ∗. Each Xℓ contributes at most n/K elements to V ∗, so in the end we have
|V ∗| ≤ δn/8 + |I| · (n/K) ≤ δn/4. Therefore, at most δK/4 sets Vi are contained in V ∗. We show that
V1, . . . , VK is a δ-regular partition.
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Assume that (Vi, Vj) is not δ-homogeneous. There are at most δK2/2 such pairs where either Vi ⊂ V ∗

or Vj ⊂ V ∗. On the other hand, if Vi, Vj ̸∈ V ∗, then ||A[Vi × Vj ] − B[Vi × Vj ]||2F ≥ δ
36 |Vi||Vj |. As

||A − B||2F ≤ εn2, this means that the number of such pairs is at most 36ε/δK2 ≤ δK2/2. Hence, the
total number of pairs that are not δ-homogeneous is at most δK2, as desired.

An important feature of Lemma 9.1 that ε only depends on δ, and not on r. To continue from this
point, we observe that if X,Y, Z are sets of size Ω(n) such (X,Y ) and (Y,Z) are δ-full, then (X,Z)
cannot be δ-empty, assuming surp∗(G) is small.

Lemma 9.2. Let G be a graph on n vertices. Let X,Y, Z ⊂ V (G) be disjoint sets such that |X| = |Y | =
|Z| and (X,Y ) and (Y, Z) are δ-full, but (Y,Z) is δ-empty. Then surp(G) ≥ (1/4− 3δ)|X|.

Proof. Let G′ = G[X ∪ Y ∪Z], and consider the cut (Y,X ∪Z) in G′. This cut has at least |X|2(2− 2δ)
edges. On the other hand, e(G′) ≤ 3

2 |X|2 + 2|X|2 + δ|X|2 ≤ (72 + δ)|X|2. Therefore,

surp(G) ≥ surp(G′) = mc(G′)− e(G′)

2
≥ |X|2(2− 2δ)−

(
7

4
+

δ

2

)
|X|2 = |X|2

(
1

4
− 5

2
δ

)
.

A graph is the disjoint union of cliques if and only if it does not contain an induced cherry, that
is, the path of length 2. Therefore, by the Induced graph removal lemma [5], being close to the disjoint
union of cliques is equivalent to having few cherries. For the special case of cherries, one does not need
the full power of this lemma, and a simple proof of the following quantitatively stronger bound is given
by Alon and Shapira [7].

Lemma 9.3. Let G be an n-vertex graph containing at most εn3 cherries. Then G is εc-close to the
disjoint union of cliques for some absolute constant c > 0.

Furthermore, if G is δ-close to the union of cliques, then G contains at most 3δn3 cherries.

Proof. The first part follows from Alon and Shapira [7], so we only prove the second part. Let G̃ be
the disjoint union of cliques that is δ-close to G. Then each cherry of G contains at least one edge or
non-edge from G̃∆G, so we are done.

Now we are ready to prove Theorem 1.5, which we restate here for convenience.

Theorem 9.4. Let s ∈ (0, 1/4) and δ > 0, then the following holds for every sufficiently large n. Let G
be an n-vertex graph such that |λn| ≤ ns. Then G is δ-close to the union of cliques.

Proof. Let δ0 > 0 be specified later, depending only on δ. Let ε be the constant guaranteed by Lemma 9.1
with respect to δ0. We have ∑

λi>0

λi =
∑
λi<0

|λi| ≤ |λn|n ≤ n1+s.

Also, by Lemma 6.3, we have 4nST2

2n

≥ S2
T for every T ≥ n1/2+s ≥ 2|λn|

√
n. Hence, we can apply

Lemma 6.7 to the sequence of positive eigenvalues with q := 1/4 > s to conclude that for every H ≤ n,
we have ∑

0<λi<H

λ2
i ≤ O(n1+4sH1−4s).

Furthermore,
∑

λi<0 λ
2
i ≤ n|λn|2 < n3/2, so∑

λi<H

λ2
i ≤ Os(n

1+4sH1−4s) + n3/2.
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Set H = ε0n, where ε0 > 0 is specified later. Then n1+4sH1−4s = n2ε1−4s
0 . Hence, we can choose ε0

(depending only on s and ε) such that ∑
λi<H

λ2
i ≤ εn.

Let A be the adjacency matrix of G, then A has pn(n − 1) > pn2/2 one entries, and we note that
p/2 ≥ 4δ0 holds. Let

B =
∑
λi≥H

λiviv
T
i ,

then
||A−B||2F =

∑
λi<H

λ2
i ≤ εn2.

Furthermore, the rank of B is r := NH ≤ n2

H2 ≤ ε−2
0 , where in the first inequality we used that n2 ≥∑

λi≥H λ2
i ≥ H2NH . Hence, we can apply Lemma 9.1 to conclude that there is a δ0-regular partition

V1, . . . , VK for some K with 1/δ0 < K < Or,δ0(1) = Os,δ(1).
In order to finish the proof, we count cherries. Let x, y, z be the vertices of a cherry with xy, yz ∈

E(G), xz ̸∈ E(G), and let x ∈ Vi, y ∈ Vj , z ∈ Vk. We put this cherry into one of the following categories:

(i) i, j, k are not all distinct,

(ii) (Vi, Vj) or (Vj , Vk) or (Vi, Vk) is not δ0-homogeneous,

(iii) (Vi, Vj) or (Vj , Vk) is δ0-empty,

(iv) (Vi, Vk) is δ0-full.

By Lemma 9.2, we cannot have that (Vi, Vj) and (Vj , Vk) are δ0-full, but (Vi, Vk) is δ0-empty. Therefore,
each cherry belongs to one of the four categories. We observe that the number of cherries belonging to
each category is at most O(δ0n

3). Indeed, for (i), there are O(K2) choices for the set {i, j, k}, and then
there are at most (n/K)3 choices for x, y, z, so in total O(K2(n/K)3) = O(n3/K) = O(δ0n

3). For (ii),
we use the fact that there are at most δ0K2 non-δ0-homogeneous pairs (Vi, Vj), so the number of choices
for (Vi, Vj , Vk) is at most O(δ0K

3). For (iii) and (iv), we observe that if we fixed (Vi, Vj , Vk), then there
are at most δ0(n/K)3 choices for x, y, z. Indeed, if say (Vi, Vj) is δ0-empty, the pair (x, y) can be chosen
from only the δ0(n/K)2 edges between Vi and Vj .

In conclusion, the number of cherries in G is O(δ0n
3). But then by Lemma 9.3, G is O(δ0)

c-close to
a disjoint union of cliques for some absolute constant c > 0. We are done by setting δ0 > 0 sufficiently
small with respect to δ.

The following immediate corollary of this lemma will be used later.

Corollary 9.5. Let s ∈ (0, 1/4), p > 0 and δ > 0, then the following holds for every sufficiently large
n. Let G be an n-vertex graph of edge density p such that |λn| ≤ ns. Then G contains a subgraph on at
least pn/2 vertices of edge density at least 1− δ.

Proof. Let δ0 = δp2/2. By Theorem 9.4, G is δ0-close to some graph H that is the disjoint union of
cliques. Let C1, . . . , Ck be the vertex sets of the cliques forming H, then

e(H) =
k∑

i=1

(
|Ci|
2

)
≤

k∑
i=1

|Ci|2 ≤ nmax
i∈[k]

|Ci|.

As e(H) ≥ e(G)− δ0n
2 ≥ pn2/2, this shows that at least one of the Ci’s has size at least pn/2. Without

loss of generality, |C1| ≥ pn/2. But then G[C1] has at least
(|C1|

2

)
− δ0n

2 edges, so G[C1] has edge density
at least 1− 2δ0/p

2 = 1− δ.

28



Next, we present the MaxCut version of the previous lemma, whose proof is almost identical. We
only highlight the key differences.

Theorem 9.6. Let s ∈ (0, 1/30), δ > 0, then the following holds for every sufficiently large n. Let G be
an n-vertex graph such that surp∗(G) ≤ n1+s. Then G is δ-close to a disjoint union of cliques.

Proof. One of the key differences compared to the proof of Theorem 9.4 is that we use Lemma 6.5 to have
4nST2

2n

≥ S2
T satisfied for every T ≥ n1− 1

24
+ s

4 . Then setting q = 1/30, the condition s ∈ (0, 1/30) ensures

that s < q and 1 − q ≥ 1 − 1
24 + s

4 , so we can apply Lemma 6.7. Another difference is that we bound∑
0<λi

λ2
i using Lemma 5.3, (ii), which gives

∑
0<λi

λ2
i ≤ O(

√
n surp∗(G)) ≤ O(n3/2+s) = o(n2).

Finally, we deduce the immediate corollary of this theorem about finding dense subgraphs. The proof
of this is identical to the proof of Corollary 9.5, so we omit it.

Corollary 9.7. Let s ∈ (0, 1/30), p > 0 and δ > 0, then the following holds for every sufficiently large
n. Let G be an n-vertex graph of edge density p such that surp∗(G) ≤ n1+s. Then G contains a subgraph
on at least pn/2 vertices of edge density at least 1− δ.

10 Densification — Phase 3

In this section, we prove that graphs of edge density 1−ε and large smallest eigenvalue (or small surplus)
must contain a subgraph of edge density 1 − n−ε′ on almost the same number of vertices. The proof of
this proceeds via a density increment argument, as summarized in the following lemma.

Lemma 10.1. Let s ∈ (0, 1/3), and let n be sufficiently large with respect to s. Let G be an n-vertex
graph with edge density 1− p, where p < 10−5. Assume that |λn| < ns. Then G contains an n/2-vertex
induced subgraph of edge density at least 1− 107p3 −O(n3s−1).

Proof. Let A be the adjacency matrix of G with eigenvalues λ1 ≥ · · · ≥ λn and corresponding orthonormal
basis of eigenvectors v1, . . . , vn. Define B = A − λ1v1v

T
1 . The key idea of the proof is to consider the

following triple Hadamard product:

D = (B + |λn|I)◦3 = B◦3 + 3|λn|B ◦B ◦ I + 3|λn|2B ◦ I + |λn|3I.

As B+ |λn|I = |λn|v1vT1 +
∑n

i=2(λi+ |λn|)vivTi , we have that B+ |λn|I is positive semidefinite. Therefore,
D is also positive semidefinite by the Schur product theorem. Then, using the principal eigenvector v1,
we identify a set of well-behaved vertices U , and evaluate the product 0 ≤ 1T

UD1U .
We now give the details. Let U be the set of vertices i ∈ [n] that satisfy v1(i) ≥ (1− 8p)/

√
n.

Claim 10.2. |U | ≥ n/2.

Proof. By Lemma 5.5, we have |v1(i)| ≤ (1 + 2p+ 2/n)/
√
n for every i ∈ [n], thus

1 =

n∑
i=1

v1(i)
2 ≤ |U |(1 + 2p+ 2/n)2

n
+ (n− |U |)(1− 8p)2

n

≤ 1

n
(|U |(1 + 8p) + (n− |U |)(1− 8p)) = (1− 8p) +

16p|U |
n

.

From this, we get |U | ≥ n/2.

We now evaluate the terms of 1T
UD1U , starting with the main term 1T

UB
◦31U .

Claim 10.3. 1T
UB

◦31U ≤ 106|U |2p3 − e(G[U ])/4.
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Proof. We have

Bi,j =

{
1− λ1v1(i)v1(j) if ij ∈ E(G),

−λ1v1(i)v1(j) if ij /∈ E(G).

If i, j ∈ I, then

1− λ1v1(i)v1(j) ≤ 1− (1− p)(n− 1) ·
(
1− 8p√

n

)2

≤ 100p,

and thus λ1v1(i)v1(j) >
1
2 . Therefore,

1T
UB

◦31U =
∑

i,j∈I,i∼j

(1− λ1v1(i)v1(j))
3 −

∑
i,j∈U,i̸∼j

(λ1v1(i)v1(j))
3 ≤ 1003|U |2p3 − 2e(G[U ])/8.

Claim 10.4. We have

1T
U (3|λn|B ◦B ◦ I + 3|λn|B ◦ I + |λn|3I)1U ≤ O(n1+3s).

Proof. We have Bi,i = −λ1v1(i)
2 for every i ∈ [n]. By Lemma 5.5, we have |Bi,i| ≤ 2. Then the claim

follows immediately as the expression above evaluates to∑
i∈U

(3|λn|B2
i,i + 3|λn|2Bi,i + |λn|3) ≤ O(n|λn|3).

In conclusion, we proved that

0 ≤ 1T
UD1U ≤ 106|U |2p3 − e(G[U ])/4 +O(n1+3s).

Hence, we must have e(G[U ]) ≤ 107|U |2p3/2 + O(n1+3s), which shows that the edge density of G[U ] is
at least 1− 107p3 −O(n3s−1).

Lemma 10.5. Let 0 < s < 1/3, and let n be sufficiently large with respect to s. Let G be an n-vertex
graph with edge density at least 1 − 10−5. If |λn| < ns, then G contains an induced subgraph of size
n1−o(1) with edge density at least 1− n3s−1+o(1).

Proof. Let s0 be such that s < s0 < 1/3, and let 1− p be the edge density of G, p < 10−5. Let G0 = G,
and define the sequence of induced subgraphs G0 ⊃ G1 ⊃ ... with increasing density as follows. If Gi is
already defined with ni vertices and edge density 1 − pi, then stop if either pi < n3s0−1

i , or ni < ns/s0 .
Otherwise, as ni > ns/s0 and the smallest eigenvalue of Gi is at least λn > −ns > −ns0

i , we can apply
Lemma 10.1 to find an induced subgraph Gi+1 of Gi on at least ni/2 vertices of edge density at least
1− 107p3i −O(n3s0−1

i ) ≥ 1−max{108p3i , O(n3s0−1
i )}.

Let L be the last index i for which Gi is defined. Then nL ≥ n2−L. On the other hand pL−1 > n3s0−1
L−1 ,

and so for every i ≤ L− 2, we have pi+1 ≤ 108p3i . This show that

pL−1 < (108)3
L−2+3L−3+···+1p3

L−1
< (104p)3

L−1
< 10−3L−1

.

Hence, we must have stopped because pL < n3s0−1
i , which happens for some L = O(log log n). But then

nL ≥ n4−O(log logn) = n1−o(1). We thus get that GL is a subgraph of G of size n1−o(1) with edge density
at least 1− n3s0−1+o(1). As we may choose s0 arbitrarily close to s, this finishes the proof.

Now we establish the MaxCut version of Lemma 10.1. While the core idea remains the same, the
proof becomes more involved. Therefore, we give a detailed proof.
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Lemma 10.6. Let 0 < s < 1/4 and 0 < α < min{ 1
12 − s

6 ,
1
6 − 2s

3 }, and let n be sufficiently large with
respect to s, α. Let G be an n-vertex graph with edge density 1− p, where n−α ≤ p < 10−5. Assume that
surp∗(G) < n1+s. Then G contains an n/4-vertex induced subgraph of edge density at least 1− 108p3.

Proof. Let A be the adjacency matrix of G with eigenvalues λ1 ≥ · · · ≥ λn and corresponding orthonormal
basis of eigenvectors v1, . . . , vn. Define B = A− λ1v1v

T
1 and E =

∑
λi<0 |λi|vivTi . Then, the matrices E

and B + E =
∑

λi>0,i ̸=1 λiviv
T
i are positive semidefinite.

The key idea of the proof is to consider the following triple Hadamard product:

D = (B + E)◦3 = B◦3 + 3B ◦B ◦ E + 3B ◦ E ◦ E + E◦3.

As B +E is positive semidefinite, so is D by the Schur product theorem. Then, using the matrix E and
the principal eigenvector v1, we identify a set of well-behaved vertices U , and evaluate the product

0 ≤ 1T
UD1U = 1T

UB
◦31U + 1T

U

(
3B ◦B ◦ E + 3B ◦ E ◦ E + E◦3)1U .

By carefully analyzing the terms of this product, we will conclude that the graph G[U ] must be much
sparser than G.

We now give the details. First, observe that

tr(E) =
∑
λi<0

|λi| ≤ surp∗(G) ≤ n1+s

by (i) in Lemma 5.3, and

∥E∥2F =
∑
λi<0

λ2
i ≤ O(

√
∆+ 1) surp∗(G) ≤ O(

√
∆+ 1)n1+s ≤ O(n3/2+s)

by (ii) in Lemma 5.3. Let U be the set of vertices i ∈ [n] that satisfy Ei,i ≤ 4ns and v1(i) ≥ (1−8p)/
√
n.

Claim 10.7. |U | ≥ n/4.

Proof. Let U0 be the set of vertices i ∈ [n] such that v1(i) ≥ (1− 8p)/
√
n. Then using Lemma 5.5,

1 =

n∑
i=1

v1(i)
2 ≤ |U0|

(1 + 2p+ 2/n)2

n
+ (n− |U0|)

(1− 8p)2

n

≤ 1

n
(|U0|(1 + 8p) + (n− |U0|)(1− 8p)) = (1− 8p) +

16p|U0|
n

.

From this, we get |U0| ≥ n/2. Now U is those set of vertices i ∈ U0 that satisfy Ei,i ≤ 4ns. As
tr(Ei,i) ≤ n1+s, the number of vertices such that Ei,i > 4ns is at most n/4, giving the desired bound
|U | ≥ n/4.

We now evaluate the terms of 1T
UD1U . For the main term1T

UB
◦31U , we already proved in Claim 10.3

that
1T
UB

◦31U ≤ 106|U |2p3 − e(G[U ])/4.

So we consider the rest of the terms.

Claim 10.8. We have

1T
U (3B ◦B ◦ E + 3B ◦ E ◦ E + E◦3)1U ≤ O(n7/4+s/2 + n3/2+2s).
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Proof. We bound each summand of the error term independently. Firstly, note that every entry of B is

between 1 and −2, as 0 ≤ λ1v1(i)v2(j) ≤ n
(
1+2p+2/n√

n

)2
≤ 2. Therefore, we have

1T
U (3B ◦B ◦ E)1U ≤ 12

∑
i,j∈U

|Ei,j | ≤ 12|U |
√∑

i,j∈U
E2

i,j ≤ 12n∥E∥F ≤ O(n7/4+s/2).

Here, the second inequality holds by the inequality between the arithmetic and quadratic mean.
To bound the second summand, we again use that entries of B are bounded by 2 in absolute value,

and so
1T
U (3B ◦ E ◦ E)1U ≤ 6

∑
i,j∈U

E2
i,j ≤ 6∥E∥2F ≤ O(n3/2+s).

Finally, in bounding the last term we use that Ei,i ≤ ns for all i ∈ U . In particular, since E is a positive
definite matrix, this implies that |Ei,j | ≤ ns for all i, j ∈ U . So,

1T
UE

◦31U ≤
∑
i,j∈U

|Ei,j |3 ≤ max
i,j∈U

|Ei,j | ·
∑
i,j∈U

|Ei,j |2 ≤ ns · ∥E∥2F ≤ O(n3/2+2s).

The conclusion now follows by summing up the bounds obtained on each of the error terms above.

In conclusion, we proved that

0 ≤ 1T
UD1U ≤ 106|U |2p3 − e(G[U ])/4 +O(n7/4+s/2 + n3/2+2s) ≤ 107|U |2p3 − e(G[U ])/4,

where in the last inequality we used our bounds on p and s, and that n is sufficiently large. Hence, we
must have e(G[U ]) ≤ 108|U |2p3/2, which shows that the edge density of G[U ] is at least (1− 108p3).

Lemma 10.9. Let 0 < s < 1/4 and 0 < α < min{ 1
12 − s

6 ,
1
6 − 2s

3 }, and let n be sufficiently large with
respect to s, α. Let G be an n-vertex graph with edge density at least 1− 10−5. If surp∗(G) < n1+s, then
G contains an induced subgraph of size n1−o(1) with edge density at least 1− n−α.

Proof. The proof of this is almost identical to the proof of Lemma 10.5, but instead on using Lemma
10.1, we use Lemma 10.6. Then, we just need to adjust the parameters s and α slightly. We skip further
details.

11 Densification — Phase 4

In this section, we show that graphs with large smallest eigenvalue (or small surplus) of edge density
1− n−ε contain subgraphs of edge density 1− n−1+ε on almost the same number of vertices.

In order to prove this, it is more convenient to work with the complement G of G. Let λ1 ≥ · · · ≥ λn

be the eigenvalues of G, and let µ1 ≥ · · · ≥ µn be the eigenvalues of G. Unfortunately, as G is not
necessarily regular, there is no simple formula to express µi in terms of λ1, . . . , λn. However, we can use
Weyl’s inequality to establish the following interlacing property.

Lemma 11.1. Let G be an n vertex graph with eigenvalues λ1 ≥ · · · ≥ λn, and let µ1 ≥ · · · ≥ µn be the
eigenvalues of the complement of G. For each i = 1, 2 . . . , n− 1, we have

1 + µi+1 ≤ −λn+1−i.

Proof. Weyl’s inequality states that if X and Y are n × n symmetric matrices, and 1 ≤ i, j ≤ n and
i+ j ≤ n+ 1, then

λi+j−1(X + Y ) ≤ λi(X) + λj(Y ),
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where λ1(X) ≥ · · · ≥ λn(X) denote the eigenvalues of a matrix X. Let A be the adjacency matrix of
G, and let B be the adjacency matrix of G. Then B = J − I − A. Let X = −A and Y = J − I, then
λi(X) = −λn+1−i, λ1(Y ) = n − 1, λi(X) = −1 for i = 2, . . . , n, and λi(X + Y ) = µi. Hence, applying
the above inequality with j = 2, we get

µi+1 ≤ −λn+1−i − 1.

The next lemma provides a bound on the surplus of very dense graphs. The result and its proof are
similar to the proof of Lemma 5.9 of Räty, Sudakov and Tomon [64] for the complementary quantity
called as positive discrepancy. Say that a graph G is C-balanced if ∆(G) ≤ Cd(G).

Lemma 11.2. Let G be an n-vertex graph of density (1−p) such that the complement of G is C-balanced,
and p < 0.001C−2. Then

surp∗(G) ≥ Ω

(
min

{
n

C3p
, C−1p1/2n3/2

})
.

Proof. Let A be the adjacency matrix of G with eigenvalues λ1 ≥ · · · ≥ λn, and let B be the adjacency
matrix of G with eigenvalues µ1 ≥ · · · ≥ µn.

Let ∆̄ be the maximum degree of G, so µ1 ≤ ∆̄ ≤ Cpn. We may assume that p > 0 and thus ∆̄ ≥ 1,
otherwise the statement is trivial. For k = 1, 2, 3, set

Pk =
∑

i ̸=1,µi>0

µk
i and Nk =

∑
µi<0

|µi|k.

Lemma 11.1 applied with i ≥ 2 shows that whenever µi ≥ 0 we also have λn+1−i ≤ −µi − 1 < 0.
Combined with Lemma 5.3, this shows that

surp∗(G) ≥
∑
λi<0

|λi| ≥
∑

i ̸=1,µi>0

µi = P1,

surp∗(G) ≥ Ω

∆̄−1/2
∑
λi<0

|λi|2
 ≥ Ω

∆̄−1/2
∑

i ̸=1,µi>0

µ2
i

 = Ω
(
∆̄−1/2P2

)
,

surp∗(G) ≥ Ω

 1

∆̄

∑
λi<0

|λi|3
 ≥ Ω

 1

∆̄

∑
i ̸=1,µi>0

µ3
i

 = Ω

(
1

∆̄
P3

)
.

We show that these three inequalities together with some simple identities suffice to prove the lemma.
First, assume that N2 ≤ 1

8pn
2. Note that µ2

1 + P2 +N2 = ∥B∥2F is twice the number of edges of G,
so µ2

1 + P2 +N2 = 2p
(
n
2

)
, from which

P2 ≥ pn2/2− µ2
1 −N2 ≥ pn2/2− C2p2n2 − pn2/8 ≥ pn2/4,

where we have used that pC2 ≤ 10−3 in the last inequality. But then surp∗(G) = Ω(p1/2n3/2) by the
second highlighted inequality, and we are done.

Hence, in the rest of the proof, we may assume that N2 ≥ 1
8pn

2. By the inequality between the
quadratic and cubic mean, we have (

N2

n

)1/2

≤
(
N3

n

)1/3

which gives N3 ≥ N
3/2
2 n−1/2 ≥ p3/2n5/2/64.
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Next, consider the quantity T = N3 − P3. Observe that µ3
1 − T =

∑n
i=1 µ

3
i is six-times the number

of triangles of G. In particular, µ3
1 − T it is nonnegative, showing that T ≤ µ3

1 ≤ ∆̄3. Assume that
N3 ≥ 2T , then P3 ≥ N3/2. By the third highlighted inequality, we then have

surp∗(G) ≥ Ω

(
P3

∆̄

)
≥ Ω

(
N3

∆̄

)
≥ Ω(C−1p1/2n3/2).

Hence, we are done in this case as well.
Finally, assume that N3 ≤ 2T , then ∆̄3 ≥ T ≥ N3/2. By the Cauchy-Schwartz inequality applied to

the sequences (|µi|3)µi<0 and (|µi|)µi<0, we have the inequality N1N3 ≥ N2
2 , which gives

N1 ≥
N2

2

N3
≥ p2n4

128∆̄3
≥ n

128C3p
.

But 0 = tr(B) = µ1+P1−N1, from which P1 = N1−µ1 ≥ n
128C3p

−∆̄ ≥ n
500C3p

. Hence, as surp∗(G) ≥ P1,
we are done.

Next, we present a simple technical lemma which shows that every graph contains a large induced
O(log n)-balanced graph.

Lemma 11.3. Let G be an n-vertex graph of edge density p, and let C ≥ 4 log2 n. Then G contains a
C-balanced induced subgraph on at least (1− 2 log2 n/C)n vertices of edge density at most p.

Proof. Let d = d(G) be the average degree of G. We perform an inductive process, where in each step
we delete the vertices of high degree. More precisely, let G0 = G, and define the sequence of induced
subgraphs G0 ⊃ G1 ⊃ ... as follows. Having already defined Gi, we denote its number of vertices by ni

and its average degree by di. To define Gi+1, remove from Gi all vertices of degree at least Cdi/2, if any
such vertices exist. The process halts once either all vertices of Gi have degree less than Cdi/2, or the
average degree of Gi is at least di−1/2. Let I be the last index i for which Gi is defined.

For each i, it is not hard to verify that the density of Gi is smaller than the density of Gi−1. Moreover,
since the average degree of Gi is di, there are at most 2ni/C vertices of degree larger than Cdi/2 in Gi,
so v(Gi) ≥ v(Gi−1)− 2ni/C ≥ v(Gi−1)− 2n/C. Thus, we have v(Gi) ≥ n(1− 2i/C) for all i = 1, . . . , I.
Furthermore, if the process did not halt at index i, we have di ≤ di−1/2, and so di ≤ d2−i. This shows
that I ≤ log2 n and nI ≥ n(1− 2 log2 n/C).

Finally, note that GI has no vertices of degree more than Cd(GI). Indeed, if the process has halted
because GI contains no vertices of CdI/2, this is immediate, and if the process has halted because
dI ≥ dI−1/2, then GI contains no vertex of degree more than CdI−1/2 ≤ CdI . Hence, GI is a C-balanced
induced subgraph of G on at least (1− 2 log2 /C)n vertices.

Now we are ready to prove the main result of this section. Conveniently, we do not have separate
versions for the minimum eigenvalue and the MaxCut, as our result for the latter is already optimal.

Lemma 11.4. Let 0 < ε < α, then the following holds if n is sufficiently large. Let G be an n-vertex
graph of edge density at least 1 − n−α. If surp∗(G) ≤ n1+ε, then G contains an induced subgraph of
density at least (1−O((log n)2n2ε−1)) on at least n/2 vertices.

Proof. Let 1− p the edge density of G, and let C = 4 log2 n. Applying Lemma 11.3 to the complement
of G, we find an induced subgraph G0 ⊆ G on at least n/2 vertices with edge density 1− p0 ≥ 1− p such
that the complement of G0 is C-balanced. As p0 ≤ p ≤ 0.001C−3, we can apply Lemma 11.2 to conclude
that

surp∗(G0) = Ω

(
min

{
n

C3pI
, C−1p

1/2
I n3/2

})
.

However, as p0 < n−α and ε < α, the inequality surp∗(G0) ≤ n1+ε is only possible if

p0 ≤ O(C2n2ε−1) = O(n2ε−1(log n)2).
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12 Finding large cliques

In this section, we combine our densification steps to prove that graphs with large smallest eigenvalue
(or small surplus) contain large cliques.

Theorem 12.1. Let s ∈ (0, 1/6) and δ > 0, then there exist ρ > 0 such that the following holds for every
sufficiently large n. Let G be an n-vertex graph of edge density at least n−ρ such that |λn| ≤ ns. Then G
contains a clique of size at least n1−2s−δ.

Furthermore, we may choose ρ = αδ for some decreasing α = α(s) > 0.

Proof. Let ε = min{δ/20, (1/6 − s)/5}. Applying the phase 1 densification step, that is, Lemma 8.3,
there exists ρ = ρ(s, ε) > 0 and c1 = c1(s, ε) such that if G has edge density at least n−ρ and the
absolute value of the smallest eigenvalue |λn| ≤ ns, then G contains a subgraph G1 on at least n1 ≥ n1−ε

vertices with edge density at least c1. Note that G1 satisfies that if its smallest eigenvalue is λ(1), then
|λ(1)| ≤ |λn| ≤ n1+s ≤ n

(1+s)/(1−ε)
1 ≤ n1+s1

1 for s1 = s + 2ε ∈ (0, 1/6). Furthermore, we may choose
ρ = α0ε for some α0 = α0(s), which shows that we may choose α = α(s) > 0 such that ρ = αδ.

Next, applying the phase 2 densification to G1, that is, Corollary 9.5, we get that G1 contains a
subgraph G2 on n2 ≥ c1n1/2 ≥ n1−2ε vertices with edge density at least 1 − 10−5. The smallest
eigenvalue λ(2) of G2 still satisfies that |λ(2)| ≤ n1+s2

2 for s2 = s1 + ε = s+ 3ε ∈ (0, 1/6).
Apply the phase 3 densification step to G2, that is, Lemma 10.5. Then G2 contains a subgraph G3

of edge density 1 − n
3s2−1+o(1)
2 > 1 − n

−1/2
2 on n3 ≥ n

1−o(1)
2 > n1−3ε vertices. The smallest eigenvalue

λ(3) of G3 satisfies that |λ(3)| ≤ n1+s3
3 for s3 = s2 + ε = s+ 4ε ∈ (0, 1/6).

Finally, apply the phase 4 densification step to G3, that is, Lemma 11.4. As surp∗(G3) ≤ |λ(3)|n3 ≤
n1+s3
3 and s3 < 1/6 < 1/2, the lemma is indeed applicable. Therefore, we get a graph G4 of density

at least 1 − O((log n3)
2n2s3−1

3 ) > 1 − n2s3+ε−1
3 on at least n3/2 > n1−4ε vertices. But then by Turán’s

theorem, G4 contains a clique of size n1−2s3−ε
3 /4 ≥ n(1−4ε)(1−2s−9ε) > n1−2s−13ε > n1−2s−δ, finishing the

proof.

Here, the bound n1−2s−δ is optimal up to the δ error term. Indeed, the Erdős-Rényi random graph
with edge probability p = 1−n2s−1 has no clique of size larger that n1−2s+o(1), and its smallest eigenvalue
satisfies |λn| = O(ns). Next, we use the previous theorem and Densification step 0 to prove Theorem
1.2, which we restate here.

Theorem 12.2. There exists c > 0 such that the following holds for every s > 0, and every d sufficiently
large with respect to s. Let G be a graph of average degree d and assume that |λn| ≤ ds. Then G contains
a clique of size at least d1−cs.

Proof. Let s0 = 1/12 and α = α(s0) be the constant given by Theorem 12.1. Then α(s) ≥ α for every
s ≤ s0. By densification step 0, that is Lemma 7.1, G contains a subgraph G0 on d vertices of density at
least Ω(1/|λn|) ≥ Ω(d−s). Set δ = 2s/α, then the density of G0 is at least d−αδ, so we can apply Theorem
12.1 to G0 to get a clique of size at least d1−2s−δ = d1−s(2+2/α), so c = min{12, 2 + 2/α} suffices.

Now we prove the MaxCut version of Theorem 12.1, and use it to deduce Theorem 1.3.

Theorem 12.3. Let s ∈ (0, 1/60) and δ > 0, then there exist ρ > 0 such that the following holds for every
sufficiently large n. Let G be an n-vertex graph of edge density at least n−ρ such that surp(G) ≤ n1+s.
Then G contains a clique of size at least n1−2s−δ.

Proof. The proof of this is essentially identical to the proof of Theorem 12.1. The only difference is that
we cite the MaxCut versions of our main densification results: Lemma 8.5, Corollary 9.7, Lemma 10.9
and Lemma 11.4. We also use that surp∗(G) ≤ O(surp(G) log n) by Lemma 5.2.
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Proof of Theorem 1.3. Let s = δ0 = min{1/100, δ/10}, and let ρ be the constant guaranteed by Theorem
12.3 with δ0 instead of δ. We show that ε = min{ρ/3, s/2} suffices. Let G be a graph with surp(G) ≤
m1/2+ε, and let n be the number of vertices of G. We may assume that G contains no isolated vertices.
Then, a result of Erdős, Gyárfás, and Kohayakawa [36] implies that surp(G) ≥ n/6. If m ≤ n2−3ε, then
surp(G) ≥ n/6 ≥ 1

6m
1/(2−3ε) ≥ m1/2+ε, contradiction. Hence, m ≥ n2−3ε, so the edge density of G is at

least n−3ε > n−ρ. As surp(G) ≤ m1/2+ε ≤ n1+2ε ≤ n1+s, G contains a clique of size

n1−2s−δ0 = n1−3s ≥ m(1−3s)/2 ≥ m1/2−δ

by Theorem 12.3.

13 Edit distance from the union of cliques

The limitations of Theorems 9.4 and 9.6 are that they are only meaningful if the graph has large density.
Indeed, these theorems imply that a graph of large minimum eigenvalue (or small surplus) is o(1)-close
to a disjoint union of cliques, where a careful inspection of the parameters show that the o(1) term is
polylogarithmic in n. Hence, if the graph G has density at most n−c for any small constant c > 0, they
become meaningless as G is already o(1)-close to the empty graph. However, in this section we prove that
polynomial proximity can also be establish, albeit under somewhat stronger condition on the smallest
eigenvalue or the surplus.

We start with the following simple lemma, which will be used to argue that a dense graph with small
surplus cannot induce sparse subgraphs.

Lemma 13.1. Let G be a graph on n vertices. Let X ∪Y be a partition of V (G), and let b = e(G[X,Y ])

and c = e(G[Y ]). Then surp(G) ≥ b2

4n2 − c.

Proof. If a = e(G[X]) satisfies a ≤ b/2, then surp(G) is at least

e(G[X,Y ])− e(G)

2
= b− a+ b+ c

2
=

b− a− c

2
≥ b

4
− c

2
≥ b2

4n2
− c,

as desired.
Otherwise, we have b < 2a and we can take p = b/(4a) ∈ [0, 1/2). Let U be a random subset of X,

where each vertex is included independently with probability 1/2+p, and consider the cut (U, (X\U)∪Y ).
Each edge in G[X] has probability 1/2− 2p2 of being cut, and each edge between X and Y is cut with
probability 1/2 + p. Therefore, the expected size of this cut is a(1/2 − 2p2) + b(1/2 + p), showing that
the expected surplus is

a
(1
2
− 2p2

)
+ b
(1
2
+ p
)
− a+ b+ c

2
= bp− 2ap2 − c

2
=

b2

8a
− c

2
≥ b2

4n2
− c,

where we have used that a = e(G[X]) ≤ n2/2 in the last step.

13.1 Least eigenvalue version

Next, we show that a graph with large smallest eigenvalue contains a collection of large cliques such that
almost all edges are contained in the subgraph induced by the union of these cliques.

Lemma 13.2. Let s ∈ (0, 1/6) and δ > 2s, then there exists ε > 0 such that the following holds for
sufficiently large n. Let G be a graph on n vertices such that |λn| ≤ ns. Then there exists X ⊂ V (G)
such that the number of edges not in G[X] is at most n2−ε, and G[X] can be partitioned into cliques of
size n1−δ.
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Proof. Choose any constants s0, δ0 > 0 such that s < s0 and 2s0+ δ0 < δ. By Theorem 12.1, there exists
ρ = ρ(s0, δ0) > 0 such that every n0-vertex graph of edge density at least n−ρ

0 and smallest eigenvalue at
least −ns0

0 contains a clique of size n1−2s0−δ0
0 as long as n0 is sufficiently large.

We show that ε = min{1/16, ρ/5, (1 − s/s0)/2, (δ − δ0 − 2s0)/2} suffices. Delete all vertices of G of
degree less than d = n1−2ε, and let G0 be the resulting graph. Note that we removed at most dn edges.
Repeat the following procedure. If Gi is defined and Gi contains a clique of size n1−δ, then let Ci+1 be
such a clique, and set Gi+1 = Gi \ Ci+1. Otherwise, stop, and let I be the last index i for which Gi is
defined. We show that X = C1 ∪ · · · ∪ CI is the required set. It is clear that X can be partitioned into
cliques of size n1−δ, so it remains to show that the number of edges not in X is at most n2−ε.

Let Y = V (GI), b = e(G0[X,Y ]) and c = e(G0[Y ]).

Claim 13.3. If |Y | ≥ n3/4, then c ≥ d2|Y |2/(20n2).

Proof. As G has minimum degree d, we have b + 2c ≥ d|Y |. Assume that c < d2|Y |2/(20n2) < d|Y |/4,
then b ≥ d|Y |/2. By Lemma 13.1, we have

surp∗(G) ≥ surp∗(G0) ≥
b2

4n2
− c.

Using that surp∗(G) ≤ |λn|n ≤ n1+s, we have

c ≥ b2

4n2
− n1+s ≥ d2|Y |2

16n2
− n1+s ≥ d2|Y |2

20n2
.

In the last inequality we used that d = n1−2ε ≥ n7/8 and |Y | ≥ n3/4.

Now we show that |Y | ≤ n1−2ε. Indeed, suppose |Y | > n1−2ε. By the above claim, GI has at
least d2|Y |2/(20n2) > |Y |2n−4ε/20 ≥ |Y |2−5ε edges, which shows that GI has edge density at least
|Y |−5ε ≥ |Y |−ρ. Moreover, by Cauchy’s interlacing theorem, the smallest eigenvalue of GI is at least that
of G, which is at least −ns ≥ −|Y |s/(1−2ε) ≥ −|Y |s0 .

But then, as discussed above, Theorem 12.1 guarantees that Y contains a clique of size |Y |1−2s0−δ0 >
n1−2s0−δ0−2ε ≥ n1−δ, contradicting that GI contains no clique of size n1−δ. Therefore, we must have
|Y | ≤ n1−2ε.

From this, the number of edges of G not in G[X] is at most

dn+ e(G[X,Y ]) + e(G[Y ]) ≤ dn+ |Y |n ≤ n1−ε.

This finishes the proof.

Next, we show that the graph between two cliques must be either very dense or very sparse. In order
to prove this, we use that graphs of small |λn| avoid the following simple graph as an induced subgraph.

Lemma 13.4. Let G be an n-vertex graph with the smallest eigenvalue λn and let X,Y ⊂ V (G) be disjoint
cliques of the same size. Then G[X,Y ] has either at most O(|λn|2|X|) edges, or at least |X|2−O(|λn|2|X|)
edges.

Proof. By the Cauchy interlacing theorem and Claim 3.3, G does not contain Hk as an induced subgraph
for k = 2|λn|2. We may assume that |X| = |Y | ≥ 4k, otherwise the statement is trivial. Then each vertex
in X has either at most k neighbours or at most k non-neighbours in Y . Moreover, each vertex in Y has
at most k neighbours or at most k non-neighbours in X. Let X0 ⊂ X be the set of vertices with at most
k neighbours, and let X1 = X \X0, and define Y0, Y1 ⊂ Y analogously. Suppose that X0 and Y1 both
have size at least 2c|λn|2. If the number of edges between X0 and Y1 is at least |X0||Y1|/2, then there is a
vertex in X0 with at least |Y1|/2 ≥ k neighbours in Y1, contradiction. On the other hand, if the number
of edges between X0 and Y1 is at most |X0||Y1|/2, then there is a vertex in Y0 with at least |X0|/2 ≥ k
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non-neighbours, contradiction. Therefore, it must hold that at least one of X0 or Y1 has size at most
2k. If |X0| ≤ 2k, then G[X,Y ] has at least |X1|(|X| − k) ≥ |X|2 − 3k|X| = |X|2 − O(|λn|2|X|) edges.
Otherwise, if |Y1| ≤ 2k, then G[X,Y ] has at most |Y0|k + |Y1||X| ≤ 3k|X| = O(|λn|2|X|) edges.

We are ready to prove Theorem 1.6, which we restate here for convenience.

Theorem 13.5. Let s ∈ (0, 1/6), then there exists ε > 0 such that the following holds. Let G be an
n-vertex graph such that |λn| ≤ ns. Then G is n−ε-close to the disjoint union of cliques.

Proof. Let δ = 1/2 > 2s, and let ε0 = ε0(s, δ) > 0 be the constant guaranteed by Lemma 13.2. We show
that ε = min{1/7, ε0/2} suffices.

By Lemma 13.2, there exists a set X ⊂ V (G) such that X can be partitioned into the union of
cliques of size n0 = n1−δ, and G has at most n2−ε0 edges not in G[X]. Let C1, . . . , CI be the cliques
of size n0 partitioning X, then I = |X|/n0. Lemma 13.4 implies that the bipartite graph between Ci

and Cj has either at most O(n0|λn|2), or at least n2
0 − O(n0|λn|2) edges. In other words, (Ci, Cj) is

a O(|λn|2/n0)-homogeneous pair, whose definition appears in Section 9. Here, O(|λn|2/n0) < n−1/6.
Define the auxiliary graph Γ on vertex set {1, . . . , I}, where we connect i and j if (Ci, Cj) is n−1/6-full.

Claim 13.6. Γ contains no cherry.

Proof. If Γ contains a cherry, it means that there is a triple (Ci, Cj , Ck) such that (Ci, Cj) and (Cj , Ck)
are n−1/6-full, but (Ci, Ck) is n−1/6-empty. By Lemma 9.2, then G[Ci ∪ Cj ∪ Ck] has surplus at least
(1/4− 3n−1/6)|Ci|2 ≥ |Ci|n1/2/8, which shows that the smallest eigenvalue of G[Ci ∪Cj ∪Ck] is at most
−n1/2/24, contradiction.

Recall that graphs containing no cherry are the disjoint union of cliques. Therefore, we can partition
V (Γ) into sets I1, . . . , Is such that Γ[Ii] is a clique and there are no edges between Ii and Ij in Γ. But
this gives a partition of X into sets Y1, . . . , Ys by setting Ya =

⋃
i∈Ia Ci. Define G̃ to be the graph on

vertex set V (G), where Y1, . . . , Ys are cliques, and all edges of G̃ are contained in one of these cliques.
We prove that G̃ is n−ε-close to G. For 1 ≤ i < j ≤ I, G[Ci, Cj ] and G̃[Ci, Cj ] differ by at most

n2
0 · n−1/6 edges. Therefore, G[X] and G̃[X] differ by at most(

|X|/n0

2

)
n2
0 · n−1/6 ≤ n2−1/6

edges. Furthermore, there are at most n2−ε0 edges of G not in G[X], so G and G̃ differ by at most
n2−ε0 + n2−1/6 ≤ n2−ε edges. This finishes the proof.

13.2 MaxCut version

Finally, we prove the MaxCut version of Theorem 13.5. Most of the proof of this theorem is identical
to the proof of Theorem 13.5, but a substantial difficulty arises when one tries the adapt the proof of
Lemma 13.4. Before, we start with a variant of Lemma 13.2.

Lemma 13.7. Let s ∈ (0, 1/60) and δ > 2s, then there exists ε > 0 such that the following holds. Let G
be a graph on n vertices such that surp∗(G) ≤ n1+s. Then there exists X ⊂ V (G) such that the number
of edges not in G[X] is at most n2−ε, and G[X] can be partitioned into cliques of size n1−δ.

Proof. The proof this is almost identical to the proof of Lemma 13.2. The only difference is that we cite
Theorem 12.3 instead of Theorem 12.1. We omit further details.
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Recall that Lemma 13.4 states that a pair of cliques in a graph with large smallest eigenvalue must
form a δ-homogeneous pair for some very small δ. The proof of this relied on finding a simple forbidden
subgraph Hk. Unfortunately, for graphs of small surplus, we do not have such a simple forbidden
structure anymore. Instead, we show that if G contains two large cliques, then the bi-adjacency matrix
of the bipartite graph between them is close to a rank-1 matrix. Then we show that this implies that the
bipartite graph is close to a graph of rank one, which is just a complete bipartite graph. We prepare the
proof of this with a couple of lemmas.

A Boolean matrix is a matrix with only zero and one entries. First, we show that if a Boolean matrix
is approximated by a rank one matrix, then it is also approximated by a rank one Boolean matrix, or
equivalently, a combinatorial rectangle.

Lemma 13.8. Let A be an n × n Boolean matrix, and let δ ≥ 0. If there exist u, v ∈ Rn such that
∥A− uvT ∥2F ≤ δn2, then there exist x, y ∈ {0, 1}n such that ∥A− xyT ∥2F ≤ O(δ1/3n2).

Proof. Without loss of generality, we may assume that δ ≤ 1. Furthermore, we may assume that u and v
has nonnegative entries, as replacing every entry with the absolute value does not increase ∥A− uvT ∥2F .
Observe that ∥u∥22∥v∥22 = ∥uvT ∥2F , which shows that

∥u∥2∥v∥2 ≤ ∥A∥F +
√
δn ≤ 2n.

We may rescale u and v such that ∥u∥2 = ∥v∥2 ≤
√
2n. Let α = δ1/6, and define x, y ∈ {0, 1}n such that

x(i) =

{
1 if u(i) ≥ α

0 otherwise,

and similarly

y(i) =

{
1 if v(i) ≥ α

0 otherwise.

We show that xyT is a good approximation of A. Note that ∥A − xyT ∥2F is the number of pairs (i, j)
such that Ai,j ̸= xiyj . We count these pairs in three cases.

Case 1. Ai,j = 1 and xi = 0.

In this case, we have ui < α. If vj ≤ 1/(2α), then (Ai,j − uivj)
2 > 1/4, so there are at most 4δn2

such pairs (i, j). On the other hand, the number of j such that vj ≥ 1/(2α) is at most 4α2n, as
∥v∥22 =

∑n
j=1 v

2
j ≤ 2n. Therefore, the number of (i, j) such that Ai,j = 1 and xi = 0 is at most

4δn2 + 4α2n2 = 4δn2 + 4δ1/3n2 = O(δ1/3n2).

Case 2. Ai,j = 1 and yj = 0.

This is symmetric to the previous case, so the number of such pairs is also at most O(δ1/3n2).

Case 3. Ai,j = 0 and xi = yj = 1.

In this case, ui ≥ α and vj ≥ α, so (Ai,j − uivj)
2 ≥ α4. Thus, the total number of pairs (i, j) in

this case is at most δn2/α4 = δ1/3n2.

Next, we prove a simple technical lemma which shows that the union of two cliques has large surplus
as long as the two cliques are not too disjoint, and do not overlap too much.

Lemma 13.9. Let G be a graph such that V (G) = C1 ∪ C2 and E(G) =
(
C1

2

)
∪
(
C2

2

)
. Let |C1 \ C2| = a,

|C2 \ C1| = b and |C1 ∩ C2| = c. Then

surp(G) ≥ 1

4
min{a2, b2, c2}.
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Proof. Let A = C1 \ C2, B = C2 \ C1, and C = C1 ∩ C2. We may assume that a = b. Otherwise, if, say
a ≤ b, we remove vertices of B \C until its size is exactly a. Then it is enough to show that the resulting
graph has surplus at least 1

4 min{a2, c2}.
The number of edges of G is

2

(
a+ c

2

)
−
(
c

2

)
< a2 + 2ac+

c2

2
.

If c ≤ a, then define the cut (U, V ) such that U is some (a+ c)/2 element subset of A together with some
(a+ c)/2 element subset of B. The number of edges in this cut is (a+ c)2/2. Hence, the surplus of G is
at least 1

2(a+ c)2 − 1
2e(G) = c2/4.

If c ≥ a, then define the cut (U, V ) such that U is some (a + c)/2 element subset of C. Then the
number of edges in this cut is a+c

2 · c−a
2 + 2a+c

2 · a = c2

4 + 3
4a

2 + ac. Therefore, the surplus is at least
a2/4.

Now we are ready to prove our lemma about the surplus of the complement of bipartite graphs.

Lemma 13.10. Let s and δ > 0 such that s + 6δ < 1/2. Let H be a bipartite graph with vertex classes
of size n, and let G = H. If surp∗(G) ≤ n1+s, then either e(H) ≤ n2−δ or e(H) ≥ n2 − n2−δ.

Proof. Let A be the adjacency matrix of G with eigenvalues λ1 ≥ · · · ≥ λ2n. Furthermore, let M be
the adjacency matrix of H, and let µ1 ≥ · · · ≥ µ2n be the eigenvalues of M . As H is bipartite, we have
µi = −µ2n+1−i for i ∈ [2n]. By Lemma 5.3 (ii) and Lemma 11.1, we have

surp∗(G) ≥ Ω

 1√
n

∑
λi<0

λ2
i

 ≥ Ω

 1√
n

∑
i ̸=1,µi>0

µ2
i

 = Ω

 1√
n

∑
i ̸=1,2n

µ2
i

 .

Hence, if surp∗(G) ≤ n1+s, then we have
∑

i ̸=1,2n µ
2
i = O(n3/2+s).

On the other hand, we can express
∑

i ̸=1,2n µ
2
i as follows. The matrix M has the form M =

(
0 B
BT 0

)
with an appropriate n× n matrix B. Let v1 be the principal eigenvector of M , then we can write v1 =
(u, v), where u, v ∈ Rn correspond to the two vertex classes of H. Then the eigenvector corresponding
to the smallest eigenvalue λ2n = −λ1 is v2n = (u,−v), and we have∑

i ̸=1,2n

µ2
i = ∥M − λ1v1v

T
1 − λ2nv2nv

T
2n∥2F

=

∥∥∥∥( 0 B
BT 0

)
− λ1

(
uuT uvT

vuT vvT

)
+ λ1

(
uuT −uvT

−vuT vvT

)∥∥∥∥2
F

= 2∥B − 2λ1uv
T ∥2F .

Therefore, ∥B − 2λ1vu
T ∥F = O(n3/2+s). But then by Lemma 13.8, there exist x, y ∈ {0, 1}n such that

∥B − xyT ∥2F = O(n5/6+s/3). The matrix xyT corresponds to a complete bipartite graph between the
vertex classes of H, let H̃ denote this complete bipartite graph, and let X0 and Y0 denote its vertex
classes. Note that e(H̃) = ∥xyT ∥2F = |X0||Y0|, and ∥B−xyT ∥2F is the number of edges H̃ differs from H.
Therefore, if e(H̃) ≤ n2−δ/2, then e(H) ≤ e(H̃) + ∥B − xyT ∥F ≤ n2−δ, so we are done. We can proceed
similarly if e(H̃) ≥ n2 − n2−δ/2. Hence, we may assume that n2−δ/2 ≤ e(H̃) ≤ n2 − n2−δ/2. We show
that this is impossible, by deriving that the surplus of G is too large in this case.

Let G̃ be the complement of H̃. Then G̃ and G differ by at most O(n5/6+s/3) edges. On the other
hand, G̃ is the union of two cliques, having vertex sets C1 and C2, where X0 = C1 \ C2, Y0 = C2 \ C1,
and C1 ∩ C2 = V (G) \ (X0 ∪ Y0). As n2−δ/2 ≤ e(H̃) = |X0||Y0|, we have |X0|, |Y0| ≥ n1−δ/2. Also,
as e(H̃) ≤ n − n2−δ/2, we have |C1 ∩ C2| = |V (G) \ (X0 ∪ Y0)| ≥ n2−δ/2. Hence, by applying Lemma
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13.9, we get that surp∗(G̃) ≥ Ω(n2−2δ). But as G and G̃ differ by less than O(n5/6+s/3) edges, and
5/6 + s/3 < 2− 2δ, this gives

surp∗(G) ≥ surp∗(G̃)−O(n5/6+s/3) ≥ Ω(n2−2δ) > n1+s

as well, contradiction.

Now we are ready to prove the main theorem of this section, that is, Theorem 1.4, which we restate
here for the reader’s convenience. The proof is essentially the same as the proof of Theorem 13.5.

Theorem 13.11. Let s ∈ (0, 1/60), then there exists ε > 0 such that the following holds. Let G be an
n-vertex graph such that surp∗(G) ≤ n1+s. Then G is n−ε-close to the disjoint union of cliques.

Proof. The proof is almost identical to the proof of Theorem 13.5, but we use Lemmas 13.7 and 13.10
instead of Lemmas 13.2 and 13.4. We omit further details.

Finally, we show that the previous theorem indeed implies Theorem 1.8 after complementation.

Proof of Theorem 1.8. Define the positive discrepancy of a graph G of edge density p as

disc+(G) = max
U⊂V (G)

e(G[U ])− p

(
|U |
2

)
,

and define the negative discrepancy as

disc−(G) = max
U⊂V (G)

p

(
|U |
2

)
− e(G[U ]).

It was proved in [64], Lemma 2.6, that if G is regular, then surp(G) = Θ(disc−(G)) and bw(G) =
e(G)/2 − Θ(disc+(G)). Moreover, disc+(G) = disc−(G). Therefore, the theorem follows from Theorem
1.4 after taking complements, and noting that if a regular graph G is close to a complement of a disjoint
union of cliques, then G is close to a Turán graph.

14 Concluding remarks — Chowla’s cosine problem in finite groups

Littlewood’s L1-problem and Chowla’s cosine problem have also been studied in the setting of groups.
Green and Konyagin [42] proposed to study the smallest L1-norm of a dense set A ⊆ Z/pZ. If 1̂A

denotes the Fourier transform of the indicator function of A over Z/pZ, they showed that
∑

r |1̂A(r)| ≥
(log p)1/3−o(1), which was later improved by Sanders [70] to (log p)1/2−o(1). For sparser sets A ⊆ Z/pZ, a
similar question has been studied by Schoen [72] and Konyagin and Shkredov [55].

Paralleling the extensions of the Littlewood L1-problem, Sanders [71] extended Chowla’s problem to
finite abelian groups G as follows. For a symmetric subset A ⊂ G, one can define

MG(A) = sup
y∈G

−1̂A(y),

where f̂ : G → C is the discrete Fourier transform of a function f : G → C, and 1A is the indicator
function of A. Since A is a symmetric set, 1̂A is a real function. The natural analogue of Chowla’s
problem is to estimate the minimum of MG(A) over all centrally symmetric subsets A of size n. One can
quickly observe that MG(A) need not go to infinity with the size of A. Indeed, if A is a subgroup of G,
then MG(A) = 0. On the other hand, Sanders ([71, Theorem 1.3]) proved that if A is far from a subgroup
of G, then MG(A) is necessarily large. Formally, he proved that for every δ > 0 there exists c(δ) > 0
such that if MG(A) ≤ |G|c(γ), then there is some subgroup H < G satisfying |H△A| ≤ δ|G|. Noting that

41



the image of the Fourier transform 1̂A is the spectrum of the Cayley graph Cay(G,A) generated by A,
we can use our main results to immediately improve these bounds, and to extend them to non-abelian
groups as well.

If G is a finite group and A ⊂ G such that A = A−1, define MG(A) = max−λ, where the maximum
is taken among all eigenvalues of the Cayley graph Cay(G,A), which then coincides with the earlier
definition for finite abelian groups. We show that MG(A) is small if and only if A is close to a subgroup
of G.

Theorem 14.1. Let δ, ε > 0, then the following holds for every sufficiently large finite group G. Let
A ⊂ G such that A = A−1. If MG(A) ≤ |G|1/4−ε, then there exists a subgroup H < G such that

|H△A| ≤ δ|G|.

Moreover, if α > 0 is sufficiently small with respect to ε and MG(A) < |G|1/6−ε, then there exists a
subgroup H < G such that

|H△A| ≤ |G|1−α.

The main idea of the proof is to show that Cay(G,A) is close to the disjoint union of cliques if and
only if A is close to a subgroup of G. This is proved in the following lemma.

Lemma 14.2. Let G be a group and let A ⊂ G, A = A−1, such that the number of pairs (x, y) ∈ A×A
such that xy−1 ̸∈ A is at most ε|A|2. Then there exists a subgroup H < G such that |H△A| ≤ O(ε1/2|A|).

In the proof, we use an old theorem of Freiman [37] on sets of very small doubling, sometimes referred
to as Freiman’s 3/2-theorem. See also the blog of Tao [73] for a short proof. Given subsets A,B of a
group G, we write AB := {xy : x ∈ A, y ∈ B}.

Lemma 14.3 (Freiman’s 3/2-theorem). Let G be a group and let A ⊂ G such that |AA−1| ≤ 3
2 |A|. Then

AA−1 and A−1A are both subgroups of G.

Proof of Lemma 14.2. We may assume that ε < 1/1000, otherwise the statement is trivial. Also, we can
assume that the identity 1G ∈ A, as adding 1G does not change the number of pairs (x, y) ∈ A×A with
xy−1 ̸∈ A, and it only changes the size of A by 1.

Let N be the number of pairs (x, y) ∈ A×A such that xy−1 ̸∈ A. Also, for every x ∈ A, let

N(x) = |(xA)△A|.

Then using A = A−1, we have

N =
1

2

∑
x∈A

N(x).

Therefore, 1
|A|
∑

x∈AN(x) ≤ 2ε|A|. Let δ = (2ε)1/2, and define

B = {x ∈ A : N(x) ≤ δ|A|}.

Then by simple averaging, we have |B| ≥ (1 − 2ε/δ)|A| = (1 − δ)|A|. We also note that B = B−1 as
N(x) = N(x−1), and 1G ∈ B. Observe that for every x1, x2 ∈ B, we can use the triangle inequality to
write

|(x1x2A)△A| ≤ |(x1A)△A|+ |(x1x2A)△(x1A)| ≤ 2δ|A|.

In particular, for every x ∈ B ·B, we have |(xA)△A| ≤ 2δ|A|. Therefore,∑
x∈B·B

|(xA)△A| ≤ 2δ|A||B ·B|.
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On the other hand,
∑

x∈B·B |(xA)△A| counts the number of pairs (x, y) ∈ (B ·B)×A such that xy ̸∈ A or
y ̸∈ xA. For every fixed y, the number of such pairs is clearly lower bounded by |B ·B| − |A|. Therefore,
we can also write ∑

x∈B·B
|(xA)△A| ≥ |A|(|B ·B| − |A|).

Comparing the lower and upper bounds on
∑

x∈B·B |(xA)△A|, we get

2δ|A||B ·B| ≥ |A|(|B ·B| − |A|),

from which
|B ·B| ≤ 1

1− 2δ
|A| < (1 + 4δ)|A|.

Therefore,
(1− δ)|A| ≤ |B| ≤ |B ·B| ≤ (1 + 4δ)|A|,

which also implies that |B · B| ≤ 3|B|/2. Hence, we can apply Lemma 14.3 to conclude that B · B is a
subgroup of G. Furthermore, as 1G ∈ B, we have B ⊂ B ·B, so |A ∩B ·B| ≥ |B|. In conclusion

|A△(B ·B)| ≤ |A|+ |B ·B| − 2|B| ≤ 6δ|A|,

showing that H = B ·B suffices.

With Lemma 14.2 in our hands, Theorem 14.1 follows almost immediately from Theorems 9.4 and
13.5.

Proof of Theorem 14.1. We start with the first part of the theorem. We may assume that |A| ≥ δ|G|,
otherwise the statement is trivial by choosing H = {1G}. Let Γ = Cay(G,A), and let λn = −MG(A)
be the smallest eigenvalue of Γ, n = |G|. We may assume that 1G ̸∈ A, by noting that removing 1G
shifts the eigenvalues by -1. Therefore, Γ is a simple graph with no self loop. By Theorem 9.4, the
inequality |λn| ≤ n1/4−ε implies that Γ is β-close to a disjoint union of cliques for any β > 0, given
n > n0(β, ε). But then Γ contains at most 3βn3 cherries by Lemma 9.3. This implies that there
are at most 6βn2 ≤ 6(β/δ2)|A|2 pairs (x, y) ∈ A × A such that xy−1 ̸∈ A. By Lemma 14.2, then
|A△H| ≤ O(β1/2/δ|A|) ≤ δn for some subgroup H < G, assuming β ≪ δ4.

The second part of the theorem follows essentially in the same manner, but we cite Theorem 13.5
instead of Theorem 9.4. We omit the details.
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