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Abstract

The canonical Ramsey theorem of Erdős and Rado implies that for any graph H, any edge-
coloring (with an arbitrary number of colors) of a sufficiently large complete graph KN contains a
monochromatic, lexicographic, or rainbow copy of H. The least such N is called the Erdős–Rado
number of H, denoted by ER(H). Erdős–Rado numbers of cliques have received considerable
attention, and in this paper we extend this line of research by studying Erdős–Rado numbers of
sparse graphs. For example, we prove that if H has bounded degree, then ER(H) is polynomial
in |V (H)| if H is bipartite, but exponential in general.

We also study the closely-related problem of constrained Ramsey numbers. For a given tree
S and given path Pt, we study the minimum N such that every edge-coloring of KN contains a
monochromatic copy of S or a rainbow copy of Pt. We prove a nearly optimal upper bound for this
problem, which differs from the best known lower bound by a function of inverse-Ackermann type.

1 Introduction

Ramsey’s theorem asserts that if the edges of a sufficiently large complete graph KN are colored
with a fixed palette of colors, then the coloring contains an arbitrarily large monochromatic clique.
Moreover, it is easy to see that such a statement cannot be true if we allow the palette of colors to
not be fixed; e.g. if we allow

(
N
2

)
colors to be used then every edge may receive a distinct color, and

then we cannot find any monochromatic structure containing more than one edge.
Nonetheless, one can prove meaningful statements about edge-colorings of complete graphs with

no assumption on the palette of colors. The foundational result of this type is the canonical Ramsey
theorem of Erdős and Rado [11]. In order to state it, we introduce the following terminology. We say
that vertices v1, . . . , vn form a canonically colored copy of Kn if one of the following three conditions
holds:

• all edges vivj have the same color (the clique on v1, . . . , vn is monochromatic),

• for every i, all edges vivj for j > i have the same color, say ci, and the colors c1, c2, . . . , cn−1

are distinct (the clique on v1, . . . , vn is lexicographically colored), or

• all edges vivj have distinct colors (the clique on v1, . . . , vn is rainbow).

Figure 1: Illustrations of canonical colorings of a six-vertex clique

The Erdős–Rado canonical Ramsey theorem then reads as follows.
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Theorem 1.1 (Erdős–Rado [11]). For every integer n, there exists some N such that every edge-
coloring of E(KN ) (with an arbitrary number of colors) contains a canonically colored copy of Kn.

Let us denote by ER(Kn) the smallest integer N for which every edge-coloring of KN contains
a canonically colored copy of Kn. The original proof of Erdős and Rado [11] was via a reduction
to a 4-uniform hypergraph Ramsey problem, and thus gave weak bounds of the form ER(Kn) ≤
22

2O(n)

. However, an alternative proof of Theorem 1.1 was found by Lefmann and Rödl [20], which
in particular supplies the much stronger bound ER(Kn) ≤ nO(n2). In the other direction, it is easy
to show that ER(Kn) is at least the (n − 2)-color Ramsey number of Kn, yielding a lower bound
of ER(Kn) ≥ 2Ω(n2) via a well-known lower bound of Abbott [1] (rediscovered several times, e.g.
[6, 19]) on multicolor Ramsey numbers. We thus know the behavior of ER(Kn) up to a logarithmic
gap in the exponent, and closing this gap is a major challenge.

In this paper, we are interested in studying the Erdős–Rado numbers of sparser graphs than
cliques. Formally, let us define the Erdős–Rado number of a graph H to be the smallest N such that
any edge-coloring of KN contains a canonically colored copy of H. Here, we say that a copy of H is
canonically colored if it is monochromatic, rainbow, or there is an ordering of its vertices v1, v2, . . .
such that for every i, the edges vivj ∈ E(H) where j > i all have the same color, and these colors
are distinct for different vertices vi. Note that this quantity is well-defined, for if H has n vertices,
then ER(H) ≤ ER(Kn) ≤ nO(n2).

One of the most important discoveries in graph Ramsey theory is that the Ramsey numbers1 of
sparse graphs are much smaller than the corresponding Ramsey numbers of complete graphs. Thus,
for example, a foundational result of Chvatál, Rödl, Szemerédi, and Trotter [7] states that bounded-
degree graphs have Ramsey numbers which are linear in their number of vertices (in contrast to
cliques, whose Ramsey number is exponential). This result was extended to graphs of bounded
degeneracy by Lee [18], confirming a famous conjecture of Burr and Erdős [5].

Recently, a number of authors have studied the extent to which analogous statements are true
in other Ramsey-theoretic settings, such as for hypergraphs [9, 10, 14, 22], vertex- and edge-ordered
graphs [4, 8, 13], and directed graphs [12, 17]. In the canonical Ramsey setting, it is natural to
wonder whether, for a “sparse” n-vertex graph H, its Erdős–Rado number ER(H) is much smaller
than nO(n2), the generic bound which holds for all n-vertex graphs. In particular, if H is sparse, is
ER(H) polynomial in n?

Our first result essentially resolves this question, obtaining nearly matching upper and lower
bounds for ER(H) for a wide class of sparse H. Interestingly, our results reveal that ER(H) is
polynomial in n if and only if H is bipartite, a curious condition that has no obvious analogue in the
world of classical Ramsey numbers. For simplicity, we state the following theorem only for regular
graphs, although it holds in much greater generality, as we discuss in Section 2.

Theorem 1.2. There exist absolute constants C > c > 0 such that the following holds. Let H be an
n-vertex d-regular graph.

1. If χ(H) = 2, then
ncd ≤ ER(H) ≤ nCd.

2. If χ := χ(H) ≥ 3, then
2cn ≤ ER(H) ≤ nCdχn.

In other words, a d-regular bipartite graph has Erdős–Rado number equal to nΘ(d), and if d, χ
are fixed, then a d-regular non-bipartite graph has Erdős–Rado number equal to 2Θ(n). The actual
results we prove are somewhat more general than those stated in Theorem 1.2; for example, we show
that the upper bound of nCd holds even if the bipartite graph H is only assumed to be d-degenerate2,
rather than d-regular. We defer the precise statements to Section 2.

1Given a graph H, its Ramsey number is the least N such that every two-coloring of E(KN ) contains a monochro-
matic copy of H.

2A graph is said to be d-degenerate if its vertices can be ordered as v1, . . . , vn such that each vertex is adjacent to
at most d vertices which precede it, i.e. each vi is adjacent to at most d vertices vj with j < i.
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Although Theorem 1.2 describes the approximate growth rate of ER(H) for sparse graphs, it
would still be desirable to obtain more precise information for certain restricted classes. In particular,
one case that has been well-studied is that of trees. Recall that every tree is 1-degenerate, which
implies that every tree has a vertex order according to which the lexicographic coloring is rainbow.
As such, Theorem 1.1 implies that for every tree T , there exists some N such that every coloring of
E(KN ) contains a monochromatic or rainbow copy of T . More generally, given two trees S, T , one
can define f(S, T ) to be the least N such that every coloring of E(KN ) contains a monochromatic
copy of S or a rainbow copy of T .

The study of the function f(S, T ) was initiated by Jamison, Jiang, and Ling [16], who termed this
the constrained Ramsey number of S and T . They proved a number of results on f(S, T ), including
the bounds

Ω(st) ≤ f(S, T ) ≤ O(stdiam(T ))

whenever S has s vertices, T has t vertices, and diam(T ) denotes the diameter of T . In particular,
these results show that f(S, T ) = Θ(st) whenever T has bounded diameter (e.g. is a star), but the
upper and lower bounds are off by a factor of Θ(t) in the worst case. Jamison, Jiang, and Ling [16]
asked to narrow the gap, and tentatively conjectured that the lower bound is closer to the truth. In
particular, they asked to determine the correct dependence on t in general, and asked about the case
where T = Pt is a path on t vertices, since this is the case where their bounds are furthest apart.

For fixed s, the first question was resolved by Wagner [23], who proved that f(S, Pt) = O(s2t)
for all S. In particular, this shows that the correct dependence on t is linear when s is held constant,
but does not improve on the bound of Jamison–Jiang–Ling [16] when s and t are of the same order.
On the other hand, major progress on the second question was made by Loh and Sudakov [21], who
proved that f(S, Pt) = O(st log t), which matches the lower bound up to a logarithmic factor and
which is much stronger than the upper bounds of [16, 23] when s and t tend to infinity at comparable
rates. Our second main result is a further improvement over the result of Loh–Sudakov [21]: we
prove an upper bound on f(S, Pt)/(st) that is of inverse Ackermann type. In order to state this
result precisely, let us recall the definition of the inverse Ackermann hierarchy.

Definition 1.3. The function α1 is given by α1(t) = ⌈t/2⌉. For each k ≥ 2, we define αk(t)
inductively, to be the smallest number of times the function αk−1 must be applied to t so that the

output becomes 1. More formally, we have αk(1) = 0 and αk(t) = min{r : α
(r)
k−1(t) = 1}, where α

(r)
k−1

denotes the r-fold application of the function αk−1.

For example, we have α2(n) = ⌈log2 n⌉ and α3(n) = log⋆ n. With this notation the result of
Loh–Sudakov can be stated as saying that f(S, Pt) = O(stα2(t)), and our next main result obtains
such a bound at every level of the inverse Ackermann hierarchy.

Theorem 1.4. For every integer k, there exists a constant Ak such that the following holds. For
every s-vertex tree S and every integer t ≥ 2, we have f(S, Pt) ≤ Akstαk(t).

This result suggests that the true value of f(S, Pt) is Θ(st), and more generally supports the
conjecture of Jamison–Jiang–Ling that the same bound holds for all trees S, T . Moreover, this result
yields a nearly quadratic upper bound on the Erdős–Rado numbers of paths.

Corollary 1.5. For all integers k, t, we have ER(Pt) = Ok(t
2αk(t)).

The rest of this paper is organized as follows. We present our bounds on ER(H) for sparse
H in Section 2, and the proof of Theorem 1.4 in Section 3. The proofs in Section 2 are all fairly
short and use well-known techniques in Ramsey theory, such as product colorings and the dependent
random choice method. In contrast, the proof of Theorem 1.4 is rather involved, and is based on
a complicated induction scheme based on an amortized version of the technique introduced by Loh
and Sudakov [21].
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2 Erdős–Rado numbers of bounded degree graphs

We begin by stating the more precise versions of Theorem 1.2 that we will prove. We begin with the
upper and lower bounds for bipartite graphs.

Theorem 2.1. Let H be a t-degenerate bipartite graph on n vertices. Then ER(H) ≤ nO(t).

Theorem 2.2. Let H be an n-vertex graph with average degree d. Then ER(H) ≥ nΩ(d).

Note that Theorem 2.2 holds even for non-bipartite H. However, the following result yields a
much stronger lower bound if χ(H) > 2 and the average degree of H is proportional to its maximum
degree.

Theorem 2.3. Let H be an n-vertex graph with maximum degree ∆ and average degree d, and
suppose that χ(H) ≥ 3. Then ER(H) > 2⌈nd/(2∆)⌉−1.

In particular, if d = Θ(∆) and χ(H) ≥ 3, then ER(H) ≥ 2Ω(n). We remark that the assumption
that the maximum degree is not much larger than the average degree is necessary in order to get an
exponential lower bound. Indeed, it is not hard to show that if Hn is the n-vertex graph obtained
from K1,n−1 by adding an edge between two leaves, then χ(Hn) = 3 but ER(Kn) ≤ (n− 1)2.

In the other direction, we prove the following exponential upper bound on ER(H) for non-
bipartite H.

Theorem 2.4. Let H be a n-vertex graph of maximum degree ∆ ≥ 2 and chromatic number χ =
χ(H) ≥ 3. Then ER(H) ≤ nO(∆χn).

2.1 Lower bounds

We begin by proving the general lower bound on ER(H) from the Theorem 2.2, which turns out to
be tight for bipartite H.

Proof of Theorem 2.2. As ER(H) ≥ n, the result is trivially true if d ≤ 4, so we assume hence-
forth that d > 4. We will consider a random coloring of E(KN ) using n colors, where N = n(d−4)/2.
As H has more than n edges, since e(H) = nd/2 > n, there is no rainbow copy of H in such a
coloring. We now estimate the probability that there is a monochromatic or lexicographic copy of H.

There are n! ways of ordering the vertices of H as v1, . . . , vn, and then at most Nn ways of
picking u1, . . . , un ∈ V (KN ). For such a choice, the probability that it defines a monochromatic or
lexicographic copy of H (according to the given ordering of H) can be upper-bounded as follows.
Let N+(vi) denote the set of j such that vivj ∈ E(H) and j > i, and let d+(vi) = |N+(vi)|. If
u1, . . . , un define a monochromatic or lexicographic copy of H, then we have that all edges between
ui and {uj : j ∈ N+(vi)} have the same color. The probability that this happens is exactly n1−d+(vi).
Therefore, the probability that u1, . . . , un is a monochromatic or lexicographic copy of H is at most

n∏
i=1

n1−d+(vi) = nn · n−
∑n

i=1 d
+(vi) = nn · n−dn/2 = n−(d−2)n/2.

By the union bound, the probability of finding any monochromatic or lexicographic copy of H is at
most

n! ·Nn · n−(d−2)n/2 <

(
nN

n(d−2)/2

)n

=

(
N

n(d−4)/2

)n

= 1.

Hence, there exists a coloring of KN which contains no canonical copy of H.

Remark 2.5. This proof actually implies a slightly stronger statement, i.e. that there exists an edge-
coloring of the complete graph on N = nΩ(d) vertices without a rainbow or a weakly lexicographic
copy of H. Here, a weakly-lexicographic copy of H is a n-tuple of vertices v1, . . . , vn where for each
i the edges {vivj | j > i} have the same color, but these colors are not necessarily all different.
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We now turn to Theorem 2.3, which supplies a much stronger lower bound if H is not bipartite.
Before giving this proof, we need the following simple lemma.

Lemma 2.6. Let H be an n-vertex graph with average degree d and maximum degree ∆. Then in
any lexicographic coloring of H, at least nd/(2∆) colors are used.

Proof. Fix an ordering of the vertices of H as v1, . . . , vn, and consider the lexicographic coloring
associated to this ordering. The number of colors used is equal to the number of vertices with positive
forward degree, i.e. the number of vertices vi which have a neighbor vj with j > i. Let S be the
set of vertices with positive forward degree. By definition, S is a vertex cover of H, i.e. every edge
is incident to at least one vertex in S. Indeed, the left endpoint of every edge has positive forward
degree, and is thus in S.

The total number of edges incident to S is at most |S|∆, but is also equal to nd/2, the total
number of edges in H. Hence |S| ≥ nd/(2∆), as claimed.

We remark that this proof actually shows that in any lexicographic coloring of H, at least τ(H)
colors are used, where τ(H) denotes the vertex cover number of H. We then combine this with the
simple lower bound τ(H) ≥ nd/(2∆). In particular, one can strengthen Theorem 2.3 to say that
ER(H) ≥ 2τ(H)−1 when H is non-bipartite.

Given Lemma 2.6, we can prove Theorem 2.3.

Proof of Theorem 2.3. Let r = ⌈ nd
2∆⌉ − 1 and N = 2r. We have the standard hypercube coloring

of KN , where we identify V (KN ) with {0, 1}r, and color every edge according to the first coordinate
where its endpoints differ. The key property of this coloring is that every color class is bipartite.

This immediately implies that this coloring contains no monochromatic copy of H, as H is not
bipartite. Additionally, the total number of colors used is r < nd/(2∆), and thus by Lemma 2.6,
there can be no lexicographic copy of H in this coloring. Finally, as r < dn/2 = e(H), there is
trivially no rainbow copy either. This proves that ER(H) ≥ N , as claimed.

2.2 Upper bounds

In this section, we will prove upper bounds on the Erdős–Rado numbers, both for bipartite and
non-bipartite graphs. Let us begin with a folklore lemma which can be used to find rainbow copies
of H in a graph G where no color appears at any vertex too many times (see e.g. [2] for much more
precise results). We give the proof for completeness.

Lemma 2.7. Let H be a graph with |V (H)| = n, and let Kns be an edge-colored complete graph on
the vertex set V1 ∪ · · · ∪ Vn, where |V1| = · · · = |Vn| = s. Suppose that for each pair ij ∈ E(H), every
vertex vi ∈ Vi sends at most s/n4 edges of the same color to the set Vj. Then this coloring of Kns

contains a rainbow copy of H.

Proof. Will prove that with positive probability, picking one vertex uniformly at random from each
set Vi gives a rainbow copy of H. More precisely, let vi ∈ Vi be a uniformly random vertex. There
are two types of bad events: that the edge vivj shares the color with the edge vivk, for distinct
indices i, j, k ∈ [n], and that the edge vivj shares the color with the edge vkvℓ, for distinct indices
i, j, k, ℓ ∈ [n]. If none of these bad events occurs, the copy of H formed by v1, . . . , vn is rainbow.

It is not hard to see that for any collection of indices, the probability of this bad event is at
most 1/n4. The reason for this is that, once all vertices but vj are revealed, there is at most s/n4

options for vj for which the edge vivj gets a problematic color (i.e., the same color as vivk in the
first case and as vkvℓ in the second case). Also, note that the number of bad events is at most
n(n − 1)(n − 2) + n(n − 1)(n − 2)(n − 3) < n4. Therefore, by the union bound, with positive
probability no bad event occurs and v1, . . . , vn form a rainbow copy of H, completing the proof.

Let us now focus on the case when H is bipartite. To prove the upper bounds we promised, we
need the following lemma, which easily follows from classical estimates on the extremal numbers of
degenerate bipartite graphs.
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Lemma 2.8. Let H be a t-degenerate bipartite graph on n vertices. Then every m × m bipartite
graph with m ≥ 212tn16t+2 vertices and with edge density at least 1

2n
−4 contains a copy of H.

Proof. This is a direct corollary of the classical theorem of Alon, Krivelevich, and Sudakov [3,

Theorem 3.5], which states that ex(2m,H) ≤ n
1
2t (2m)2−

1
4t for every t-degenerate graph H. We have

1
2n

−4 ·m2 > n
1
2t (2m)2−

1
4t for m ≥ 212tn16t+2. Therefore, every m ×m bipartite graph with density

at least 1
2n

−4 contains a copy of H.

We are now ready to combine Lemmas 2.7 and 2.8 to prove Theorem 2.1, which states that the
Erdős–Rado number of a t-degenerate bipartite graph H on n vertices satisfies ER(H) ≤ nO(t).

Proof of Theorem 2.1. We prove that under the assumptions of the theorem, we have ER(H) ≤
N := 224t+1n32t+6. So suppose, for the sake of contradiction, that we are given an edge-coloring of
the graph KN without a canonical copy of H.

Let us partition the vertex set of KN in an arbitrary way into sets U1, . . . , Un of size |U1| = · · · =
|Un| = 224t+1n32t+5 =: 2s Furthermore, for each pair ij ∈ E(H), let us define Xi,j as the set of
vertices in Ui which send at least s/n4 edges of the same color to Uj .

The first observation is that if we have |
⋃

j∈NH(i)Xi,j | ≤ |Ui|/2 for all i ∈ [n], then KN contains
a rainbow copy of H. To show this, for each i, select an arbitrary set Vi ⊆ Ui \

⋃
j∈NH(i)Xi,j of size

s and apply Lemma 2.7 to the subgraph induced on
⋃n

i=1 Vi. By the definition of the sets Xi,j , we
know that for every ij ∈ E(H), each vertex vi ∈ Vi sends at most s/n4 edges of the same color to
Uj , and hence Lemma 2.7 guarantees the existence of the rainbow copy of H.

Henceforth, we may assume that |
⋃

j∈NH(i)Xi,j | ≥ |Ui|/2 for some i. By averaging, there exists

j such |Xi,j | ≥ |Ui|/(2n) ≥ 224tn32t+4. For each vertex v ∈ Xi,j denote by c(v) a color in which v
sends at least s/n4 edges to Uj .

A simple pigeonhole principle argument shows that there is a subset Y ⊆ Xi,j of size at least√
|Xi,j | ≥ 212tn16t+2 such that the colors c(v) are either the same for all v ∈ Y or different for

all v ∈ Y . The reason for this is simple: if fewer than
√
|Xi,j | different colors appear among

{c(v) | v ∈ Xi,j}, then there must be one color which is repeated at least
|Xi,j |√
|Xi,j |

=
√

|Xi,j | times.

Let us now consider the bipartite graph between Y and Uj , which contains, for all v ∈ Y , all

edges of color c(v) incident to v. This bipartite graph has at least |Y | · s/n4 =
|Y ||Uj |
2n4 edges, so its

density is at least 1
2n4 . By averaging, there exists a subset Z ⊆ Uj of size |Y | such that the density

between Y and Z is at least 1
2n

−4. Since |Z| = |Y | ≥ 212tn16t+2, Lemma 2.8 guarantees that this
bipartite graph contains a copy of H.

If all vertices v ∈ Y have the same c(v), then this copy of H is monochromatic, and if all the
colors c(v) are different, then this is a lexicographically colored copy of H. In any case, we have
shown that a canonically colored copy of H can be found in KN , which completes the proof.

We now turn to the proof of Theorem 2.4, for which we will need the following lemma.

Lemma 2.9. Let H be an n-vertex graph of maximum degree ∆ ≥ 2, let Ks be an edge-colored
complete graph on s ≥ (2n)7∆ vertices, and let C be a set of at most n colors. If Ks does not contain
a rainbow copy of H, then there exists a set X ⊆ V (Ks) of size |X| ≥ (8n6)−∆ · s and a color c such
that either:

• every ∆-tuple of vertices in X has at least n common neighbors in color c, or

• c /∈ C and all vertices in X have a common neighbor v /∈ X in color c.

Lemma 2.9 is proved by an application of the dependent random choice method (see e.g. [15] for
an introduction to this method). For our purposes, the following simple lemma is sufficient.
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Lemma 2.10 ([15, Lemma 2.1]). Let ℓ,m, k be positive integers. Let G = (V,E) be a graph with
|V | = N vertices and average degree d = 2|E(G)|/N . If there is a positive integer t such that

dt

N t−1
−
(
N

k

)(m
N

)t
≥ ℓ

then G contains a subset X of at least ℓ vertices such that every k vertices in X have at least m
common neighbors.

Proof of Lemma 2.9. For each color c, let us denote by Bc the set of vertices which have at least
s/(2n5) neighbors in the color c. If Bc is nonempty for some c /∈ C, then the second item in the
lemma holds (and we are done), since we may choose this color c and pick X to be the neighborhood
of a vertex which has s/(2n5) neighbors in c. So, we may assume henceforth that Bc is empty when
c /∈ C.

We also claim that
∣∣∣⋃c∈C Bc

∣∣∣ ≥ s/2. If this is not the case, pick a set U ⊆ V (Ks) \
⋃

c∈C Bc of

size s/2. No vertex of this set is incident to more than |U |/n5 edges of the same color and therefore
by partitioning U arbitrarily into n equal-sizes sets U = U1 ∪ · · · ∪Un, we conclude using Lemma 2.7
that Ks contains a rainbow copy of H. Since this was assumed not to be the case, we must have∣∣∣⋃c∈C Bc

∣∣∣ ≥ s/2.

Since |C| ≤ n, there must be a color c satisfying |Bc| ≥ s
2n . If we denote by G the graph spanned

by the edges of color c in Ks, this implies that G has at least 1
2 |Bc| · s/(2n5) ≥ s2/(8n6) edges and

hence average degree d ≥ s/4n6. We will again choose this color c and apply Lemma 2.10 to G to
find a set X of ℓ := (8n6)−∆ · s vertices with the property that every k := ∆ vertices in X have at
least m := n common neighbors in color c. To this end, we pick t = ∆ and verify that

d∆

s∆−1
−
(
s

∆

)(n
s

)∆
≥ s

(4n6)∆
− n∆

∆!
≥ 1

2
· s

(4n6)∆
≥ s

(8n6)∆
,

since s ≥ (2n)7∆. This completes the proof.

We now present the proof of Theorem 2.4, which gives the upper bound ER(H) ≤ nO(∆χn) for
graphs of maximum degree ∆ and chomatic number χ.

Proof of Theorem 2.4. We will show that ER(H) ≤ N := (8n6)∆χn. Assume we have an edge-
coloring of KN with no canonically colored copy of H. Let us set A1 = V (KN ) and iteratively apply
Lemma 2.9 to obtain subsets A1 ⊇ A2 ⊇ · · · along with colors c1, c2, . . . as follows.

Having defined A1, . . . , Ai, we let Ci be the set of colors cj , j < i, for which there exists a vertex
v ∈ Aj adjacent to all of Aj+1 in color j; i.e., we consider the set of indices j < i for which the second
outcome in Lemma 2.9 holds, and let Ci be the set of the corresponding colors cj . Then, we apply
Lemma 2.9 to the set Ai with the color set Ci to find a subset Ai+1 ⊆ Ai of size |Ai+1| ≥ (8n6)−∆|Ai|
and the color ci with the following properties: either every ∆-tuple of vertices of Ai+1 has n common
neighbors in Ai in color ci, or there is a vertex v ∈ Ai adjacent to all of Ai+1 in color ci ∈ Ci (and
in this case, we add ci to all the future sets Ci+1, Ci+2, . . . ). In the first case, we say that step i is a
DRC-step, while in the second case we say that step i is a star-step.

Note that the size of Ai is at least |Ai| ≥ (8n)−6∆(i−1)N > (2n)7∆ as long as i ≤ χn− 1 (by our
choice of N), and hence we can define sets A1 ⊇ · · · ⊇ Aχn.

Suppose we have performed at least n− 1 star-steps, say at indices i1, . . . , in−1. By the definition
of a star-step, for each k = 1, . . . , n − 1, there is vk ∈ Aik such that vk is connected in color cik to
all vertices of Aik+1. Take also an arbitrary vn ∈ Aχn. The n-tuples of vertices v1, . . . , vn forms a
lexicographic copy of Kn. To see this, note that all edges from vk to Aik+1 are of color cik , and all
vertices vk+1, . . . , vn are in Aik+1 since the sets A1, . . . , Aχn are nested. Moreover, the colors used
for different star-steps are different (because by our choice of Ci we always exclude the colors used
in previous star steps), showing that v1, . . . , vn is indeed a lexicographic copy of Kn. But then, it is
a lexicographically colored copy of H too, which we assumed does not exist in Ks.
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Henceforth, we assume the number of star-steps is less than n − 1. This means that at least
(χ−1)(n−1)+1 DRC-steps have been performed. The pigeonhole principle implies then that either
χ of these DRC steps have the same color ci or n steps have different colors ci. Let us show now that
in the first of these cases, one can find a monochromatic copy of H in Ks, while in the second case
one can find a lexicographic copy of H.

Assume first there is a set of χ DRC-steps which all have the same color ci = c, at indices
i1, . . . , iχ. Fix a χ-coloring of H with color classes S1, . . . , Sχ. We will construct an embedding ϕ of
H by embedding the vertices from the set Sχ first, and then working our way back to S1, embedding
Sℓ into Aiℓ for each ℓ. To define the embedding ϕ on Sχ, we can take an arbitrary injective map
ϕ : Sχ → Aiχ . Assuming we have embedded Sχ, . . . , Sℓ+1 (for ℓ = χ − 1, . . . , 1), we define the
embedding of a vertex v ∈ Sℓ as follows: let Nv := NH(v) ∩

⋃χ
j=ℓ+1 Sj be the set of ≤ ∆ neighbors

of v in
⋃χ

j=ℓ+1 Sj , and consider the set ϕ(Nv) ⊆ Aiℓ+1
⊆ Aiℓ+1. We choose ϕ(v) to be one of the

common neighbors of ϕ(Nv) in color c in Aiℓ , which was not already used in the embedding. This
is possible because ϕ(Nv) has at least n common neighbors in color c in Aiℓ . Since all edges of the
embedding are ensured to have the color c, we obtain a monochromatic copy of H.

If, on the other hand, we performed n DRC-steps with different colors ci at indices i1, . . . , in,
the embedding of a lexicographic copy of H is even easier. Ordering the vertices of H arbitrarily as
v1, . . . , vn, we construct an embedding ϕ of H by embedding vk ∈ Aik going backwards from k = n
to k = 1. When choosing where to embed vk, we consider the set ϕ(NH(vk) ∩ {vk+1, . . . , vn}). Since
this set contains at most ∆ vertices and is contained in Aik+1

⊆ Aik+1, it has a common neighbor in
color cik inside Aik . Choose ϕ(vk) to be such a common neighbor. This embedding has the property
that for each k, all edges of the form vkvj with j > k have the same color cik . Since the colors cik
are distinct, this is indeed a lexicographically colored copy of H.

3 Constrained Ramsey numbers of trees and paths

Throughout the section, we fix a tree S on s vertices and a path Pt on t vertices. Recall that f(S, Pt)
denotes the smallest integer N such that every edge-coloring of KN contains either a monochromatic
copy of S or a rainbow copy of Pt. The main result of this section bounds f(S, Pt) by O(stαk(t)),
where αk(t) denotes the function at the k-th level of the inverse Ackermann hierarchy, as defined in
the introduction.

This theorem improves upon previous work of Loh and Sudakov [21], who showed that f(S, Pt) ≤
O(st log(t)) = O(stα2(t)). Our proof follows their approach, with a couple of new twists on their
ideas. Hence, let us first recall some of the results they used.

3.1 Basic lemmas from previous work

Fix an edge-coloring of the graph KN which has no monochromatic copy of S or rainbow copy of Pt.
The first basic observation is that every color has to be sparse on every subset of vertices, since it
does not contain the tree S. More precisely, we have the following lemma.

Lemma 3.1 ([21, Lemma 2.1]). Let X be a subset of vertices of KN and let c be an arbitrary color.
If an edge coloring of KN does not contain a monochromatic copy of S, the number of edges of color
c spanned by X is at most s|X|.

A simple corollary of this lemma is that any k colors c1, . . . , ck span at most ks|X| edges among
the vertices of X.

Beyond this simple lemma, the key step in the proof from [21] is to use the assumption KN has
no monochromatic S or rainbow Pt to construct the following useful substructure.

Lemma 3.2. Suppose the edges of KN have been colored in such a way that KN has no monochro-
matic copy of S and no rainbow t-vertex path, where N ≥ 310st. Then there exists a set R of “rogue
colors”, a subset U ⊆ V (G) with a partition U = U1 ∪ · · · ∪ Ur, an association of a distinct color
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ci /∈ R to each Ui, and an orientation of some of the edges of the induced subgraph G[U ], which
satisfy the following properties:

(i) |U | > N/10, |R| < t, and each |Ui| < 2s.

(ii) For any edge between vertices x ∈ Ui and y ∈ Uj with i ̸= j, if it is directed x → y, its color is
ci, if it is directed y → x, its color is cj, and if it is undirected, its color is in R.

(iii) For any pair of vertices x ∈ Ui and y ∈ Uj (where i may equal j), there exist at least t vertices
z /∈ U such that the color of the edge xz is ci and the color of yz is cj.

Throughout the paper, we often encounter the situation in which we need to ensure that each
vertex coming from a certain set belongs to a different Ui. Hence, we will say that two vertices
u, v ∈ U conflict if they lie in the same set Ui.

To understand why this structure might be helpful for building a rainbow path, in the next section
we show that there exists a way to glue certain shorter paths in order to obtain a long rainbow path.

3.2 Rainbow collections of paths

Definition 3.3. Let P = {P1, . . . , Pk} be a collection of disjoint paths in U . This collection is called
rainbow if the following three conditions hold:

• no two vertices u ∈ Pj , v ∈ Pj′ (where j may equal j′) conflict, and

• each Pi is a directed path, except maybe for the first edge which may be rogue,

• for all i ∈ {2, . . . , k}, the first edge of Pi is not directed forward and it has a rogue color ri
which is different from the colors of all other first edges of Pj for j ̸= i. Similarly, if P1 starts
on a rogue edge, its color is also different from r2, . . . , rk.

The total length of a collection of paths, denoted by ℓ(P), is simply the total number of vertices of
paths in the collection, i.e.

ℓ(P) =
k∑

i=1

|Pi|.

Finally, each rainbow collection defines the set of conflicting vertices, denoted by C(P), which is
simply the union of the sets Ui over all vertices v belonging to a path in the collection P.

The following lemma, which is implicit in [21], shows how to glue shorter paths from a rainbow
collection P in order to obtain a long rainbow path. We include the proof for completeness.

Lemma 3.4. If P is a rainbow collection with ℓ(P) ≥ t, then there exists a rainbow path on at least
t vertices in this edge-coloring of KN .

Proof. Let us denote by uivi the first edge of the path Pi, while wi stands for last vertex of this
path. The idea is to connect together the paths Pi and Pi+1 for all i ∈ {1, . . . , k − 1}.

Let us fix some i and explain how to make the connection. We denote by Uℓ and Uℓ′ the sets
containing the vertices wi and ui+1, i.e. Uℓ = C({wi}) and Uℓ′ = C({ui+1}).

By the property (iii) from Lemma 3.2, we know that there are at least t vertices zi /∈ U for which
wizi has color cℓ and ziui+1 has color cℓ′ . In particular, this means that we can choose the vertices
z1, z2, . . . one by one, with the property that zi is different from z1, . . . , zi−1.

Then, we claim that the path P = P1z1P2z2 . . . Pk−1zk−1Pk is a rainbow path of length at least t.
Its length is |P | =

∑k
i=1 |Pi|+ k− 1 ≥ t. To show it is rainbow, we direct all the non-rogue edges on

the path P in the way they were directed in U , and we direct ui+1 → zi, wi → zi. We note that all
vertices of the paths Pi belong to different sets Ui and therefore no directed edge emanating out of
one of these vertices can share the color of any other such edge. On the other hand, the only edges
which are not directed are the edges uivi. But all of these edges have different rogue colors, which
shows that no color on the path P repeats.
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From now on, we will focus on the induced subgraph on U , where we will try to find a rainbow
collection of length ≥ t. Also, since no two vertices of the rainbow collection may come from the
same set Ui, let us delete all edges which belong to the sets Ui.

3.3 Special sequences of vertices

To find a long rainbow collection of paths, we order the vertices of U according to the median
ordering, which is the ordering which maximizes the number of forward edges (in case there are
multiple orderings with the same number of forward edges, we pick one arbitrarily). Since we will be
working with the median ordering throughout the proof, we introduce the notation [u, v] to denote
the set of vertices between u and v in the median ordering, including u and v. The open and half-open
intervals (u, v), [u, v) and (u, v] are defined in a similar fashion. Also, an initial interval in the median
ordering is an interval which starts at the first vertex. Finally, the median ordering we consider will
be fixed and will not change throughout the proof.

A very important quantity in the proof will be the rogue degree of a vertex v ∈ U . This is simply
the number of rogue edges incident to v and we denote it by degR v. Further, for a subset X ⊆ U ,
we will denote by ∆R(X) the maximum rogue degree of a vertex in the subgraph induced on X.

It will often be useful to control the rogue degrees of various vertices, and this is why we will
maintain a set of bad vertices B (which one can think of as the vertices of high rogue degree), which
we will be forbidden from using in the rainbow collection we are building.

Let us now explain how we will guarantee the third condition, that all but one path in a rainbow
collection start from a rogue edge of a different color.

Definition 3.5. Let S ⊆ U be an initial interval in the median ordering and let B ⊆ U be a set of
bad vertices. A sequence of vertices v1, v2, . . . , vf ∈ S is called special for a bad set B if v1 is the
first vertex in the median ordering in S \ B and the vertices v2, . . . , vf are obtained by performing
the following algorithm. For each k, we let vk+1 ∈ S \ B be the first vertex in the median ordering
which satisfies the following conditions:

1. vk+1 does not conflict with any of the vertices v1, . . . , vk, u2, . . . , uk.

2. There exists another vertex uk+1 ∈ U \B such that

• uk+1 does not conflict with any of the vertices v1, . . . , vk, vk+1, u2, . . . , uk, and

• the edge vk+1uk+1 has a rogue color different from all other colors of edges v2u2, . . . , vkuk.

If there are several such vertices uk+1, choose one such that the index of the rogue color of the
edge uk+1vk+1 is minimal.

If such a vertex vk+1 ∈ S \ B does not exist, we terminate the procedure and output the sequence
v1, . . . , vk, setting f = k.

An equivalent way of viewing the definition of the special sequence is as follows. Once the vertices
v1, u2, v2, . . . , uk, vk have been defined, we can define a temporary bad set B(k) at step k as the union
of B and C({v1, u2v2, . . . , ukvk}). Then, we choose vk+1 to be the first vertex of S \ B(k) which is
incident to a rogue edge of a new color in the subgraph induced on U \B(k).

The following lemma establishes the basic properties of a special sequence.

Lemma 3.6. Let S ⊆ U be an initial interval of U in the median ordering and let B ⊆ U be a
set of bad vertices. Let v1, . . . , vf be the special sequence defined by S,B, and let u2, . . . , uf be the
corresponding vertices from Definition 3.5. The following three properties hold:

(i) No two vertices among v1, . . . , vf , u2, . . . , uf are in the same set Ui.

(ii) uivi is an edge of rogue color ri, different from all other colors of edges ujvj for j ̸= i.
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(iii) For each i, the vertices of [v1, vi) \
(
B ∪ C({ujvj | j < i})

)
are incident only to rogue edges

of colors r2, . . . , ri−1 in the graph induced on U \
(
B ∪ C({ujvj | j < i})

)
. Furthermore, the

vertices of S \
(
B ∪ C({ujvj | j ≤ f})

)
are only incident to rogue edges of colors r2, . . . , rf in

the graph induced on U \
(
B ∪ C({ujvj | j < i})

)
.

(iv) For all i ≥ 2, the vertex vi comes before ui.

Proof. The properties (i) and (ii) are ensured directly by the algorithm in Definition 3.5. Property
(iii) is ensured since vk+1 is picked to be the first vertex of the median ordering satisfying conditions
of the algorithm. Finally, to show property (iv), we observe that if ui comes before vi, then ui ∈
[v1, vi) \

(
B ∪C({ujvj |j < i})

)
and it is incident to an edge of color ri /∈ {r2, . . . , ri−1}, contradicting

property (iii).

Properties (i)–(ii) imply that P0 = {v1, u2v2, . . . , ufvf} is a rainbow collection. We call it the
special rainbow collection. Recall also that we are assuming that there is no rainbow path of length
t. Hence, we must have f ≤ t by Lemma 3.4; namely, no special sequence contains more than t
elements.

The following lemma is an almost direct consequence of Lemma 3.1 and Lemma 3.6(iii), but we
decide to state it explicitly for later use.

Lemma 3.7. Let v1, . . . , vf be a special sequence for a bad set B0 in the interval S and let x, y be

positive integers satisfying 1 ≤ x < y ≤ f . Then, the number of rogue edges in the set (vx, vy]\
(
B0∪

C({uivi | i ≤ y})
)
is at most sy

∣∣(vx, vy]∣∣.
Proof. By Lemma 3.6(iii), the only rogue colors appearing in (vx, vy] \

(
B0 ∪C({uivi | i ≤ y})

)
are

r2, . . . , ry−1. Lemma 3.1 implies that for each ri, there are at most s
∣∣(vx, vy]∣∣ edges of this color in

the set (vx, vy] \
(
B0 ∪ C({uivi | i ≤ y})

)
, and hence there are at most sy

∣∣(vx, vy]∣∣ rogue edges in

this set.

We now record two additional lemmas about special sequences, and how changing the sets S and
B affects the special sequences. The following lemma shows that extending the initial interval S
simply extends the corresponding special sequence.

Lemma 3.8. Let S, S′ be initial intervals, such that S′ ⊆ S, and let B0 ⊆ U be a set of bad vertices.
Define two special sequences, v1, . . . , vf with respect to B0 and S, and v′1, . . . , v

′
f ′ with respect to B0

and S′. Then v′1, . . . , v
′
f ′ is a prefix of v1, . . . , vf , consisting of those vi which belong to S′.

Proof. The only place in which the initial interval S enters the definition of a special sequence is to
determine the point at which the defining algorithm terminates. Therefore, if S′ ⊆ S, the algorithm
defining {v′i} stops earlier than the algorithm defining {vi}, and the output of these two algorithms
must be the same up to this point. In other words, v′1, . . . , v

′
f ′ is a prefix of v1, . . . , vf . Moreover, if

the sequence v1, . . . , vf contained any other vertices in S′, these vertices would also be added to the
sequence v′1, . . . , v

′
f ′ , which therefore means S ∩ {v1, . . . , vf} = {v′1, . . . , v′f ′}.

The next lemma gives us control on how the special sequence evolves when we change the bad set
B. This will be used many times in the proof of Theorem 1.4, as we will need to iteratively enlarge
the bad set as we add new vertices to our rainbow collection of paths.

Lemma 3.9. Let S be an initial interval, let v1, . . . , vf be a special sequence defined with respect to a
bad set B and S, and let I be the set of vertices of S coming after vp, for some p ≤ f . Also, assume
B′ is a larger set of bad vertices with the following three properties:

• B is a subset of B′;

• The vertices v1, u2, v2, . . . , up, vp do not belong to B′;
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• If vi ∈ I, then C(vi), C(ui) ⊆ B′.

Then the special sequence v′1, . . . , v
′
f ′ defined with respect to the set B′ satisfies v′i = vi for all i ≤ p.

Furthermore, the sequence satisfies that for all vi ∈ I, with i ≤ min{f ′, f}, the vertex v′i does not
come before vi.

Proof. Let us begin by proving that vi = v′i for all 1 ≤ i ≤ p and ui = u′i for all 2 ≤ i ≤ p, by
induction on i. For i = 1, we know that v1 is the first vertex outside B in the median ordering. Since
v1 /∈ B′ and B ⊆ B′, v1 must be the first vertex outside B′ in the median ordering too, meaning that
v′1 = v1.

For 1 ≤ i ≤ p − 1, the vertex vi+1 is the first vertex outside the temporary bad set B(i) =
B ∪ C({v1, u2v2, . . . , uivi}) which is incident to a rogue edge of color ̸= r2, . . . , ri in U \ B(i), and
v′i+1 is the first vertex outside the set B′(i) = B′ ∪ C({v′1, u′2v′2, . . . , u′iv′i}) incident to a rogue edge

of color ̸= r′2, . . . , r
′
i in U \ B′(i). By the induction hypothesis, we know that v1 = v′1, u2 = u′2, v2 =

v′2, . . . , vi = v′i, and so we also have the equality of the forbidden rogue colors r2 = r′2, . . . , ri = r′i.
We also have that C({v′1, u′2v′2, . . . , u′iv′i}) = C({v1, u2v2, . . . , uivi}) and therefore B(i) ⊆ B′(i) (since
B ⊆ B′). Moreover, this also shows ui+1, vi+1 /∈ B′(i), since ui+1, vi+1 /∈ B′, C({v1, u2v2, . . . , uivi}).
Hence, vi+1 is indeed the first vertex outside the set B′(i) which is incident to a rogue edge of color
̸= r′2, . . . , r

′
i in U \ B′(i), which shows that vi+1 = v′i+1. Since ui+1 /∈ B′(i) also, it follows that

ui+1 = u′i+1, which completes the induction and shows the first part of the statement.
Now, we focus on showing the second part of the statement. Before we begin, observe that

B(i) ⊆ B′(p) for all i ≤ f . By unpacking the definition, this is equivalent to showing that B ∪
C({v1, u2v2, . . . , uivi}) ⊆ B′ ∪ C({v′1, . . . , v′pu′p}). By assumption, the set B and the sets C({ujvj}
for all j ≥ p+ 1 are subsets of B′. Also, C({ujvj}) ⊆ C({v′1, . . . , u′pv′p} for j ≤ p, since ujvj = u′jv

′
j ,

which suffices to show the observation.
Suppose now for a contradiction that v′k+1 comes before vk+1 ∈ I for some p < k ≤ min{f, f ′},

and let us consider the minimal such k. Among the colors r′p+1, . . . , r
′
k+1 there are k − p + 1 colors

and so there exists one which does not appear in the set {rp+1, . . . , rk}. Let this be the color r′j .

Since v′j /∈ B′(j−1) implies v′j /∈ B(f), we have that v′j /∈ {v1, . . . , vf}.
Consider the vertex v′j now: why is it not a part of the special sequence v1, . . . , vf? Suppose that

v′j lies between vm and vm+1 (for some m ≥ p). Then v′j is incident to an edge of a rogue color r′j ,
which is distinct from r1, . . . , rm. The only reason why v′j would not be a part of the original sequence

is then that either v′j or u
′
j is contained in the set B(m). But observe that B(m) ⊆ B′(p) ⊆ B′(j−1), as

we noted above, and we have u′j , v
′
j /∈ B′(j−1). This is a contradiction, which completes the proof of

the lemma.

The special vertices v1, . . . , vf played an important role in the proof of Loh and Sudakov, who
showed the following lemma.

Lemma 3.10 ([21, Lemma 2.5]). Let B be the set of vertices in U whose rogue degree is at least

4st, and let {vi}fi=1 be the sequence of special vertices defined with respect to it and the interval S
containing all vertices. If there exists an index k ∈ [f ] for which the interval [vk, v2k] \B contains at
least 176st vertices, then there exists a rainbow collection of paths of total length at least t.

In the case k ≥ f/2, in the above lemma [vk, v2k] just stands for the set of vertices after vk in the
median ordering. From now on, in case j > f , the interval [vi, vj ] will stand for the set of vertices
coming after vi in the median ordering, and similarly for (vi, vj).

With this lemma in mind, it is clear how Loh–Sudakov obtain the bound f(S, Pt) ≤ O(st log t),
since if |U \B| ≥ Cst log t for some large constant C, there will exist an index k for which |[vk, v2k] \
B| ≥ |U \B|/ log t ≥ 176st.

3.4 Amortized basic lemma

We begin by generalizing Lemma 3.10 very slightly, to obtain an amortized version of it, which will
be the basic building block in our inductive scheme. Let us recall a piece of notation: for X ⊆ U ,
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∆R(X) stands for the maximum rogue degree of a vertex in the subgraph induced on X.

Lemma 3.11. Let v1, . . . , vf be a sequence of special vertices, defined with respect to a set B0 on
some initial interval of U , and let B = B0 ∪ C({v1, u2v2, . . . , ufvf}). Let ℓ ≤ f be a positive integer
and let I be the interval I = (vℓ, x], for some3 x ∈ (vℓ, v8ℓ].

Let P be a rainbow collection of paths all of whose vertices lie in [v1, vℓ]. Further, suppose there
exist ℓ/2 paths P1, . . . , Pℓ/2 in P whose endpoints w1, . . . , wℓ/2 (indexed according to the median
ordering) have the property that ∆R

(
[w1, x]

)
≤ |I|/10. Furthermore, assume that

|I| > 40max{|B ∩ [w1, x]|,∆R(I \B), s}. (1)

Then there exists a collection of rainbow paths P1 such that

(i) every path in P1 is an extension of a path from P,

(ii) for every every path P ∈ P1 we have V (P ) ⊆ [w1, x) \B, and

(iii) ℓ(P1) ≥ ℓ(P) + Ω(|I|/s).

v1 w1
. . .wℓ/2

P

vℓ x v8ℓ
IJ

Figure 2: Illustration of the setup of Lemma 3.11.

Proof. The strategy of the proof will be the following: if we extend the ℓ/2 paths P1, . . . , Pℓ/2 to
longer directed paths, while maintaining the property that no two vertices of the extended collection
conflict, then the extended collection will still be rainbow. Hence, we do this extension procedure in
two steps. In the first step, we show that the paths P1, . . . , Pℓ/2 can be extended using the vertices of
the interval [w1, vℓ) \B such that they end in the 3|I|/10 vertices preceding vℓ. Then, in the second
step we construct a small number of tournaments using a constant fraction of the vertices of I and
use them to extend the paths Pi.

Step 1: Let r = 3|I|/10, and let J be the set of vertices not in B among the r vertices preceding
vℓ. We will show that P1, . . . , Pℓ/2 can be extended to paths P ′

1, . . . , P
′
ℓ/2 which end in J and such

that the extended collection of paths P ′ is still rainbow.
The initial observation is that for every vertex v ∈ [w1, vℓ)\B, there exists a forward edge v → v′

of length at most r to a vertex v′ /∈ B (the length of the edge v → v′ is equal to one plus the number
of vertices between v and v′). To show this, note that in the median ordering, every vertex v has
at least as many forward as backward edges to the next r vertices; if this was not the case, moving
v back r places in the median ordering would increase the number of forward edges in the median
ordering. Now, consider the edges between v and the r vertices following it in the median ordering.
At most ∆R([w1, x)) ≤ |I|

10 of these edges are rogue. Also, at most 2s of them connect v to a vertex

in C({v}) (i.e., a vertex from the same set Ui as v). All other r − |I|
10 − 2s ≥ 3|I|

20 edges are directed,

and among them, at least half, so at least 3|I|
40 , are directed forwards. As long as the number of bad

vertices in [w1, x] is less than 3|I|/40 (and it is by the assumption that |B ∩ [w1, x]| ≤ |I|/40), one of
these forward edges does not lead to a bad vertex. Hence, v has a forward edge of length at most r
to a non-bad vertex.

3Recalling the notation introduced above, we have that (vℓ, v8ℓ] comprises all vertices coming after vℓ in case v8ℓ is
not defined. Thus, if 8ℓ > f , we are only assuming that x comes after vℓ.
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With this tool in hand, we are able to extend the paths P1, . . . , Pℓ/2 so that they end in J using the
following algorithm. As long as at least one of the paths Pi ends at a vertex v /∈ J , there is a forward
edge from v to some v′ /∈ B among the next r = 3|I|/10 vertices. Then, we extend the path Pi using
the edge v → v′ and add to the bad set all vertices conflicting with v′. The algorithm terminates
either when at least |I|/40 new vertices have been added to the bad set or when the endpoints of all
paths P1, . . . , Pℓ/2 lie in J . Note that as long as the bad set contains less than 3|I|/40 vertices in
[w1, x), the forward edge v → v′ can be found and therefore the algorithm will terminate in one of
the two described ways.

Let us denote by B′ the set of bad vertices when the algorithm terminates, and by P ′ the extended
collection of paths. If |B′ \ B| ≥ |I|/40, we have ℓ(P ′) ≥ ℓ(P) + |I|

80s , i.e. at least |I|
80s new vertices

have been added to the collection of paths P. This is because adding a vertex to the collection P ′

adds at most 2s vertices to the bad set and there is no other reason for which a vertex is declared
bad in this algorithm. In this case, the collection of paths P ′ already suffices to complete the proof,
since we have ensured that no two vertices of the collection conflict.

If we have |B′ \ B| ≤ |I|/40, then the algorithm terminated when the paths P1, . . . , Pℓ/2 have

been successfully extended so that they end in the interval J . This is because initially |B| ≤ |I|
40 (by

(1)), and so the number of bad vertices does not exceed |I|
20 at any point of the algorithm. Let us

denote the newly obtained endpoints by w′
1, . . . , w

′
ℓ/2. In this case, we have performed the first step

and we can pass onto the second step of the proof.

Step 2: In this step, we will extend the paths ending at w′
1, . . . , w

′
ℓ/2 using the vertices of I. To

simplify the calculations, let us form the sets U ′
j by taking unions of several sets Uj ∩ I \B′ such that

2s ≤ |U ′
j | < 6s.

First, we discard each set U ′
j with probability 399

400 . Then, we form the sets T1, . . . , Tℓ/2 in the
following way. If a set U ′

j was not discarded, we choose a uniformly random vertex from U ′
j and put

it into one of the sets Ti, uniformly at random. Then, we form the sets T ′
i by deleting from Ti all

vertices v such that there is no directed edge from w′
i to v. Since only the vertices of T ′

i will be used
to extend the paths P1, . . . , Pℓ/2, the last two steps ensure that all vertices of the extended collection
come from different sets Ui. Finally, we form the set T ′′

i by deleting one vertex from each rogue edge
with both endpoints in T ′

i .
By construction, every edge between two vertices of T ′′

i is directed (i.e. T ′′
i is a tournament), and

hence it contains a Hamiltonian path. Furthermore, w′
i has a directed forward edge to the start of this

Hamiltonian path and therefore the path Pi can be extended by at least |T ′′
i | vertices. The conclusion

is that we can extend the paths of P ′ such that their total length is at least ℓ(P ′)+
∑ℓ/2

i=1 |T ′′
i |. Hence,

to prove the lemma it suffices to show that on average,
∑ℓ/2

i=1 |T ′′
i | ≥ Ω(|I|/s).

Before we estimate E
[
|T ′′

i |
]
, we need to estimate E

[
|T ′

i |
]
and E

[
|Ti|
]
. By the same argument as

in the beginning of this proof, the number of forward edges from w′
i to a vertex in [w′

i, x) is at least

1

2

(
|I| −∆R

(
[w1, x)

)
− 2s

)
≥ 1

2

(
|I| − |I|

10
− |I|

20

)
=

17

40
|I|.

Out of these edges, at most 3
10 |I| point to the vertices before vℓ and at most |B′ ∩ I| ≤ |I|/20 point

to bad vertices. Hence, we conclude that w′
i points to at least 3|I|/40 vertices in the union of the

sets U ′
j .

Consider any fixed vertex v in this union, and let j such that v ∈ U ′
j . The probability that v is

assigned to Ti is P[v ∈ Ti] =
1

400·ℓ/2·|U ′
j |
. Hence, this probability is between 1

1200ℓs and 1
400ℓs . Thus,

E
[
|T ′

i |
]
≥ 3|I|

40
× 1

1200 · ℓs
=

|I|
16 · 103 · ℓs

.

To bound E
[
|T ′

i | − |T ′′
i |
]
, we observe that the number of deleted vertices from T ′

i is always at most
the number of rogue edges with both ends in T ′

i . Since there are at most 8ℓ rogue colors appearing
in I \B′, Lemma 3.1 implies there are at most 8ℓs|I \B′| rogue edges in I \B′. Furthermore, since
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the events v ∈ T ′
i and v′ ∈ T ′

i are independent for distinct v, v′, the probability that a rogue edge vv′

makes it into T ′
i is at most

P[v, v′ ∈ T ′
i ] ≤

(
1

400ℓs

)2

.

Thus, the expected number of rogue edges in T ′
i can be upper-bounded as

E
[
|T ′

i | − |T ′′
i |
]
≤ 8ℓs|I|

(
1

400ℓs

)2

≤ |I|
2 · 104ℓs

.

Thus, summing over the ℓ/2 sets T ′′
i we see that

E
[ ℓ/2∑

i=1

|T ′′
i |
]
=

ℓ/2∑
i=1

E
[
|T ′

i |
]
−

ℓ/2∑
i=1

E
[
|T ′

i | − |T ′′
i |
]
≥ ℓ

2

( |I|
16 · 103ℓs

− |I|
2 · 104ℓs

)
=

|I|
16 · 104s

.

The conclusion is that ℓ(P1) ≥ ℓ(P)+ |I|
16·104s , for an appropriate choice of the sets T ′′

i , which suffices
to complete the proof of the lemma.

3.5 Main induction

The following proposition is the main technical part of the argument. It is a “higher-order” version
of Lemma 3.11, showing that if an interval I is sufficiently long, then any rainbow collection of paths
that end before it can be extended to a longer rainbow collection, where the added length is of order
Ω(|I|/s). Note that if we could prove such a statement with no assumptions on I, we could prove
that f(S, Pt) = O(st), by setting I to be all of U .

Of course, we are not able to prove such a statement, and there are assumptions on I in Propo-
sition 3.12. Roughly speaking, the statement of Proposition 3.12 with some parameter k is sufficient
to prove the bound f(S, Pt) = O(stαk+1(t)). However, the statement of Proposition 3.12 includes
a number of extra assumptions, which are designed to maintain an inductive approach: we prove
the statement by induction on k, and the base case k = 1 corresponds to Lemma 3.11. Thus,
for example, a single step of the inductive argument allows us to improve the Loh–Sudakov bound
f(S, Pt) = O(st log t) to f(S, Pt) = O(st log⋆ t).

Proposition 3.12. Let k be a fixed integer, let a be a sufficiently large integer with respect to k, and
let t ≥ a.

• Let B0 be a set of bad vertices and let v1, . . . , vf be the special sequence for B0, on some
initial interval S. Suppose P is a rainbow collection of paths with start points v1, u2, . . . , ut/a3,
such that all vertices except maybe the starts of paths of P (i.e. the ui’s and the vi’s) lie in
[v1, vt/a3 ] \ C({ui, vi | 1 ≤ i ≤ f}).

• Let x be a vertex in (vt/a3 , vt/αk(a)3 ] and let I = (vt/a3 , x] ⊆ S. Let B = B0 ∪ C(P) ∪ C({uivi |
vi ∈ I}).

Suppose that t/2a3 paths of the collection P have endpoints w1, . . . , wt/2a3, arranged in the median

ordering. Assume that ∆R

(
[w1, x] \B

)
≤ |I|

10k
and that

|I| ≥ Ck

∣∣B ∩ [w1, x]
∣∣+ Ckαk(a)∆R(I \B) + Ck

st

αk(a)
, (2)

with Ck = 40k.
Then it is possible to extend the paths of P which end at wi, and possibly construct some new

paths using vertices of I, to form a rainbow collection of paths P ′ which uses only vertices before x
and not from B and satisfies ℓ(P ′) ≥ ℓ(P) + Ωk(

|I|
s ).
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Proof. We prove this statement by induction on k. The case k = 1 follows by applying Lemma 3.11
with ℓ = t/a3.

Hence, let k ≥ 2 and let r be the smallest integer for which v
t/α

(r)
k−1(a)

3 is after x in the median

ordering. We will partition I into intervals J1, . . . , Jr such that Jℓ = (v
t/α

(ℓ−1)
k−1 (a)3

, v
t/α

(ℓ)
k−1(a)

3 ] for

ℓ = 1, . . . , r − 1 and Jr = (v
t/α

(r−1)
k−1 (a)3

, x].

Under these definitions, we claim that r < αk(a). Observe that by definition of αk(a), we

have α
(αk(a))
k−1 (a) = 1. Since v

t/α
(r−1)
k−1 (a)3

comes before x and x comes before vt/αk(a)3 , we must have

α
(r−1)
k−1 (a) ≥ αk(a), and so α

(r)
k−1(a) ≥ αk−1(αk(a)) > 1, where the last inequality holds as long as a is

large enough compared to k. The conclusion is that α
(r)
k−1(a) > 1 and so r < αk(a). In other words,

I is partitioned into fewer than αk(a) intervals.
The proof has two main cases. The first case when |Jℓ| ≥ |I|/10 for some ℓ ∈ [r] and the second

one where |Jℓ| ≤ |I|/10 for all ℓ ∈ [r]. In the first case, we proceed by applying the induction
hypothesis to the longest interval Jℓ, while in the second case we apply the induction hypothesis to
all intervals Jℓ that are not very short.

Case 1: Within this case, we have two subcases. Let ℓ be the index of the longest interval Jℓ, and

let b = α
(ℓ−1)
k−1 (a), so that Jℓ = (vt/b3 , vt/αk−1(b)3 ] ⊆ I (or potentially Jℓ = (vt/b3 , x] if ℓ = r). Now, we

split into two further subcases based on whether αk−1(b) ≥ αk(a) or αk−1(b) < αk(a). Let us first
consider the subcase where αk−1(b) ≥ αk(a).

Subcase 1.1: We begin by performing a cleaning procedure on Jℓ. Let β = 20Ck−1 and let H be
the set of vertices of high rogue degree in Jℓ, defined as

H :=
{
v ∈ Jℓ \B

∣∣∣ the rogue degree of v in Jℓ \B is at least β
st

αk−1(b)3

}
\ {u1, . . . , ut/b3}.

Claim 3.13. There are at most 2|Jℓ|/β vertices in H.

Proof. By Lemma 3.7, the number of rogue edges in Jℓ \ B ⊆ (vt/b3 , vt/αk−1(b)3 ] \ (B0 ∪ C({uivi |
i ≤ t/αk−1(b)

3})) is at most st
αk−1(b)3

|Jℓ|. Hence, the set H of vertices with rogue degree higher than

β st
αk−1(b)3

contains at most 2|Jℓ|/β vertices.

Let us now define a new special sequence v′1, . . . , v
′
f ′ with respect to the initial interval ending at

vt/αk−1(b)3 (which we denote by S) and the bad set of vertices

B′
0 =

B0 ∪H ∪
⋃

vi∈Jℓ

C({ui, vi}) ∪ (C(P) ∩ Jℓ)

 \ {u2, . . . , ut/b3}.

Claim 3.14. We have v′i = vi for all 1 ≤ i ≤ t/b3. For all t/b3 < i ≤ min{f ′, t/αk−1(b)
3}, the vertex

v′i does not come before vi.

Proof. By Lemma 3.8, v1, . . . , vt/αk−1(b)3 is the special sequence defined with respect to the initial
interval S and the bad set B0.

Hence, our goal is to apply Lemma 3.9 to the sequence v1, . . . , vt/αk−1(b)3 , the bad sets B0 and

B′
0, and p = t/b3. Hence, we verify the conditions of the lemma: B0 ⊆ B′

0 is clear. The vertices
v2, . . . , ut/b3 do not belong to B′

0 by definition and v1, ..., , vt/b3 are not in B′
0 for the following reasons:

• they are not in B0 since they are in the special sequence defined with respect to B0,

• they do not belong to H ∪ (C(P) ∩ Jℓ) ⊆ Jℓ since vi come before Jℓ for i ≤ t/b3,
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• they do not belong to
⋃

vi∈Jℓ C({ui, vi}) since vi, ui ∈ Jℓ do not conflict with the previously
defined v′is and u′is.

Finally, we have defined B′
0 such that C(ui), C(vi) ⊆ B′

0 for all ui, vi ∈ Jℓ.
Therefore, Lemma 3.9 applies and the claim follows directly.

Our goal is now to apply the induction hypothesis to the interval Jℓ, with the parameters k − 1
and b. Note that also b can be made large enough compared to k − 1 if a is made sufficiently large
compared to k, since b ≥ αk−1(b) ≥ αk(a).

The starting set of bad vertices for the induction hypothesis will be B′
0, the special sequence will

thus be v′1, . . . , v
′
f ′ , and the rainbow collection P ′ will be P ′ = P ∪ {u′iv′i | t/a3 < i ≤ t/b3}. Note

that this collection is indeed rainbow since the bad set used in defining the sequence {v′i}
t/b3

i=1 contains
C(P) \ {v1, . . . , ut/b3}, which ensures that no two vertices in P ′ conflict. Further, to verify that the
vertices of P ′, except the vertices u′i, v

′
i, do indeed come from the set [v1, vt/b3 ]\C({u′i, v′i|i ≤ f ′}),

its sufficient to verify that the vertices of P except the ui, vi come from [v1, vt/b3 ]\C({u′i, v′i|i ≤ f ′}),
which is true since the vertices u′i, v

′
i do not conflict with any vertices of P besides the start of the

paths.
By Claim 3.14, the vertex v′t/αk−1(b)3

(if it is defined) does not come before vt/αk−1(b)3 , which is

the end of Jℓ. We thus define a new set of bad vertices B′ = B′
0 ∪ C(P) ∪ C({u′iv′i | v′i ∈ Jℓ}), as in

the statement of Proposition 3.12.
The set of endpoints w′

i will be the set of endpoints wi plus the set of v′i for t/a3 < i ≤ t/b3 (if
there are more than t/2b3 of them, we can pick an arbitrary subset). Note that |Jℓ|/10k−1 ≥ |I|/10k
and so the bound on the rogue degree of vertices in [w1, vt/αk−1(b)3 ] still holds since

∆R

(
[w1, vt/αk−1(b)3 ] \B

′) ≤ ∆R

(
[w1, x] \B

)
≤ |I|

10k
≤ |Jℓ|

10k−1
.

Finally, the following claim verifies Jℓ is long enough to apply the induction hypothesis.

Claim 3.15. The following inequality holds:

|Jℓ| ≥ Ck−1

∣∣B′ ∩ [w1, vt/αk−1(b)3 ]
∣∣+ Ck−1αk−1(b)∆R(Jℓ \B′) + Ck−1

st

αk−1(b)
. (3)

Proof. We prove the inequality in three steps, by bounding each of the terms separately. We start
from the final term of (3). Recalling the inequality αk−1(b) ≥ αk(a) which defines this subcase, we
find that

Ck−1
st

αk−1(b)
≤ Ck−1

st

αk(a)
≤ Ck−1

Ck
|I| ≤ 10Ck−1

Ck
|Jℓ| ≤

|Jℓ|
4

, (4)

where the second inequality in the above chain comes from the assumption of Proposition 3.12, while
the third inequality follows from the assumption |Jℓ| ≥ |I|/10.

To bound the first term of (3), we recall that

B′ = B′
0 ∪ C(P) ∪ C({u′iv′i | v′i ∈ Jℓ}) = B0 ∪H ∪ C(P) ∪ C({u′iv′i | v′i ∈ Jℓ}) ∪ C({uivi | vi ∈ Jℓ}).

Hence, we observe that B′ ⊆ B ∪H ∪ C({u′iv′i | v′i ∈ Jℓ}) and so∣∣B′ ∩ [w1, vt/αk−1(b)3 ]
∣∣ ≤ ∣∣B ∩ [w1, vt/αk−1(b)3 ]

∣∣+ |B′ \B|
≤
∣∣B ∩ [w1, x]

∣∣+ |H|+
∣∣C({u′iv′i | v′i ∈ Jℓ})

∣∣
≤ |I|

Ck
+

2|Jℓ|
β

+ 2s · 2t

αk−1(b)3
,
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where we bounded the first term by the assumption of Proposition 3.12, the second by Claim 3.13
and the third by the fact that there are at most t/αk−1(b)

3 vertices v′i defined in Jℓ, and each ui, vi

contributes at most 2s vertices to C({u′iv′i | v′i ∈ Jℓ}). From (4) we have that |Jℓ|
Ck−1

≥ 4st
αk−1(b)

, and so

∣∣B′ ∩ [w1, vt/αk−1(b)3 ]
∣∣ ≤ |I|

Ck
+

2|Jℓ|
β

+
4st

αk−1(b)3
≤

(
10

Ck
+

2

β
+

C−1
k−1

αk−1(b)2

)
|Jℓ|.

Finally, if b is large enough compared to k−1 (which we recall we may assume), we have αk−1(b) ≥ 4
and so

Ck−1

∣∣B′ ∩ [w1, vt/αk−1(b)3 ]
∣∣ ≤ Ck−1

(
1

4Ck−1
+

1

10Ck−1
+

1

16Ck−1

)
|Jℓ| <

|Jℓ|
2

.

We conclude by bounding the middle term of (3). Since H ⊆ B′, no vertex of Jℓ \ B′ has rogue
degree more than βst/αk−1(b)

3 in Jℓ \ B′, i.e. we have ∆R(Jℓ \ B′) ≤ βst/αk−1(b)
3. Therefore, if b

is large enough compared to k so that αk−1(b) > 4β, we have by (4) that

Ck−1αk−1(b)∆R(Jℓ \B′) ≤ Ck−1β
st

αk−1(b)2
≤ β

1

αk−1(b)
|Jℓ| <

|Jℓ|
4

.

In conclusion, we have shown that the first term of (3) is bounded by |Jℓ|/2, while the remaining
two terms are bounded by |Jℓ|/4, thus showing that their sum is less than |Jℓ| as claimed.

Having proven (3), we have verified all the assumptions of the induction hypothesis for k− 1 and
therefore we may apply it to Jℓ. We conclude that there exists a collection of paths P ′′ extending
P ′ which satisfies ℓ(P ′′) ≥ ℓ(P ′) + Ωk−1(

|Jℓ|
s ) ≥ ℓ(P) + Ωk(

|I|
s ), which suffices to complete the proof

in this subcase. Note that the only paths of P which get extended are those whose endpoints were
among the vertices w′

i, which are precisely those paths which end in some wi. Finally, since B ⊆ B′

and the vertices of P ′′ come before x and are not from B′, they are also not from B. This completes
the discussion of Subcase 1.1.

Subcase 1.2: Recall that in this subcase, we have αk−1(b) < αk(a). Note that this can only happen

if Jr is the longest interval, i.e. ℓ = r. Indeed, if ℓ ≤ r − 1 we have αk−1(b) = α
(ℓ)
k−1(a) ≥ α

(r−1)
k−1 (a).

But by definition of r, α
(r−1)
k−1 (a) ≥ αk(a) and so we conclude αk−1(b) ≥ αk(a), which is not the case.

Having concluded |Jr| ≥ |I|/10, fix an integer c satisfying αk−1(c) = αk(a). Note that c ≤ a

because αk(c) ≤ αk−1(c) = αk(a). Also, c ≥ b = α
(r−1)
k−1 (a) because αk−1(c) = αk(a) ≥ αk−1(b).

These two inequalities imply that J ′
r = [vt/c3 , x] is a subinterval of I which contains Jr, i.e., Jr ⊆

J ′
r ⊆ I.
We apply the induction hypothesis on J ′

r, without any cleaning. We choose parameters k− 1 and
c, and the same bad set B′

0 = B0. The rainbow collection P ′ used to apply the induction hypothesis
will be P ′ = P ∪ {uivi | t/a3 < i ≤ t/c3}.

We have set up the interval J ′
r in such a way that vt/αk−1(c)3 comes after x, since αk−1(c) = αk(a)

and we assumed that vt/αk(a)3 comes after x. Then we have

B′ = B′
0 ∪ C(P ′) ∪ C({uivi | i ∈ J ′

r})
= B0 ∪ C(P) ∪ C({uivi | t/a3 < i ≤ t/c3}) ∪ C({uivi | i ∈ J ′

r})
= B.

Finally, we add some of the vis with t/a3 ≤ i ≤ t/c3 to the set of endpoints wi so that we would have
t/(2c3) such endpoints. Note that

|J ′
r| ≥ |Jr| ≥

|I|
10

≥ Ck

10
|B ∩ [w1, x]|+

Ck

10
αk(a)∆R(I \B) +

Ck

10

st

αk(a)

≥ Ck−1|B′ ∩ [w1, x]|+ Ck−1αk−1(c)∆R(J
′
r \B) + Ck−1

st

αk−1(c)
.

Hence, the induction hypothesis can be applied to J ′
r, to produce a rainbow collection P ′′ extending

P ′ with the property that ℓ(P ′′) ≥ ℓ(P ′) + Ωk−1(
|J ′

r|
s ) ≥ ℓ(P) + Ωk(

|I|
s ), thus completing the Case 1.
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Case 2: Now we focus on the second case, where we have max1≤ℓ≤r |Jℓ| ≤ |I|/10. In particular, we
have |J1|, |Jr−1|, |Jr| ≤ |I|/10, and this is the only thing we will use. Consequently, we can deduce∑r−2

ℓ=2 |Jℓ| ≥ 7/10|I|, an so we have either
∑r−2

ℓ≥3, odd |Jℓ| ≥ 7/20|I| or
∑r−2

ℓ≥2, even |Jℓ| ≥ 7/20|I|. The
two situations are analogous so we simply focus on the second one.

Let us think of intervals in pairs (J2ℓ−1, J2ℓ) for ℓ = 1, 2, . . . , ⌊r/2⌋ − 1. We will go through the
pairs (J2ℓ−1, J2ℓ) one by one in reverse, i.e. iterate the following procedure for ℓ = ⌊r/2⌋ − 1, . . . , 1.
The big picture of the argument is that we will apply the induction hypothesis with appropriately
defined bad sets to every interval J2ℓ which is long enough. For each interval J2ℓ, this will then
give us a rainbow collection of paths Q2ℓ, completely contained within J2ℓ−1 ∪ J2ℓ (except maybe for
the starts of the paths, i.e. the uis). Once we construct the rainbow collections Q2ℓ, we will show
that putting together all rainbow collections constructed from the induction hypothesis still yields a
rainbow collection. Furthermore, we will show that there are enough long intervals J2ℓ so that the
total length of the rainbow collection P ∪

⋃
ℓQ2ℓ is at least ℓ(P)+Ωk(|I|/s), which is what we need

to show.
Let us give the details now. We promise that C(Q2ℓ) will not contain any of the vertices ui, vi

for i ≤ t/α
(2ℓ−2)
k−1 (a)3.

Before we can apply the induction hypothesis and get the rainbow collection, we perform a

cleaning procedure. Let b = α
(2ℓ−1)
k−1 (a) and let H(2ℓ) be the set of vertices of J2ℓ \ B which have

rogue degree at least β st
αk−1(b)3

in J2ℓ \B, where β = 20Ck−1. Observe that J2ℓ \B contains at most
st

αk−1(b)3
|J2ℓ| rogue edges by Lemma 3.7 and therefore |H(2ℓ)| ≤ 2

β |J2ℓ|.
The bad set used to apply the induction hypothesis will be

B
(2ℓ)
0 =

(
B0 ∪ (B ∩ J2ℓ) ∪ C({uivi | vi ∈ J2ℓ}) ∪

⋃
ℓ′>ℓ

C(Q2ℓ′) ∪H(2ℓ)

)
\ {u2, . . . , ut/b3}.

Let v
(2ℓ)
1 , . . . , v

(2ℓ)
f ′ be the special sequence of vertices with respect to this bad set B

(2ℓ)
0 and the

initial interval ending in vt/αk−1(b)3 , i.e. up to the end of J2ℓ. Let u
(2ℓ)
2 , . . . , u

(2ℓ)
f ′ be the corresponding

vertices.

Claim 3.16. For all i ≤ t/b3 we have vi = v
(2ℓ)
i and ui = u

(2ℓ)
i . Furthermore, for t/b3 < i ≤

min{t/αk−1(b)
3, f ′}, the vertex v

(2ℓ)
i does not come before vi.

Proof. Our goal is to apply Lemma 3.9 with p = t/b3 and therefore we verify its assumptions.

By definition we have B0 ⊆ B
(2ℓ)
0 . Also, B

(2ℓ)
0 does not contain any of the vertices u2, . . . , ut/b3 by

definition. For the vertices v1, . . . , vt/b3 , they obviously do not belong to B∩J2ℓ and H(2ℓ) since they
come before J2ℓ. Also, they do not belong to B0 or C({uivi|vi ∈ J2ℓ}) since v1, . . . , vt/αk−1(b)3 is a
special sequence with respect to the bad set B0. Finally, they do not belong to C(Q2ℓ′) for any ℓ′ ≥ ℓ
due to the promise about Q2ℓ.

The third condition of Lemma 3.9 is easy to verify since C({uivi | vi ∈ J2ℓ}) ⊆ B
(2ℓ)
0 by definition.

Hence, one can use Lemma 3.9 to conclude the proof.

The rainbow collection used to apply the induction hypothesis is P(2ℓ) = P ∪ {uivi | t/a3 ≤ i ≤
t/b3}. Let us check now this collection is actually rainbow. All of its starting edges come form the
same special sequence and so they have different colors. Also, no two vertices of P(2ℓ) conflict since
the vertices of P (except for the starting edges) are assumed to come form [v1, vt/a3 ] \C({ui, vi | 1 ≤
i ≤ f}), meaning that they have no conflicts with {uivi | t/a3 ≤ i ≤ t/b3}. Finally, we need to check

that the vertices of P(2ℓ), different from ui, vi, come from [v1, vt/b3 ] \ C({u(2ℓ)i , v
(2ℓ)
i | 1 ≤ i ≤ f ′}).

But actually, the only such vertices in P(2ℓ) belong to P. These vertices of P definitely belong to
[v1, vt/a3 ] \ C({ui, vi | 1 ≤ i ≤ f}), by assumption, so we need to verify that they do not belong to

C({u(2ℓ)i , v
(2ℓ)
i | t/b3 ≤ i ≤ f ′}). Since the special sequence {v(2ℓ)i } was defined with respect to the

bad set B
(2ℓ)
0 which contains C(P), this follows and we can indeed apply the induction hypothesis to

the rainbow collection P(2ℓ).
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Furthermore, we have B(2ℓ) = B
(2ℓ)
0 ∪ C(P(2ℓ)) ∪ C({u(2ℓ)i v

(2ℓ)
i | v(2ℓ)i ∈ J2ℓ}). At this point, we

check if

|J2ℓ| ≥ Ck−1|B(2ℓ) ∩ (J2ℓ ∪ J2ℓ−1)|+ Ck−1αk−1(b)∆R(J2ℓ \B(2ℓ)) +
|I|

10 · 2r−2ℓ
+

|I|
10αk(a)

. (5)

If this condition does not hold, we fail to apply the induction hypothesis to the interval J2ℓ because
it is too short and declare the rainbow collection Q2ℓ to be an empty collection. If the condition (5)
holds, let us argue that we can apply the induction hypothesis to J2ℓ with parameters k − 1 and b,
together with the collection of paths P(2ℓ).

Observe that the vertex v
(2ℓ)
t/αk−1(b)3

(if it is defined) comes after the vertex vt/αk−1(b)3 , which is the

end of the interval J2ℓ, by Claim 3.164. We declare the vertices v
(2ℓ)
i in J2ℓ−1 to be the vertices w

(2ℓ)
i ,

with the observation that there are indeed at least t
2b3

of them (if there are more than t/2b3 such

vertices, we can take an arbitrary subset of t/2b3 among them), where b = α
(2ℓ−1)
k−1 (a). Indeed, the

number of vertices vi in intervals Js with s < 2ℓ− 1 is t
d3
, where d = α

(2ℓ−2)
k−1 (a) ≥ 2b, so the number

of vertices vi ∈ J2ℓ−1 is t
b3

− t
d3

≥ t
2b3

.

Furthermore, every vertex in I \ B has rogue degree at most |I|
Ckαk(a)

to I \ B, by (2). Since

|J2ℓ| ≥ |I|
10αk(a)

(which comes from (5)), it follows that all vertices in [w
(2ℓ)
1 , x(2ℓ)] ⊆ I (where now

w
(2ℓ)
1 ∈ J2ℓ−1 and x(2ℓ) = vt/αk−1(b)3) have their rogue degree bounded by |J2ℓ|/10k−1.
The final condition we need to verify before applying induction is that

|J2ℓ| ≥ Ck−1

∣∣∣B(2ℓ) ∩ [w
(2ℓ)
1 , x(2ℓ)]

∣∣∣+ Ck−1αk−1(b)∆R(J2ℓ \B(2ℓ)) + Ck−1
st

αk−1(b)
.

But we claim this actually follows from (5). The middle terms of the right-hand side are the same,

while for the first terms we have the inequality |B(2ℓ) ∩ [w
(2ℓ)
1 , x(2ℓ)]| ≤ |B(2ℓ) ∩ (J2ℓ−1 ∪ J2ℓ)| (since

[w
(2ℓ)
1 , x(2ℓ)] ⊆ J2ℓ−1 ∪ J2ℓ). Hence, the last thing to verify is |I|

10·2r−2ℓ ≥ Ck−1
st

αk−1(b)
. Recalling that

|I| ≥ Ckst/αk(a) reduces this inequality to showing Ck
st

10·2r−2ℓαk(a)
≥ Ck−1

st

α
(2ℓ)
k−1(a)

, which in turn

follows from α
(2ℓ)
k−1(a) ≥ 2r−2ℓ−2αk(a). But this last inequality is easy to show, since α

(2ℓ)
k−1(a) ≥

2r−1−2ℓα
(r−1)
k−1 (a) ≥ 2r−2−2ℓαk(a). Hence, all conditions are satisfied and we can apply the induction

hypothesis to J2ℓ.

Applying the induction thus produces an extension P(2ℓ)
ext of the rainbow collection P(2ℓ). More

precisely, the only paths which get extended are the ones ending in w
(2ℓ)
i , i.e. the paths {uivi | vi ∈

J2ℓ−1}. Therefore, let us denote the set of these extended paths which start in J2ℓ−1 by Q2ℓ, where
the induction hypothesis gives us ℓ(Q2ℓ) ≥ Ωk(|J2ℓ|/s).

Now, we verify the promises given about the collection of paths Q2ℓ at the beginning of the proof.

Claim 3.17. The set C(Q2ℓ) does not contain any of the vertices ui, vi for i ≤ t/α
(2ℓ−2)
k−1 (a)3.

Proof. Note that Q2ℓ is just a part of a larger rainbow collection P(2ℓ)
ext , which contains the edges

uivi for all 1 ≤ i ≤ t/α
(2ℓ−2)
k−1 (a)3. Since P(2ℓ)

ext is a rainbow collection, it cannot have any conflicting

pairs of vertices, and therefore ui, vi /∈ C(Q2ℓ) for i ≤ t/α
(2ℓ−2)
k−1 (a)3.

Now comes time to define the extended collection of paths P ′ = P ∪
⋃

ℓQ2ℓ. We claim that this
collection of paths satisfies all the conclusions that we want. In particular, we need to show that it
is a rainbow collection of paths, of total length ℓ(P ′) ≥ ℓ(P)+Ωk(|I|/s), which does not contain any
vertices of B, uses only the vertices coming before x, and extends only the paths ending at wi.

The first two of these statements are nontrivial and we prove them through the following two
claims. To show that P ′ does not contains vertices of B is easy, since the collections Q2ℓ are contained

4Actually, it is easy to see that v
(2ℓ)

t/αk−1(b)
3 is not defined, since the special sequence {v(2ℓ)i } is defined only up to the

end of J2ℓ, but this is fine from the perspective of applying the induction hypothesis.
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in (J2ℓ−1∪J2ℓ)\B(2ℓ) ⊆ (J2ℓ−1∪J2ℓ)\B. Also, since each of the intervals J2ℓ comprises only vertices
before x, so do the collections Q2ℓ. Finally, no paths of P get extended and so the final condition
holds too. Hence, to complete the proof we only need to show that P ′ is rainbow and has sufficient
length, which is the content of the following two claims.

Claim 3.18. The collection of paths P ′ = P ∪
⋃

ℓQ2ℓ is a rainbow collection.

Proof. First, we should check that no two vertices of the paths conflict. By the induction hypothesis,
we know that Q2ℓ shares no vertices with B(2ℓ), and B(2ℓ) contains both C(P) and C(Q2ℓ′) for all
ℓ′ > ℓ. Hence, Q2ℓ has no vertices which could conflict with P or Q2ℓ′ .

Also, observe that all paths of Q2ℓ are directed forward except for the first edge which has a rogue
color, so still all but at most one path of P ′ are directed forward and start at a rogue edge.

Finally, we need to check that all the starting edges of paths in P ′ have distinct rogue colors.
Since Q2ℓ is a subcollection of a rainbow collection containing P, there can be no conflict between
paths in P and Q2ℓ for any ℓ.

So the only remaining case is if there exist two paths P1 ∈ Q2ℓ, P2 ∈ Q2ℓ′ for some ℓ < ℓ′ starting
with the same rogue color. Assume P1 starts at uv, P2 starts at u′v′ and these two edges have the
same rogue color r.

We begin by observing that the edge uv does not appear in the original special sequence {uivi}.
The reason for this is that the rainbow collection P(2ℓ′)

ext contains both the edges uivi for vi ∈ J2ℓ−1∪J2ℓ
and the edge u′v′, meaning that u′v′ has different color than all edges {uivi} for which vi comes before
J2ℓ′−1. So we have an even stronger conclusion: none of the edges uivi for which vi comes before the
end of J2ℓ have the color r = c(uv) = c(u′v′).

Let X = C({uivi | vi comes before the end of J2ℓ}). By Lemma 3.6(iii), no vertex of the set
[v1, vt/α(2ℓ)

k−1(a)
3 ] \ (B0 ∪ X) is incident to an edge of color r in the graph induced on U \ (B0 ∪ X).

Hence, we must have u ∈ B0 ∪X or v ∈ B0 ∪X.

We now argue that it is not possible for vertices of B0 ∪X to be a part of P(2ℓ)
ext , thus deriving a

contradiction. Since P(2ℓ)
ext contains no vertex in B

(2ℓ)
0 ⊇ B0 ∪C({uivi | vi ∈ J2ℓ}), u and v cannot be

in B0 ∪C({uivi | vi ∈ J2ℓ}). Also, the edges uivi for i ≤ t/α
(2ℓ−1)
k−1 (b)3 are in the collection P(2ℓ)

ext , and

so u, v /∈ C({uivi | i ≤ t/α
(2ℓ−1)
k−1 (b)3}). But then

B0 ∪ C({uivi | vi ∈ J2ℓ}) ∪ C({uivi | i ≤ t/α
(2ℓ−1)
k−1 (b)3}) = B0 ∪X,

so u, v /∈ B0 ∪X. This proves the claim.

Claim 3.19. We have ℓ(P ′) ≥ ℓ(P) + Ωk

(
|I|
s

)
.

Proof. Let us denote by L the set of indices 2ℓ for which the induction hypothesis was successfully
applied to J2ℓ and for which, consequently, the collection Q2ℓ is nonempty. Note that if

∑
2ℓ∈L |J2ℓ| ≥

|I|/20 then we are done since ℓ(P ′) ≥ ℓ(P) +
∑

2ℓ∈L ℓ(Q2ℓ) ≥ ℓ(P) + Ωk(
∑

2ℓ∈L |J2ℓ|/s) by the
induction hypothesis.

The harder case is when
∑

2ℓ∈L |J2ℓ| ≤ |I|/20. The big picture argument for why the collections
Q2ℓ are still long is the following. The only reason that we could not apply the induction hypothesis
to so many of the intervals J2ℓ is that too many vertices were declared bad, i.e. the sets B(2ℓ) were
too large. But the main contribution to the size of B(2ℓ) comes from C(Q2ℓ′), for ℓ′ > ℓ. Hence, it
must be that the collections Q2ℓ′ were long enough already.

Let us now turn this vague intuition into a precise computation. Since the total length of the
intervals J2ℓ with 2ℓ ∈ L is at most |I|/20, and the total length of all even-indexed interval J2ℓ is at
least 7|I|/20 (by the assumptions of Case 2), we conclude

∑
2ℓ/∈L |J2ℓ| ≥ 7

20 |I| −
1
20 |I| =

3
10 |I|. Thus,
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⌊r/2⌋−1∑
ℓ=1

(
Ck−1|B(2ℓ) ∩ (J2ℓ ∪ J2ℓ−1)|+ Ck−1α

(2ℓ)
k−1(a)∆R(J2ℓ \B(2ℓ)) +

|I|
10 · 2r−2ℓ

+
|I|

10αk(a)

)
≥
∑
2ℓ/∈L

|J2ℓ| ≥
3

10
|I|. (6)

As suggested in our preliminary intuition, the main contribution to the above sum comes from the
terms |B(2ℓ) ∩ (J2ℓ ∪ J2ℓ−1)|, since the sum of remaining two terms can be easily bounded as follows.
Indeed, by summing the geometric series, the contribution of the final two terms can be bounded as

⌊r/2⌋−1∑
ℓ=1

|I|
10 · 2r−2ℓ

≤ |I|
20

,

⌊r/2⌋−1∑
ℓ=1

|I|
10αk(a)

≤ |I|
10

.

For the middle terms, we have that

⌊r/2⌋−1∑
ℓ=1

Ck−1α
(2ℓ)
k−1(a)∆R(J2ℓ \B(2ℓ)) ≤

⌊r/2⌋−1∑
ℓ=1

Ck−1α
(2ℓ)
k−1(a)

βst

α
(2ℓ)
k−1(a)

3
≤ 2Ck−1β

st

αk(a)2
≤ |I|

1000
,

where in the first inequality we use that all vertices from J2ℓ of rogue degree larger than βst

α
(2ℓ)
k−1(a)

3
are

contained in H(2ℓ) ⊆ B(2ℓ), in the second inequality we use that the sequence 1/α
(2ℓ)
k−1(a)

2 is termwise

smaller than the geometric sequence (1/2)ℓ and so its sum can be bounded by twice the largest term,
which is at most 1

αk(a)2
, and in the third inequality we use (2) and the fact that a is sufficiently large

with respect to k. Combining these bounds with (6), we find that

Ck−1

⌊r/2⌋−1∑
ℓ=1

|B(2ℓ) ∩ (J2ℓ ∪ J2ℓ−1)| ≥
149

1000
|I|. (7)

Now our goal is to show that the main contribution to the sum of |B(2ℓ) ∩ (J2ℓ ∪ J2ℓ−1)| actually
comes from the sets

⋃
ℓ′>ℓC(Q2ℓ′), which are contained in B

(2ℓ)
0 . Therefore, we need to recall the

definition of B(2ℓ), namely

B(2ℓ) = B
(2ℓ)
0 ∪ C(P) ∪ C({uivi | t/a3 ≤ i ≤ t/α

(2ℓ−1)
k−1 (a)3}) ∪ C({u(2ℓ)i v

(2ℓ)
i | v(2ℓ)i ∈ J2ℓ}).

Moreover, we have

B
(2ℓ)
0 ⊆ B0 ∪ (B ∩ J2ℓ) ∪ C({uivi | vi ∈ J2ℓ}) ∪

⋃
ℓ′>ℓ

C(Q2ℓ′) ∪H(2ℓ),

and so
B(2ℓ) ⊆ B ∪ C({u(2ℓ)i v

(2ℓ)
i | v(2ℓ)i ∈ J2ℓ}) ∪

⋃
ℓ′>ℓ

C(Q2ℓ′) ∪H(2ℓ),

where we use the fact B contains the sets B0, C({uivi | vi ∈ I}) and C(P).
Using this upper bound on B(2ℓ), we can bound the sum from (7) as follows.

149

1000

|I|
Ck−1

≤
⌊r/2⌋−1∑

ℓ=1

|B(2ℓ) ∩ (J2ℓ ∪ J2ℓ−1)| ≤
⌊r/2⌋−1∑

ℓ=1

∣∣B ∩
(
J2ℓ ∪ J2ℓ−1

)∣∣
+

⌊r/2⌋−1∑
ℓ=1

∣∣∣H(2ℓ) ∩
(
J2ℓ ∪ J2ℓ−1

)∣∣∣
+

⌊r/2⌋−1∑
ℓ=1

∣∣∣∣∣⋃
ℓ′>ℓ

C(Q2ℓ′) ∩
(
J2ℓ ∪ J2ℓ−1

)∣∣∣∣∣
+

⌊r/2⌋−1∑
ℓ=1

∣∣∣C({u(2ℓ)i v
(2ℓ)
i |v(2ℓ)i ∈ J2ℓ}) ∩

(
J2ℓ ∪ J2ℓ−1

)∣∣∣

(8)
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Again, the intuition is that the main term should be coming from the sets
⋃

ℓ′>ℓC(Q2ℓ′). So let us
bound the remaining three terms of (8).

For the first sum, we have
∑⌊r/2⌋−1

ℓ=1

∣∣B ∩
(
J2ℓ ∪ J2ℓ−1

)∣∣ ≤ |B ∩ I| ≤ |I|/Ck, from the assumption

(2). As for the second sum, we have a bound on the size of H(2ℓ) of the form |H(2ℓ)| ≤ 2
β |J2ℓ| and so

⌊r/2⌋−1∑
ℓ=1

∣∣∣H(2ℓ) ∩
(
J2ℓ ∪ J2ℓ−1

)∣∣∣ ≤ 2

β

⌊r/2⌋−1∑
ℓ=1

|J2ℓ| ≤
|I|

10Ck−1

The final term can be bounded by invoking Claim 3.16, which implies that the sequence v
(2ℓ)
i contains

at most t

α
(2ℓ)
k−1(a)

3
≤ t

αk(a)3
elements in J2ℓ, and thus |C({u(2ℓ)i v

(2ℓ)
i | v(2ℓ)i ∈ J2ℓ})| ≤ 2s · 2t

αk(a)3
. Since

we have at most αk(a) such summands in the last sum of (8) we find that this sum is upper-bounded

by 4st
αk(a)2

≤ |I|
1000Ck−1

using (2), and again by ensuring that a is sufficiently large with respect to k.

Therefore, we conclude that

⌊r/2⌋−1∑
ℓ=1

∣∣∣∣∣⋃
ℓ′>ℓ

C(Q2ℓ′) ∩
(
J2ℓ ∪ J2ℓ−1

)∣∣∣∣∣ ≥ 149

1000

|I|
Ck−1

− |I|
40Ck−1

− |I|
10Ck−1

− |I|
1000Ck

=
23

1000

|I|
Ck−1

.

Using this information, we can lower-bound the total length of the collections Q2ℓ as follows. We
first observe that

⌊r/2⌋−1∑
ℓ=1

∣∣∣∣∣⋃
ℓ′>ℓ

C(Q2ℓ′) ∩
(
J2ℓ ∪ J2ℓ−1

)∣∣∣∣∣ ≤
∣∣∣∣∣∣
⌊r/2⌋−1⋃

ℓ=1

C(Q2ℓ)

∣∣∣∣∣∣ , (9)

since
⋃

ℓ′>ℓC(Q2ℓ′) ⊆
⋃⌊r/2⌋−1

ℓ′=1 C(Q2ℓ′) and since the intervals J2ℓ−1 ∪ J2ℓ are disjoint from one
another. Since C(Q2ℓ) contains at most 2s · ℓ(Q2ℓ) elements, (9) yields

⌊r/2⌋−1∑
ℓ=1

∣∣∣∣∣⋃
ℓ′>ℓ

C(Q2ℓ′) ∩
(
J2ℓ ∪ J2ℓ−1

)∣∣∣∣∣ ≤
⌊r/2⌋−1∑

ℓ=1

|C(Q2ℓ)| ≤
⌊r/2⌋−1∑

ℓ=1

2s · ℓ(Q2ℓ).

This shows that ℓ(P ′) ≥ ℓ(P) +
∑⌊r/2⌋−1

ℓ=1 ℓ(Q2ℓ) ≥ ℓ(P) + Ω(|I|/s), as claimed.

The last two claims verify that P ′ satisfies all the required conditions, thus completing the proof
of Proposition 3.12.

3.6 Endgame

In this section, we deduce Theorem 1.4 from Proposition 3.12.

Proof of Theorem 1.4. Our goal is to prove that for any k ≥ 1, we have f(S, Pt) ≤ Akstαk(t) for
some constant Ak, but we will prove a seemingly weaker statement f(S, Pt) ≤ Akstαk(t)

2. Of course,
since αk(t)

2 ≤ Ok(αk−1(t)), we can derive the statement of the theorem by applying our conclusion
with the parameter k + 1 instead of k.

To show that f(S, Pt) ≤ Akstαk(t)
2, one needs to argue that in every edge-coloring of KN , where

N = Akstαk(t)
2, there exists either a monochromatic copy of the tree S or a rainbow copy of Pt. So

assume that there is no monochromatic copy of S and no rainbow Pt in KN .
Using Lemma 3.2, we can find a set U0 ⊆ V (KN ), a set of rogue colors R and a partition

U0 = U1 ∪ · · · ∪Ur, with the properties listed in Lemma 3.2. As a preliminary cleaning step, we also
define U to be the set of vertices of U0 which have rogue degree at most 4st. Since there are at most
t rogue colors (due to Lemma 3.2) and each rogue color spans at most s|U0| edges in U0, we conclude
that there are at most st|U0| rogue edges in U0. Therefore, at most |U0|/2 vertices can be incident to
more than 4st rogue edges, showing that |U | ≥ |U0|/2 ≥ N/20. We sort the vertices of U according
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to the median ordering, and by Lemma 3.4, it suffices to find a rainbow collection P of total length
ℓ(P) ≥ t.

We now set up an application of Proposition 3.12, from which we will ultimately derive the
existence of the large rainbow collection. Let the bad set B0 be empty and define the special sequence
v1, v2, . . . , vf with respect to B0 in the initial interval U . We know that f ≤ t, since otherwise the
rainbow collection P = {uivi} would already have length larger than t.

Consider the intervals Iℓ = (v
t/α

(ℓ−1)
k−1 (t)3

, v
t/α

(ℓ)
k−1(t)

3 ]. Out of these intervals, we will consider a

subcollection I1, . . . , Ir where the value of r is chosen depending on k in the following way. First,
let a0 = a0(k) be the minimal a with which Proposition 3.12 applies with parameters k − 1 and

a. Then, we choose r to be the largest integer satisfying α
(r−1)
k−1 (t) ≥ a0 and t/α

(r−1)
k−1 (t)3 ≤ f .

The first condition is there to ensure that Proposition 3.12 applies to all intervals Iℓ with ℓ ≤ r,
while the second one ensures that the interval Ir is defined at all. The latter condition implies that

t/α
(r)
k−1(t)

3 < t, i.e. r ≤ αk(t).
We claim that the vertices of U not contained in the union

⋃r
ℓ=1 Iℓ can be covered by Ok(1) dyadic

intervals of the form [vp, v2p]. Indeed, if the value of r was constrained by the inequality t/α
(r−1)
k−1 (t)3,

then the whole of U is covered by
⋃r

ℓ=1 Iℓ. On the other hand, if the first condition constrains r, then

we have α
(r)
k−1(t) ≤ a0, and thus α

(r+αk(a0))
k−1 (t) ≤ α

(αk(a0))
k−1 (a0) = 1, implying that r + αk(a0) ≥ αk(t).

Since αk(t)− r ≤ αk(a0), we have α
(r)
k−1(t)

3 ≤ Ok(1), and therefore f

t/α
(r)
k−1(t)

3
≤ Ok(f/t) ≤ Ok(1).

Since, by Lemma 3.10, each dyadic interval of the form [vp, v2p] contains at most 176st vertices,
the union

⋃r
ℓ=1 Iℓ contains all but at most Ok(st) vertices of U . In other words, if the constant Ak

is large enough, we have
∑r

ℓ=1 |Iℓ| ≥ |U | −Ok(st) ≥ |U |/2.
In particular, this means that for some index ℓ, we have |Iℓ| ≥ |U |

2r ≥ Ak
40 stαk(t), since r ≤ αk(t).

The goal is now to apply Proposition 3.12 to the interval Iℓ.
As stated above, we define B0 = ∅ and P = {v1, u2v2, . . . , ut/α(ℓ−1)

k−1 (t)3
v
t/α

(ℓ−1)
k−1 (t)3

}, and we choose

among them an arbitrary set of t/2α
(ℓ−1)
k−1 (t)3 endpoints to play the roles of wi. We also set B =

C({uivi | vi comes before Iℓ}), as required by Proposition 3.12. If Ak is large enough and a =

t/α
(ℓ−1)
k−1 (t)3, we have

|Iℓ| ≥
Ak

40
stαk(t) ≥ 40k

∣∣B ∩ [w1, x]
∣∣+ 40kαk(a)∆R(Iℓ \B) + 40k

st

αk(a)
,

since |B| ≤ 4st and ∆R(I \ B) ≤ 4st. We also have ∆R([w1, x]) ≤ 4st ≤ |Iℓ|/10k. Hence, Proposi-
tion 3.12 applies to Iℓ, which suffices to show that there exists a rainbow collection of paths P ′ of
length ℓ(P ′) ≥ Ωk(|Iℓ|/s) ≥ t. This completes the proof.

Acknowledgments: We are grateful to Xiaoyu He for helpful discussions on this topic.
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