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Chapter 1

Introduction

The topic of this thesis is the zeta function of a curve over a finite field. Our goal will be to give a relatively
elementary and self-contained proof of Artin’s conjectures, using no heavy machinery from algebraic geometry
besides the Riemann-Roch theorem. We try to keep the presentation as concrete as possible, by minimizing the
amount of algebraic machinery used. Therefore, we present the proof only in the case of plane curves, which are
sets of solutions to equations f(x, y) = 0. Of course, once a more elaborate algebraic setup has been performed,
these methods apply almost unchanged to show the Riemann Hypothesis for general algebraic curves, i.e. for
one-dimensional solution sets of systems of polynomial equations.

After introducing the main objects of interest in this chapter, Chapter 2 defines the basic elements of the
theory of algebraic curves needed to show Artin’s conjectures. Then, in Chapter 3, we will derive the Riemann-
Roch theorem following the treatment of Niederreiter and Xing [22]. The Riemann-Roch theorem is one of the
fundamental tools for investigating algebraic curves and we will use it to show the first two Artin conjectures,
the rationality and functional equation for the zeta function, in Chapter 4. Then, in Chapter 5 we present
a completely elementary point counting argument which will allow us to prove the Riemann Hypothesis for
curves. To derive it, we will use a version of the polynomial method, known as the Stepanov method, and we
follow the presentation given by Schmidt in [25]. This method will give us a slightly cruder bound than the
one given by the Riemann Hypothesis, but we will be able to use the rationality and the functional equation
of the zeta function to bootstrap it and obtain the full Riemann Hypothesis. Then, we complete the story by
outlining another approach to proving the Riemann Hypothesis for curves, given by Bombieri in [4], also using
a version of Stepanov’s method.

However, the polynomial method was not the approach originally used to prove Riemann Hypothesis
for curves - in the 1940s, Weil was the first one to prove the Riemann Hypothesis for curves, which use
considerably more machinery from algebraic geometry. For more historical details an interested reader should
consult Section 1.6 of this chapter.

1.1 Motivation: counting rational points on curves

One of the basic questions in number theory is trying to solve, or at least describe, rational solutions to various
Diophantine equations and perhaps the most common variant of these equations are polynomial equations of the
type f(X1, . . . , Xn) = 0. The theorems such as Hasse-Minkowski local-global principle show that the existence
of rational solutions is often tightly linked to the existence of solutions modulo various primes. Hence, a very
natural question arises: when does the equation f(X1, . . . , Xn) ≡ 0 (mod p) have a solution? Furthermore, if
such an equation has a solution, how many solutions are there?

In this thesis, we will focus on a special case when only two variables are present - we will try to understand
the number of solutions to the equation f(x, y) = 0 modulo a prime number p. Amazingly, under some mild
assumptions on the polynomial f , this number always turns out to be approximately p, with an error of order
O(p1/2). For example, the Hasse bound states that modulo any p, the number of solutions N to the equation
X3−X−Y 2 = 0 in Fp

2 always satisfies |N−p| ≤ 2
√
p. More generally, we will consider the number of solutions

4



Chapter 1. Introduction 5

of f(X,Y ) = 0 in the field extensions Fp ⊆ Fp2 ⊆ · · · and we will show that this sequence of numbers is quite
structured. In the case of the previously mentioned equation, X3 −X − Y 2 = 0, if Nk denotes the number of
solutions in field Fpk , we have Nk = pk + 1− 2Re{αk} for all k ≥ 1, where α is a complex number of absolute
value |α| = p1/2.

Let us now comment on the conditions our polynomials need to satisfy in order to be able to describe their
solutions precisely. For example, if the polynomial f(X,Y ) factors as f(X,Y ) = f1(X,Y ) · · · fm(X,Y ), then
in order to count the solutions to f(X,Y ) = 0 precisely, one must understand not only how many solutions
the equations fi(X,Y ) = 0 have, but also how these solutions overlap. On one hand, the number of common
solutions to different equations fi(X,Y ) = 0 and fj(X,Y ) = 0 can be bounded by deg fi · deg fj . This means
that the total number of solutions to f(X,Y ) = 0 is simply the sum of the corresponding numbers of solutions to
equations fi(X,Y ) = 0, up to a O(m2(deg f)2) error term. On the other hand, counting the number of solutions
to f(X,Y ) = 0 exactly might be very challenging, since it amounts to counting the solutions to various systems of
polynomial equations. Therefore, we will require the polynomial f(X,Y ) defining our equation to be irreducible
throughout this thesis.

Finally, note that we are intending to consider the solutions to f(X,Y ) = 0 over all field extensions Fpk .
Therefore, for the reasons described in the previous paragraph, it will be useful to assume that f(X,Y ) remains
irreducible even after passing to a field extension of Fq. In fact, it is not hard to see that this is equivalent to
f(X,Y ) being irreducible over Fq. Hence, we make the following definition.

Definition 1.1. A polynomial f ∈ Fq[X,Y ] is absolutely irreducible if it cannot be factored in the algebraic
closure of Fq, i.e. it cannot be written as a product f = g · h, where g, h ∈ Fq[X,Y ] and deg g,deg h < deg f .

Finally, as it is often done in algebraic geometry, we will sometimes work in projective space rather than
in affine space. This allows us to count the intersections between various sets of solutions more easily and make
the whole theory more symmetric. However, working in affine space also has its advantages, as it is often easier
to define local properties in affine space and carry them over to projective space. Hence, throughout the thesis,
we will also occasionally switch between the two. In fact, as we will see in Chapter 2, we can easily switch
between affine and projective spaces while maintaining all relevant local properties of our curves.

1.2 Plane curves and their zeta functions

Let us begin by defining the main object we are interested in, the plane curves, which represent the set of
solutions to polynomial equations in 2 variables.

Definition 1.2. Given a polynomial f ∈ Fq[X,Y ], the affine plane curve C defined by f is the set of points
(x, y) ∈ Fq

2
for which f(x, y) = 0. In the projective case, the definition is similar: for a homogeneous polynomial

F ∈ Fq[X,Y, Z], the projective plane curve C defined by F is the set of points [x : y : z] ∈ P2(Fq) for which
F (x, y, z) = 0.1

If a polynomial f defining a plane curve C lies in Fq[X,Y ], we can also consider C as a curve over the
field Fq and define the Fq-rational points of C the points whose coordinates lie in Fq. Similarly, for a projective
plane curve C, we define Fq-rational points of C as the set of points which can be written as [x : y : z] for some
x, y, z ∈ Fq, not all zero. Apart from being irreducible, for certain parts of the argument our curves will also
need to be smooth. This is a slightly stronger condition than irreducibility, which intuitively ensures that the
curve has no "cusps" and does not "cross itself".

Definition 1.3. If f ∈ Fq[X,Y ] is the defining equation of the affine plane curve C, we say that C is smooth if
no point (x, y) ∈ C satisfies the system of equations ∂Xf(x, y) = ∂Y f(x, y) = 0. Similarly, given a homogeneous
polynomial F ∈ Fq[X,Y, Z] and the projective plane curve C defined by F , we say that C is smooth if no point
[x : y : z] ∈ C satisfies the system of equations ∂XF (x, y, z) = ∂Y F (x, y, z) = ∂ZF (x, y, z) = 0.

For a smooth projective curve, we are ready to introduce the central object of this thesis.

1For a formal definition of projective space P2(Fq), the reader should consult Chapter 2.
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Definition 1.4. The zeta function associated to the projective curve C/Fq defined by an absolutely irreducible
homogeneous polynomial F ∈ Fq[X,Y, Z] is defined as

Z(C/Fq, T ) = exp

∑
m≥1

#C/Fqm

m
Tm

 ,

where #C/Fqm is the number of Fqm-rational points on the curve C.

Remark 1.5. Although this definition may seem unmotivated, since there are many possible ways to define a
generating function from the sequence of numbers (#C/Fqm)m≥1, we will see in a later section that, after a
change of coordinates, this definition becomes very much analogous to the Riemann zeta function defined over
the complex numbers.

On the other hand, once we introduce the notion of a divisor, we will show that Z(C/Fq, T ) =
∑

d≥0DdT
d,

where Dd is the number of nonnegative divisors of degree d. Hence, from the perspective of divisors, the zeta
function as defined above is a very natural object to consider.

Now we are ready to state the main theorem shown in this thesis, which was first conjectured by Artin. The
first two assertions of this theorem were proven by F.K. Schmidt and the third assertion was shown by Weil.

Theorem 1.6. Let F ∈ Fq[X,Y, Z] be an absolutely irreducible homogeneous polynomial and let C/Fq be the
corresponding projective plane curve, which we assume to be smooth. Then, there exists a positive integer g,
depending on F such that the zeta function of the curve C/Fq has the following properties:

• Z(C/Fq, T ) is a rational function of T . Even more precisely, there exists a polynomial L(T ) with integer
coefficients of degree 2g such that

Z(C/Fq, T ) =
L(T )

(1− T )(1− qT )
, (1.1)

• Z(C/Fq, T ) satisfies the following functional equation

Z(C/Fq, T ) = T 2g−2qg−1Z

(
C/Fq,

1

qT

)
, (1.2)

• Finally, all roots of L are complex numbers of absolute value q−1/2.

Remark 1.7. The integer g mentioned in the above theorem is called the genus of the curve, and represents one
of the fundamental quantities related to the curve.

Remark 1.8. The third statement of the above theorem is called the Riemann Hypothesis for curves, owing to
the connection to the usual Riemann Hypothesis which will be presented in the next section.

Let us describe, in a concrete way, what Theorem 1.6 can tell us about counting the number of points on C over
Fqm . We begin by an interpretation of the functional equation in terms of the roots of the polynomial L(T )
and then show a formula for #C/Fqm based on these roots.

Before we state the first corollary of Theorem 1.6, let us just note that L(0) = Z(C/Fq, 0) = 1 and therefore
one can write L(T ) as L(T ) =

∏2g
i=1(1− αiT ), for some α1, . . . , α2g ∈ C.

Corollary 1.9. Suppose that Z(C/Fq, T ) is rational, satisfying the formula (1.1), and satisfies the functional
equation (1.2). If we write the polynomial L(T ) in the form L(T ) =

∏2g
i=1(1− αiT ), the values αi satisfy, after

a possibly permuting them, αiα2g+1−i = q for all i = 1, . . . , g.

Proof. Expanding out the functional equation (1.2) using the formula (1.1), we find L(T ) = qgt2gL
(

1
qT

)
. In

terms of the values α1, . . . , α2g, this equation can be expressed as

2g∏
i=1

(1− αiT ) = qgT 2g

2g∏
i=1

(
1− αi

Tq

)
.
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Comparing the coefficients of these polynomials, we find that
∏2g

i=1 αi = qg. Hence, we can rearrange the above
expression with the goal of comparing the roots of left and right hand sides.

2g∏
i=1

(1− αiT ) = qg
2g∏
i=1

(
T − αi

q

)
= q2g

2g∏
i=1

(
Tα−1

i − 1

q

)
=

2g∏
i=1

(
1− T

q

αi

)
.

Hence, the map αi 7→ q/αi permutes the set {α1, . . . , α2g} and therefore we may order α1, . . . , α2g such that
αiα2g+1−i = q for all i = 1, . . . , g.

Corollary 1.10. Under the assumptions of Corollary 1.9, we have the following formula for the number of
points on C over Fqm :

#C/Fqm = qm + 1−
2g∑
i=1

αm
i . (1.3)

Proof. The main idea is to take formal logarithm of the equation (1.1) and expand the polynomials on the right
hand side using Taylor expansion. More precisely, we have:

∑
m≥1

#C/Fqm
Tm

m
= logZ(C/Fq, T ) =

2g∑
i=1

log(1− αiT )− log(1− T )− log(1− qT )

=
∑
m≥1

Tm

m
+

(qT )m

m
−

2g∑
i=1

(Tαi)
m

m

=
∑
m≥1

Tm

m

(
1 + qm −

2g∑
i=1

αm
i

)
.

The formula (1.3) is now derived by comparing the coefficients next to Tm.

Note that Corollaries 1.9 and 1.10 used only the rationality and functional equation for the zeta function, which
are comparatively easy to show. However, combining the Riemann Hypothesis for curves with the formula (1.3)
gives a precise estimate on the number of Fqm -rational points of C, which is very reminiscent to the previously
mentioned Hasse bound.

Corollary 1.11. If Theorem 1.6 holds, we have

|#C/Fqm − (qm + 1)| ≤ 2gqm/2. (1.4)

Proof. The proof is immediate, since the Riemann Hypothesis for curves implies that |αi| = q1/2. Combined
with the formula (1.3), this implies the desired bound via the triangle inequality.

The bound (1.4) is tight if q is a even power of a prime. The curves attaining the bound are called maximal or
minimal, depending on whether the number of points of them attains the upper or the lower bound posed by
the bound (1.4).

If we assume the rationality and the functional equation for the zeta function, we can also show the reverse
implication to Corollary 1.11. More precisely, if we have |#C/Fqm − (qm + 1)| ≤ KC/Fq

qm/2 for some constant
KC/Fq

depending only on the curve C, we can derive |αi| = q1/2 for all i. This will be very important since
the proofs of the Riemann Hypothesis for curves will rely on establishing the bound on the number of points of
C/Fqm .

Proposition 1.12. Suppose that the curve C/Fq has a rational zeta function, satisfying the functional equa-
tion (1.2). If there exists a constant K (possibly depending on the curve C/Fq) and an integer m for which

|#C/Fqmn − (qmn + 1)| ≤ Kqmn/2, (1.5)

for all n ≥ 1, then the Riemann Hypothesis holds for the curve C/Fq (in other words, |αi| = q1/2 for all i).
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Proof. The starting point of this proof is the trace formula (1.3), which states that qmn + 1 − #C/Fqmn =∑2g
i=1 α

mn
i . Moreover, assume that α1, . . . , α2g are arranged in decreasing order of absolute value.

First, we will use Dirichlet’s approximation theorem to show that for there are infinitely many values of
n such that for all i we have Re

(
αi

α1

)mn

≥ 0. In other words, we have to ensure that mn arg(αi/α1) mod π ∈
[−π/2, π/2]. But the simultaneous version of Dirichlet theorem states that for any N , there exists n ≤ N such
that mn arg(αi/α1) mod π ∈ [−πN1/d, πN1/d]. This suffices to construct an infinite sequence of n satisfying
the above property.

For n chosen above, we have

|
2g∑
i=1

αmn
i | = |α1|mn

∣∣∣∣∣
2g∑
i=1

(
αi

α1

)mn
∣∣∣∣∣ ≥ |α1|mn.

Hence, we have |α1| ≤ K1/mnq1/2 and as n→ ∞ we obtain |α1| ≤ q1/2. By our choice of ordering of α1, . . . , α2g

we obtain |αi| ≤ q1/2 for all i. But Corollary 1.9 requires that αiα2g+1−i = q (possibly under a different
ordering), which means that we must have equality and so |αi| = q1/2 for all i.

1.3 Divisors on a curve

In this section, we define the notion of a divisor on the curve, which we will use repeatedly throughout this
thesis. For a curve over an algebraically closed field Fq, this notion is simple enough to define. A divisor on a
curve C/Fq is a formal expression of the form

∑
P∈C nP · P , where nP are integers and we have nP = 0 for all

but finitely many points P ∈ C. One can then define the operation of addition on divisors, by simply adding
the corresponding coefficients nP , making them into an abelian group. In a more abstract language, a divisor
is an element of the free abelian group on the points of the curve.

However, this definition is not descriptive enough for curves over non-algebraically closed fields. The
philosophy we adopt here is that the group of divisors on the curve should contain the information about the
points of the curve over the base field itself as well as over all algebraic extension of this field. Let us illustrate
this by a concrete example. The sets of points defined by the equations X + Y +Z = 0 and X3 + Y 3 +Z3 = 0

are precisely the same over F2, but these curves are definitely not the same over F2. Hence, if we considered the
set of divisors only as formal sums of points on the curve itself, we would not be able to distinguish between the
above two curves by the means of divisors, let alone count the number of points in the field extensions. Hence,
we adopt a slightly more intricate definition of a divisors, which relies on the action of the Galois group on the
Fq-points of the curve.

The Galois group Gal(Fq/Fq) is the group of automorphisms of Fq which fix Fq and it is an abelian
group generated by the Frobenius automorphism σ : x 7→ xq for x ∈ Fq. This group acts on the points
[x : y : z] ∈ C by simply acting on their coordinates, meaning that we define σ([x : y : z]) = [σ(x) : σ(y) : σ(z)]

for σ ∈ Gal(Fq/Fq).

Definition 1.13. A prime divisor P on a curve C/Fq is a Gal(Fq/Fq)-orbit of points on C/Fq. A divisor D
on the curve C/Fq is a formal linear combination

∑
P nP · P of prime divisors with integer coefficients, where

all but finitely many coefficients nP are zero. Finally, we say that a divisor is effective if all of its coefficients
are nonnegative.

This definition implicitly assumes that the curve C/Fq is stable under the action of the Galois group
Gal(Fq/Fq). In other words, we assume that if a point [x : y : z] ∈ C/Fq, then [σ(x) : σ(y) : σ(z)] ∈ C/Fq too.
This is not hard to see, since if F ∈ Fq[X,Y, Z] is the defining polynomial of C we have f(σ(x), σ(y), σ(z)) =
f(x, y, z) = 0 for all [x : y : z] ∈ C/Fq.

Let us note that prime divisors are sometimes referred to as places in the literature. The term place comes
from algebraic number theory, where a place of a number field roughly referring to a valuation on the field.
For the further discussion of the analogy between prime divisors and places of the function fields of the curve,
consult Sections 1.4, 2.2 and 2.3.

As before, the divisors on a curve form an abelian group under the operation of addition. The group of
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divisors on a curve C/Fq will be denoted by Div(C/Fq), and the set of prime divisors of C/Fq will be denoted
by PDiv(C/Fq).2

Finally, the above definition of a divisor comes with a word of warning. Namely, as we defined them, the
divisors on the curve C/Fq depend on the base field Fq, and hence the set of prime divisors of C/Fq and C/Fqm

will not be the same in general.

Definition 1.14. The degree of a prime divisor P is the number of elements in the Gal(Fq/Fq)-orbit defining
this divisor, which we denote by degP or simply |P |. We extend this definition linearly and define the degree
of a general divisor D =

∑
P nP · P as degD =

∑
P nP · degP , where the sum runs over all prime divisors of a

curve.

A priori, it is not obvious that a degree of a prime divisor is finite at all. However, we have the following
simple proposition shows this.

Proposition 1.15. If P is a prime divisor on a curve C/Fq, then P is a finite set.

Proof. In simpler terms, this proposition states that a Gal(Fq/Fq)-orbit of any point of [x : y : z] ∈ C/Fq is
finite. Since x, y, z ∈ Fq =

⋃∞
m=1 Fqm , there exists a finite extension Fqm of Fq such that all of x, y, z are in

Fqm . Then, the action of any element of Gal(Fq/Fq) leaves x, y and z within Fqm , meaning that P is a subset
of P2

Fqm
, and thus finite.

As indicated above, the group of divisors of the curve will be the key object in understanding points of the
curve C/Fqm over various algebraic extensions of Fq. Let us illustrate this by an example before showing the
general theorem.

Example 1.16. Consider the Fermat curve C given by the equation X3 + Y 3 + Z3 = 0 over F2. The prime
divisors of this curve of degree 1 correspond to those points of C/F2 fixed by the Galois group Gal(F2/F2),
which are precisely the points whose coordinates are in F2. There are three such points on C: [1 : 1 : 0], [1 : 0 : 1]

and [0 : 1 : 1]. Hence, C has three prime divisors of degree 1.
How do we find prime divisors of degree 2 on this curve? Just a little Galois theory is all we need. Namely,

if P is a prime divisor of degree 2, i.e. just a two-element orbit {[x : y : z], [x′ : y′ : z′]} of points on C/F2, we
will show that the coordinates of these points must lie in F4. Let F2m be the smallest extension of F2 containing
x. Then, the Gal(F2/F2)-orbit of x is the same as Gal(F2m/F2) orbit of x. Furthermore, we know that group
Gal(F2m/F2) is cyclic group generated by the automorphism σ : F2m → F2 given by σ(α) = α2. Since the orbit
of x has only two elements, we conclude that σ2(x) = x, i.e. x4 − x = 0. Hence, x ∈ F4, as we have claimed.

The search for the prime divisors of degree 2 is now simplified considerably - it suffices to consider only
the points of C/F4. To characterize the points of C/F4, note the following elementary statement: for α ∈ F4,
we have α3 = 1 if and only if α ̸= 0. Hence, if [x : y : z] ∈ C/F4, exactly one of the coordinates x, y, z must be
zero, which gives the following set of points on C/F4 (where we denote the elements of F4 by 0, 1, α, α+ 1 with
α2 = α+ 1):

C/F4 = {[1 : 1 : 0], [1 : α : 0], [1 : α+ 1 : 0], [1 : 0 : 1], [α : 0 : 1], [α+ 1 : 0 : 1], [0 : 1 : 1], [0 : 1 : α], [0 : 1 : α+ 1]}.

Note that the points with coordinates in F2 are prime divisors of degree 1, as discussed above. Hence, the prime
divisors of degree 2 are the pairs {[1 : α : 0], [1 : α+ 1 : 0]}, {[0 : 1 : α], [0 : 1 : α+ 1]}, {[α : 0 : 1], [α+ 1 : 0 : 1]}.
We could continue looking for divisors of higher degrees in a similar way, but enumerating all points of C/F2m

would soon be out of reach. Besides, we introduced divisors to help us count points on curves, and hence we
must find a better way to enumerate prime divisors on curves without enumerating the points of the curve first.

Now, we will express the relationship between divisors and the rational points on the curve in a more
general setting.

Proposition 1.17. Let P = {P1, . . . , Pd} be a prime divisor of degree d on a curve C/Fq. Then P is partitioned
into (m, d) prime divisors of C/Fqm , and each of these prime divisors has degree d

(m,d) . In particular, if d|m, all
points of P are Fqm -rational.

2This notation should not be confused with the set of principal divisors, which will be introduced later.
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Proof. This proof is an exercise in Galois theory of finite fields. By definition, {P1, . . . , Pd} is a Gal(Fq/Fq)-orbit
of point P1, and hence we may relabel the points such that Pi = σi−1(P1), where σ : [x : y : z] 7→ [xq : yq : zq]

denotes the Frobenius automorphism, and σd(P1) = P1. Further, we know that prime divisors of C/Fqm

correspond to Gal(Fq/Fqm)-orbits of points, and that Gal(Fq/Fqm) is generated by σm : [x : y : z] 7→ [xq
m

:

yq
m

: zq
m

]. Hence, the prime divisors of C/Fqm arising from P are {P1, σ
m(P1), . . . }, {P2, σ

m(P2), . . . } etc.
Elementary modular arithmetic tells us that this splits the set {P1, σ(P1), . . . , σ

d−1(P1)} into d
(m,d) sets of

cardinality (m, d).

Corollary 1.18. Let C/Fq be a smooth curve, and let #C/Fqm denote the number of points on C/Fqm . Then,
we have

#C/Fqm =
∑

P∈PDiv(C/Fq),degP |m

degP.

Proof. The proof relies on the application of the special case of Proposition 1.17. Namely, the rational points
of C/Fqm are contained in the prime divisors P of C/Fq with degP |m, and every such prime divisor contains
exactly (m,degP ) = degP such points. The statement then follows directly.

1.4 Relation to Riemann zeta function

In this section, we will show the analogy between the zeta functions associated to algebraic curves and Riemann
zeta function ζ(s). Although this section is not required for the proof of the Theorem 1.6, it provides useful
context and motivation Artin conjectures. Parts of this discussion will therefore assume familiarity with notions
in algebraic number theory.

Let us begin by introducing the Riemann zeta function. It is defined by the equation ζ(s) =
∑

n≥1 n
−s

in the region ℜs > 1 can be extended to a meromorphic function on the whole complex plane. Moreover, it
possesses a number of properties relating it to the arithmetic structure of the integers, such as the Euler product

ζ(s) =
∏

p prime

(1− p−s)−1.

This notion can be extended to arbitrary an number field K by defining

ζK(s) =
∏

p⊆OK

(1−NK/Q(p)
−s)−1,

where the product ranges over all prime ideals p within the ring of integers OK and NK/Q denotes the ideal
norm.

For curves, one might try to follow a similar recipe and define the zeta function

ζ(C/Fq, s) =
∏

P∈PDiv(C/Fq)

(1− q− degP ·s)−1,

where qdegP plays the role of the norm. One might complain that the zeta function we just defined has nothing
to do with Z(C/Fq, T ) from definition 1.4. Despite apparent differences, under the changes of coordinates
q−s = T these two functions become exactly the same.

Proposition 1.19. The zeta function of the curve C/Fq, defined in Definition 1.4, can be written as

Z(C/Fq, T ) =
∏

P∈PDiv(C/Fq)

1

1− T degP
=

∑
D∈Div(C/Fq),D≥0

T degD. (1.6)

Hence, we have the equality Z(C/Fq, T ) = ζ(C/Fq, s) when T = q−s.

Proof. This proof is based the relation between divisors and rational points of a curve presented in Corollary 1.18.
If we denote the number of prime divisors of degree d by Pd, the proof reduces to the following straightforward
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manipulation of the formal power series.

Z(C/Fq, t) = exp

∑
m≥1

#C/Fq

m
tm

 = exp

∑
m≥1

∑
d|m d · Pd

m
tm

 = exp

∑
d≥1

Pd

∑
m=kd,k≥1

d

m
tm

 =

= exp

∑
d≥1

Pd

∑
k≥1

1

k
tkd

 = exp

 ∑
P∈PDiv(C/Fq)

− log(1− tdegP )

 =
∏

P∈PDiv(C/Fq)

1

1− tdegP
=

=
∏

P∈PDiv(C/Fq)

∑
nP≥0

tnP degP =
∑

D∈Div(C/Fq),D≥0

tdegD.

Right now, we are able to see the similar form of the definitions of ζ(C/Fq, s) and ζ(s). But the analogy
between the two situations extends further. Namely, prime divisors of C/Fq induce valuations on the function
field Fq(C) (for the formal discussion of this consult Sections 2.1 and 2.3). Even more is true - the places of
Fq(C) are in one to one correspondence with prime divisors P ∈ PDiv(C/Fq). This fact will not be used in our
proofs, and hence we will not derive it. An interested reader should consult Section 3.1 of [22].

On the other hand, the non-Archimedean places of a number field K correspond exactly to the prime ideals
of OK . Hence, we see that even from this perspective, the products appearing in ζK(s) and ζ(C/Fq, s) are
completely analogous.

Finally, the notion of the norm of the ideal p ⊂ OK is usually defined by NK/Q(p) = |OK/p|. In other
words, the norm of the ideal is the size of its residue field. In Proposition 2.21, we will show that the size of the
residue field of the place corresponding to P ∈ PDiv(C/Fq) is precisely qdegP . Hence, we see that the natural
replacement for NK/Q(p) is precisely qdegP , which then explains the analogy between the definitions of ζK(s)

and ζ(C/Fq, s).

1.5 Two examples

In this section, we will focus on a series of simple examples that illustrate the behavior of zeta functions described
in the Theorem 1.6.

Example 1.20 (Linear polynomials.). Probably the simplest kind of equation one can try to solve over a finite
field is a linear equation of the type f(X,Y, Z) = aX + bY + cZ = 0 where at least one of a, b, c is nonzero, say
a ̸= 0. Then, it is not hard to see that we have exactly qm + 1 solutions in P2

Fq
. Namely, if a ̸= 0, the set of

solutions is precisely {[−by−cz
a : y : z]|[y : z] ∈ P1(Fqm)}. Hence, the zeta function of the line L defined by f is

Z(L/Fq, t) = exp

∑
m≥1

#C/Fqm

m
tm

 = exp

∑
m≥1

(qt)m

m
+
∑
m≥1

tm

m


= exp (− log(1− qt)− log(1− t)) =

1

(1− t)(1− qt)
.

Note that the solution set of the equation aX + bY + cZ = 0 corresponds to the projective line P1(Fq), which
has the same zeta functions as the one we just computed.

Example 1.21. In this example, we will consider the zeta function of the Fermat cubic C/Fq given by X3+Y 3+

Z3 = 0. Assuming the rationality of the zeta function, we will verify the functional equation and demonstrate
the Riemann Hypothesis for q = 2. Then, we will show a general and completely elementary way to verify the
bound (1.4).

The genus of the cubic C/Fq is g = 1, and therefore the rationality of Z(C/Fq, T ) implies it can be written
as

Z(C/Fq, T ) =
L(T )

(1− T )(1− qT )
,

for a degree 2 polynomial L(T ). Since L(0) = Z(0) = 1, we can write L(T ) = (1 − α1T )(1 − α2T ), where
α1, α2 are complex numbers. One can determine α1, α2 from the trace formula (1.3), which says that C/Fqm =
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qm+1−αm
1 −αm

2 . Since we have only two unknowns, α1 and α2, it suffices to check the number of solutions in
the fields F2,F4. We have already done this in Example 1.16, and we have found that #C/F2 = 3,#C/F4 = 9.
Hence, we have α1 + α2 = 0 and α2

1 + α2
2 = −4, giving us the solutions α1 = i

√
2, α2 = −i

√
2 and the zeta

function

Z(C/F2, T ) =
1 + 2T 2

(1− T )(1− 2T )
.

Now, we can easily verify the functional equation, since

Z(C/F2,
1

2T
) =

1 + 2(1/2T )2

(1− 1/2T )(1− 1/T )
=

2T 2 + 1

(2T − 1)(T − 1)
= Z(C/F2, T ).

Furthermore, note that the Riemann Hypothesis also holds because |α1| = |α2| =
√
2.

Of course, this holds for larger values of q as well. We will now present a theorem of Gauss which shows
that for any Fq, the number of Fq-rational points of C/Fq satisfies

|#C/Fq − (q + 1)| ≤ 2q1/2.

Note that this bound holds also for all power of q, by replacing the base field Fq by Fqm . As discussed in
Corollary 1.11 and Proposition 1.12, this is equivalent to the Riemann Hypothesis for C (since the genus of C
is g = 1). Let us now state Gauss’ theorem.

Theorem 1.22. Consider the curve C/Fq given by X3 +Y 3 +Z3 = 0, where q = pk and p ≡ 1 (mod 3). Then
there exist integers A,B for which 4q = A2 + 27B2 and #C/Fq = q + 1 +A.

Before we prove this theorem, let us note that since 4q ≥ A2 we must have |#C/Fq − (q + 1)| = A ≤ 2q1/2,
which is equivalent to the Riemann Hypothesis for C/Fq as discussed above. Also, note that the assumption
p ≡ 1 (mod 3) can be replaced by the assumption that not all elements are cubes in Fq. Of course, if all
elements are indeed cubes, then the Fermat cubic has the same number of points as X + Y +Z = 0, which was
already considered in the previous example.

Proof of Theorem 1.22. Our presentation follows the treatment of Silverman, Tate [27] and Mazzoni and Schiltknecht
[19]. We will consider the set of nonzero cubes R = {x3 : x ∈ Fq}\{0} and for sets A,B,C ⊆ Fq we will define
the symbol

[ABC] = |{(a, b, c) ∈ A×B × C : a+ b+ c = 0}|.

It is not hard to see that this symbol remains unchanged when A,B,C are permuted, or all scaled by the same
nonzero constant λ ∈ Fq

×.
Let us begin by observing that we have exactly 9 solutions to X3 + Y 3 + Z3 = 0 when one of X,Y, Z is

zero. This is because, when Z = 0, the solutions to X3 + Y 3 = 0 can be explicitly found to be {[1 : ζ : 0], [1 :

ζ2 : 0], [1 : −1 : 0]}, where ζ ∈ Fq is the root of ζ2 + ζ + 1 = 0.
Now, note that the number of points on C/Fq with all coordinates nonzero is 27[RRR]

p−1 , since every triple
(r1, r2, r3) ∈ R×R×R with r1+ r2+ r3 = 0 yields 27 ordered triples (x, y, z) with x3+ y3+ z3 = 0, since every
ri has three cube roots in Fq. However, since we are working in projective space and we do not count scaled
solutions as different, we divide by q − 1. Denoting |R| = m = q−1

3 , we obtain the formula for #C/Fq which
reads

#C/Fq = 9 +
9[RRR]

m
.

Let us now define cosets of R in the multiplicative group Fq
× to be S, T , with the goal of showing #C/Fq =

9[RST ]/m. To do this, we note that [RRFq] = m2 and therefore

[RR{0}] + [RRR] + [RRS] + [RRT ] = m2.

Similarly, we have [STFq] = m2 and therefore

[ST{0}] + [STR] + [STS] + [STT ] = m2.

Picking an arbitrary element s ∈ S and noting that sR = S, sS = T, sT = R gives [RRS] = [SST ] and
[TTS] = [RRT ]. Moreover, as discussed before we have [RR{0}] = m, since R is symmetric R = −R. Finally,
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we have [ST{0}] = 0, since S∩(−T ) = ∅. This is easy to see since both S and T are closed under multiplications
by cubes and therefore symmetric s ∈ S =⇒ (−1)3s = −s ∈ S.

Combining these observations gives [RRR] +m = [RRR] + [RR{0}] = [RTS] and so

#C/Fq = 9 +
9[RTS]

m
.

Let ω1, . . . , ωk be primitive complex p-th roots of unity. We know that we can regard Fq as a k-dimensional
vector space over Fp. Let us fix an arbitrary basis and write every x ∈ Fq as x = (x1, . . . , xk) ∈ Fp

k. Then, we
define α1 =

∑
x∈R ω

x, α2 =
∑

x∈S ω
x, α3 =

∑
x∈T ω

x, where ωx is a shorthand notation for ωx1
1 · · ·ωxk

k . Then,
the complex numbers α1, α2, α3 satisfy the following properties

• α1 + α2 + α3 = −1,

• α1α2 + α2α3 + α3α1 = −m,

• α1α2α3 = am− m2−a
3 , where ma = [RTS].

Showing the first property is quite simple

1 + α1 + α2 + α3 =
∑
x∈Fq

ωx =

 ∑
x1∈Fp

ωx1
1

 · · ·

 ∑
xk∈Fp

ωxk

k

 = 0.

To show the second property, let us introduce integers b, c which satisfy mb = [SST ],mc = [STT ]. Now, we
compute the product α1α2 as

α1α2 =
∑
x∈R

∑
y∈S

ωx+y =
∑

x∈Fq
×

[RS{−x}]ωx =
∑
x∈R

[RS{−x}]ωx +
∑
x∈S

[RS{−x}]ωx +
∑
x∈T

[RS{−x}]ωx.

Note that [RS{−x}] is constant over all x ∈ R, say, since the scaling property [RS{−x}] = [rR, rS, {−rx}] =
[RS{−rx}] for any r ∈ R. Hence, we have [RS{−x}] = 1

m [RSR] = 1
m [SST ] = b for all x ∈ R, and similarly

[RS{−x}] = c for x ∈ S, [RS{−x}] = a for x ∈ T . Hence,

α1α2 = b
∑
x∈R

ωx + c
∑
x∈S

ωx + a
∑
x∈T

ωx = bα1 + cα2 + aα3.

In a similar way, one can derive α2α3 = aα1 + bα2 + cα3 and α3α1 = cα1 + aα2 + bα3. Combined with the first
property, summing these three relations gives the second property directly. Finally, we have

3α1α2α3 = α1(α2α3) + α2(α3α1) + α3(α1α2)

= α1(aα1 + bα2 + cα3) + α2(cα1 + aα2 + bα3) + α3(bα1 + cα2 + aα3)

= a(α2
1 + α2

2 + α2
3) + (b+ c)(α1α2 + α2α3 + α3α1)

= a(α1 + α2 + α3)
2 − 2a(α1α2 + α2α3 + α3α1)− (b+ c)m

= a+ 3am− (a+ b+ c)m.

Noting that a+ b+ c = 1
m ([STFq]− [ST{0}]) = m completes the proof of the third property. Let us now define

the integers A = 9a− 3m− 2 and B = b− c. The goal will be to show A2 +27B2 = 4q, which will complete the
proof immediately, since

#C/Fq =
9[RTS]

m
= 9a = A+ 3m+ 2 = q + 1 +A.

To show 4q = A2 + 27B2, we consider polynomials f(X) = (X − α1)(X − α2)(X − α3) and g(X) =

(X − β1)(X − β2)(X − β3), where βi = 1 + 3αi. It is not hard to verify the properties β1 + β2 + β3 =

0, β1β2 + β2β3 + β3β1 = −3p, β1β2β3 = Aq. Vieta formulas now give

f(X) = X3 +X2 −mX − am+
m2 − a

3
, g(X) = X3 − 3qX +Ap.

Note that the discriminants of f, g, denoted by ∆f ,∆g, can be satisfy

∆g =
∏
i ̸=j

(βi − βj) = 36
∏
i ̸=j

(αi − αj) = 36∆f .
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The discriminant of f can be computed directly through the following calculation

∆
1/2
f =

∏
i<j

(αi − αj) = α1α2(α1 − α2) + α2α3(α2 − α3) + α3α1(α3 − α1)

= (b− c)(α2
1 + α2

2 + α2
3 − α1α2 − α2α3 − α3α1) = Bq.

On the other hand, ∆g can be computed from the coefficients of g, which yields

∆g = 27(4q3 −A2q2).

Recalling that ∆g = 272∆f , we obtain 4q3 −A2q2 = 27B2q2, giving us exactly q = A2 + 27B2. This completes
the proof.

1.6 History

In this section, we present a historical account of the theory of zeta functions of algebraic curves, as presented
by Roquette in [23] and Milne in [20]. Roquette’s book covers the development of the theory of zeta functions
over function fields, from Artin’s work in the 1920s to Weil’s proofs of Artin’s conjectures in 1940. On the
other hand, Milne focuses on the story of Weil conjectures, which were a generalization of Artin’s conjectures
to arbitrary varieties, and focuses on the development which led to Deligne’s proof of the Riemann Hypothesis
in 1974.

The history of the investigation of the zeta function of function fields starts with Artin. In his thesis [2], he
investigated quadratic function fields of positive characteristic and defined a notion of zeta function for them.
He shows that the zeta function is rational and satisfies the functional equation, which he then uses to derive
the analogue of the trace formula (1.3) for the function fields. Then, Artin goes on to conjecture the statement
analogous the Riemann Hypothesis for his zeta function of function fields in one variable.

Artin’s results on rationality and functional equation of the zeta function were then generalized by F.K.
Schmidt in 1931 [24], who built the theory of function fields needed to show the Riemann-Roch theorem and
used it to show Artin’s conjectures, in a very similar way as presented in Chapter 4.

After Artin verified the Riemann Hypothesis for quadratic function fields, in 1933 Hasse [15] gave a proof
of the Riemann Hypothesis for elliptic function fields (which correspond to elliptic curves), using the theory of
complex multiplication on elliptic curves.3 This was one of the first instances where the basics of geometric
intuition started being used instead of algebraic ones. Even today the bound on the number of points on elliptic
curves is known as the Hasse bound.

In 1940 and 1941, Weil [34], [35] approached this problem from the perspective of algebraic curves and
announced the proofs of the Riemann Hypothesis for curves. Weil’s work involved a shift in perspective from
considering the zeta functions purely algebraically towards introducing geometric reasoning. Due to the turbu-
lent times he was living in, Weil hurried to make the announcement of his proof, and he had to work for several
more years before publishing the final version of his argument. Formalizing these proofs was one of the main
driving factors behind Weil’s work on foundations of algebraic geometry in the 1940s.

Weil came up with two essentially different approaches to showing the Riemann Hypothesis for a curve C/Fq.
The first one considered the surface C ×C (somewhat similar to Bombieri’s argument presented in Chapter 6),
and considered a intersection of the diagonal ∆ = {(P, P ) : P ∈ C} with the curve C1 = {(P, P q) : P ∈ C},
where P 7→ P q denoted the Frobenius morphism. Then, using the intersection theory on surfaces he developed,
Weil managed to bound the number of intersections between these two curves and obtain the proof of the
Riemann Hypothesis. This argument was presented in [36].

The second Weil’s proof [37] relied on a geometric construction known as the Jacobian of the curve.
Although the proof begins in the same way, the number of intersections between ∆ and C1 is now bounded by
passing to the Jacobian of the curve, somewhat similarly to Hasse’s proof in the case of elliptic curves.

While proving Artin’s conjectures for curves, Weil formulated a set of conjectures describing the behavior
of zeta functions of varieties, connecting the rational point counts to topological properties of the curve, such

3According to Roquette, Hasse never published the full proof of his bound, but only the outline in the paper we cite.
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as the genus and the Betti numbers. With the state of algebraic geometry in the 1940s, these conjectures were
well beyond reach. However, these conjectures served as a productive inspiration for the further development
of modern algebraic geometry.

In parallel to the resolution of the Weil conjectures for general varieties, the Riemann Hypothesis for curves
also saw renewed interest during the 1960s and 1970s. Namely, Stepanov’s work in the 1960s [28] showed that
the polynomial method may be used to derive the Riemann Hypothesis for some special cases of curves, such
as hyperelliptic curves. This came as a surprise, but the method was soon extended by W. M. Schmidt and
Bombieri to show the Riemann Hypothesis for all curves.

Since its introduction, the Stepanov method has found other use cases, unrelated to the zeta functions of
algebraic curves. For example, variants of the Stepanov method have been used by Bourgain, Gamburd, and
Sarnak [5] in the investigation of the Markoff equation, where directly applying the bounds coming from Weil’s
theorem was not sufficient, and by Heath-Brown, Konyagin [16] and Bourgrain, Konyagin [6] to obtain improved
bounds on various exponential sums.



Chapter 2

Elements of Algebraic Geometry

In this section, we will introduce the basic tools of algebraic geometry of curves, with the goal of proving several
basic results which we will use later in the proof of the Riemann-Roch theorem.

Let us begin by discussing the notions of affine and projective spaces, which will be ubiquitous throughout
the rest of the presentation. The affine plane over Fq is nothing else than Fq

2.
The projective plane over Fq, denoted by P2(Fq), will be constructed as a quotient of Fq

3−(0, 0, 0) and a cer-
tain equivalence relation. Namely, we define the equivalence relation by declaring the points (x, y, z), (x′, y′, z′) ∈
Fq

3 to be equivalent if there exists a nonzero scalar λ ∈ Fq such that x = λx′, y = λy′ and z = λz′. Then, one
can define P2(Fq) to be the set of equivalence classes of points (x, y, z) ∈ Fq

3 under this equivalence relation.
We will denote the equivalence class of (x, y, z) by [x : y : z].

In a similar way as above, one can define the projective space P2(Fq), which contains P2(Fqm) as a subset
for all m. Let us note a slight subtlety regarding the interaction between P2(Fq) and P2(Fqm). Suppose we have
a point [x : y : z] ∈ P2(Fq) and ask whether this point lies in P2(Fqm). A natural answer would be to say that
[x : y : z] ∈ P2(Fqm) if and only if the coordinates of the point are elements of Fqm , i.e. x, y, z ∈ Fqm . But
since points of P2(Fq) may be scaled using arbitrary scalars λFq, we may scale the coordinates of a point of
P2(Fqm) so that they do not lie in Fqm . Hence, we need to be more careful, and therefore, we say that a point
[x : y : z] ∈ P2(Fq) is defined over Fqm if there is a nonzero scalar λ ∈ Fq for which λx, λy, λz ∈ Fqm .

As we will see in the next section too, the projective and affine planes are closely related. Namely, the
affine plane Fq

2 can be identified with a subset of the projective plane P2(Fq) in a natural way, by sending
(x, y) ∈ Fq

2 to [x : y : 1] ∈ P2(Fq). Moreover, it is interesting to note that one can cover the projective plane
using three affine planes in this way, although we will not need this fact in our presentation.

2.1 Rational functions on curves

In this section, we will define the rational functions on a plane curve C/Fq, which may be either affine or
projective curves. We will start by discussing the affine case. As before, we will always assume that C/Fq is a
smooth plane curve defined by an absolutely irreducible polynomial f(X,Y ) in the affine case or F (X,Y, Z) in
the projective case.

Definition 2.1. If C/Fq is an affine curve, a rational function on C/Fq is a ratio of polynomials g
h where

g, h ∈ Fq[X,Y ] are polynomials and h is not divisible by f .

In fact, the set of rational functions on a curve C/Fq can be thought of as a field in the following way. If
we define the addition and multiplication of rational functions in the usual way, and we say that two rational
functions g1

h1
, g2
h2

are equal if g1h2 − h1g2 is divisible by f , then the set of rational functions becomes a field.
This field, denoted by Fq(C), is precisely the field of fractions of the quotient ring Fq[X,Y ]/(f) (in fact, we can
take this as a definition of Fq(C)). We will call Fq(C) the function field of the curve C/Fq, and it will be one
of the main objects we will use to study the curve C/Fq. 1 Note that every rational function φ = g

h ∈ Fq(C)

1There exists yet another way to define the function field, which involved appealing to more complicated algebraic construction

16
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can be evaluated at all point P = (x, y) ∈ C/Fq which have h(x, y) ̸= 0, simply by setting φ(P ) = g(x,y)
h(x,y) . One

might worry whether such evaluation map is well defined, given that we are considering g and h only modulo
f , but since f vanishes at all points (x, y) ∈ C/Fq this is not an issue. Finally, note that the above definitions
and discussion extend seamlessly to define the rational functions on C/Fq.

The definitions may be extended to the case of projective curves in almost the same way. However, one
should be careful and require that the numerator and denominator of the rational function have the same degree,
in order to be able to evaluate this rational function on the points of the curve.

Definition 2.2. If C/Fq is a projective plane curve, a rational function on C/Fq is a ratio of polynomials G
H

where G,H ∈ Fq[X,Y, Z] are homogeneous polynomials of the same degree and F does not divide H.

Let us give a brief comment about the above definition and in particular about the additional requirement
that G and H should be homogeneous polynomial of the same degree, say degG = degH = d. If we recall that
we are working in projective space, where P = [x : y : z] = [λx : λy : λz], we see that this requirement ensures
that the rational function G/H evaluates to the same value on the points [x : y : z] and [λx : λy : λz], simply
because

G(λx, λy, λz)

H(λx, λy, λz)
=
λdG(x, y, z)

λdH(x, y, z)
=
G(x, y, z)

H(x, y, z)
.

Hence, if φ = G
H , we may define φ(P ) = G(x,y,z)

H(x,y,z) . By the above discussion, this definition gives a well-defined
map from C/Fq − {H(x, y, z) = 0} to Fq.

Of course, one can make the set of rational function on C a field, as previously discussed in the affine case,
by adding and multiplying the rational functions in the usual way, along with considering them modulo F .

Given a point P , we will now focus on the set of functions which can be evaluated at P .

Definition 2.3. If C/Fq is an affine plane curve and P ∈ C/Fq, we call a rational function φ ∈ Fq(C) is regular
at a point P ∈ C/Fq if it can be written as a ratio φ = g

h , where g, h ∈ Fq[X,Y ] and h(P ) ̸= 0.

The set of regular functions at a given point P forms a ring, which we call the local ring and denote by OP .
Note that the local ring at P contains the rational functions φ ∈ Fq(C) and not only in Fq(C). We define the
maximal ideal of C at P is MP = {φ ∈ OP : φ(P ) = 0}. It is not hard to check that MP is indeed a maximal
ideal in OP . Note that the above definitions extend seamlessly to the case of projective plane curves.

We will finish this section with an explanation how to relate rational functions of an affine and pro-
jective curve. Namely, if an affine curve C/Fq was defined by the equation f(X,Y ) = 0, one can produce
the projective version of this curve by homogenizing the polynomial f(X,Y ). More precisely, if deg f = d

and f(X,Y ) =
∑

i+j≤d aijX
iY j , we define the homogenization of f to be the homogeneous polynomial

F (X,Y, Z) =
∑

i+j≤d aijX
iY jZd−i−j . Then, F defines a projective curve C̃/Fq ⊂ P2(Fq).

The described procedure shows how to start from an affine curve C/Fq and produce a projective curve
C̃/Fq, but one can also do the reverse. Note that when we restrict the curve C̃/Fq to the affine plane of P2(Fq)

given by {[x : y : z] ∈ P2(Fq) : z ̸= 0}, we obtain the affine curve C/Fq, which is precisely the curve we started
with. Moreover, the defining equation of the affine curve is given by f(X,Y ) = F (X,Y, 1) = 0.

In order to be able to refer to this correspondence later on, we state it formally in the following proposition,
which is easily proved directly from the definitions.

Proposition 2.4. Let C̃/Fq ⊂ P2(Fq) be a smooth projective curve defined by F (x, y, z) = 0, and let A0 =

{[x : y : z] ∈ P2(Fq)|z ̸= 0} be an affine plane within P2
(Fq). Then,

• If C = C̃ ∩A0, then C is a smooth affine plane curve given by f(x, y) = F (x, y, 1) = 0.

• If P is a point of C/Fq (and thus also of C̃/Fq), the local rings of C̃ and C at P are isomorphic, and the
isomorphism is given by G(x,y,z)

H(x,y,z) 7→ G(x,y,1)
H(x,y,1) . Moreover, the same isomorphism shows that the function

fields Fq(C) and Fq(C̃) are isomorphic.

called localization. Although we will not define it now, let us simply mention that Fq(C) is isomorphic to the quotient of the local
ring Fq [X,Y ](f) with its maximal ideal.
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2.2 Valuations

In this section, we introduce one of the basic algebraic constructions which will be used throughout the thesis,
namely valuations. They will play a key role in defining the order of vanishing of a function at a point. We also
introduce discrete valuation rings, with the goal of showing that the ring of regular functions OP is a DVR.
This will be the topic of the next section.

Definition 2.5. A ring R is a discrete valuation ring (DVR) is there exists an element t ∈ R such that every
element r ∈ R can be uniquely written as r = utn for a unit u. The element t is called the uniformizer.

Example 2.6. The following example has the goal of elucidating the intuition behind the definition of DVRs,
as well as introducing some ideas which will be used in the subsequent proofs. Consider the set of rational
functions S ⊂ C(x) which do not have a pole at x = 1. We can easily associate the order of vanishing at 1 to
every function φ ∈ S by simply looking at the highest power of (x − 1) dividing φ. In other words, we may
represent every φ ∈ S as φ = (x − 1)nψ, where ψ(1) ̸= 0. Since ψ(1) ̸= 0, we have ψ−1 ∈ S too and ψ is a
unit. Hence, we conclude that φ is indeed expressible as a product of (x − 1)n and a unit, which corresponds
exactly to the definition of DVRs. From this perspective, it seems natural to define the analogue of the order
of vanishing, the so called valuation, of an element r ∈ R to be the power of t appearing in its expression as
r = utn.

As we saw in the previous example, DVRs are often constructed by starting from a field, and selecting a
set of elements satisfying a certain property (such as not having a pole at x = 1). Let us now formalize this
process and introduce what a valuation is.

Definition 2.7. If K is a field, a valuation on K is a surjective function ν : K → Z ∪ {∞} satisfying
ν(xy) = ν(x) + ν(y), ν(x+ y) ≥ min{v(x), v(y)} for all x, y ∈ K and ν(x) = ∞ if and only if x = 0.

Let us now explain how, starting from a DVR R, one can construct a field with a valuation. If a ring R is
a DVR with a field of fractions K, then K has a natural valuation on it. Recall that every element of r ∈ K

can be written as r = tnu for some n ∈ Z and a unit u. Then, we may define ν(r) = n. Again, it is not hard to
verify that ν satisfies the properties of a valuation.

This procedure can also be reversed. If K is a field with a valuation ν, we can define the valuation ring
R as the set of element of nonnegative valuation, i.e. R = {r ∈ K : ν(r) ≥ 0}. It is not hard to see that R is
a DVR, and that its uniformizer can be chosen to be any element with ν(t) = 1 (which exists by surjectivity
of ν). The set of elements of degree ≥ 1 will then be the maximal ideal of the valuation ring. As elementary
abstract algebra shows, the quotient of a ring by its maximal ideal gives a field, and hence we define the residue
field of a valuation ν is simply the quotient of the valuation ring by its maximal ideal.

Example 2.8. The simplest example of a valuation which is very useful is the p-adic valuation. Namely, if p is
a prime number, we can define the valuation νp on the rational numbers by setting

νp

(a
b

)
= highest power of p dividing a−highest power of p dividing b.

Checking that νp is indeed a valuation follows from elementary number theoretic properties of divisibility. The
residue field of this valuation is Fp. We will encounter this valuation again in Chapter 5, where we will use it
extensively in order to define the notion of hyperderivatives.

In order to get more familiar with the properties of valuations, let us record the following useful property of
valuations, called the strict triangle inequality. Although we will not use this property in this section, it will
come in very handy later on.

Proposition 2.9. Let ν be a valuation on the field K. If x, y ∈ K are elements with ν(x) < ν(y), then
ν(x+ y) = ν(x).

Proof. By the triangle inequality, we know that ν(x+ y) ≥ min{ν(x), ν(y)} = ν(x). If we had ν(x+ y) > ν(x),
we would also have ν(x) ≥ min{ν(x+ y), ν(−y)} > ν(x), which is not possible. Hence, ν(x+ y) = ν(x).
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Now that we have introduced the general notion of DVRs and valuations, let us focus on showing that OP is a
DVR. Note that the field of fractions of OP is indeed the set of all rational functions Fq(C). Hence, showing
that OP is a DVR implies, by the above discussion, that we can define a valuation associated to P , denoted by
νP , which will represent the order of zero/pole of a function at P .

Proposition 2.10. Let C/Fq be a smooth curve and let P be a point on C/Fq. The ring of regular functions
at P , OP , is a DVR.

We will show this result in the next section. However, before that we need to develop the algebraic machinery
needed for it. Hence, we divert our attention to Noetherian rings, local rings and other basic objects of
commutative algebra. The main reason for this is that we will show that OP is a DVR by showing it is
Noetherian, local and that its maximal ideal is principal.

Definition 2.11. A ring R is Noetherian if every ascending chain of ideals has a maximal element. In other
words, if I1 ⊆ I2 ⊆ . . . is a chain of ideals, then we have In = In+1 for all big enough n. A ring R is local if it
has only one maximal ideal. A ring R is a domain if it has no zero-divisors, i.e. if rs = 0 implies either r = 0

or s = 0.

Proposition 2.12. The ring of regular functions at P , OP , is a Noetherian ring.

Let us outline the strategy to prove Proposition 2.12. Since we are working with local rings, we may assume
our curve is affine. We will begin by showing that OP is a localization of the ring Fq[X,Y ]/(f), and then we will
show that localization of Noetherian rings are Noetherian. The only thing which will remain then is to show
that Fq[X,Y ]/(f) is Noetherian, which will be shown through the combination of two facts - that Fq[X,Y ] is
Noetherian and that quotients of Noetherian rings are Noetherian.

In order to carry though with this proof, we need to introduce the notion of localization, since thinking of
OP as a localization will be immensely helpful for proving it is Noetherian. Our discussion of localization is
based on [10].

Let R be a domain, and let p ⊂ R be a prime ideal. Then, we define the localization of R at p, denoted by
R(p) as the set of fractions {a

b , b /∈ p}, where we declare two fractions a1

b1
and a2

b2
equal if b2a1 − a2b1 ∈ p. It is

not hard to check that Rp is indeed a ring under the usual addition and multiplication operations. Note that
we can think of R as a subset of R(p), since every element a ∈ R can be associated with a/1 ∈ R(p).

From this perspective, it is not hard to see that OP is a localization of the ring Fq[X,Y ]/(f) at the maximal
ideal MP . Hence, in order to talk about the localization being Noetherian, we need to understand the ideals of
the localization.

Lemma 2.13. Let R be a domain, let R(p) be its localization at the prime ideal p and let J ⊆ R(p) be an
proper ideal. Then there exists an ideal I of R with I ⊂ p such that J = { i

s : i ∈ I, s /∈ p}.

Proof. We construct I by setting I = J ∩R. We claim that I ⊂ p. Suppose we had an element i ∈ I with i /∈ p.
Then i ∈ J and 1/i ∈ R(p) implies that i · 1/i = 1 ∈ J , which is a contradiction to the assumption J is not
proper. Hence I ⊂ p.

Let us now show J = { i
s : i ∈ I, s /∈ p}. If we pick an element j ∈ J , we have j = i/s, for some i ∈ A

and s /∈ p. But we also have s ∈ R(p) and so js = i ∈ J . Since i ∈ A and i ∈ J we conclude i ∈ I and
j ∈ { i

s : i ∈ I, s /∈ p}.
To show the other inclusion, let us pick i ∈ I, s /∈ p. Then i ∈ J and 1/s ∈ R(p), meaning that i/s =

i · 1/s ∈ J . This completes the proof.

Now, it is almost obvious that localizations of Noetherian rings are Noetherian.

Lemma 2.14. If R is a Noetherian ring and p its prime ideal, the ring R(p) is also Noetherian.

Proof. Let J1 ⊆ J2 ⊆ . . . be an ascending chain of ideals of R(p). By Lemma 2.13 we know that there are
corresponding ideals I1 ⊆ I2 ⊆ . . . satisfying Jk = { i

s : i ∈ Ik, s /∈ p}. Since R is Noetherian, we know that for
all big enough n we have In = In+1. But then we also have Jn = Jn+1, showing that every ascending chain of
ideals stabilizes.
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As described in the outline of our proof, we now show that Fq[X,Y ] is Noetherian, and that quotients of
Noetherian rings are Noetherian.

Lemma 2.15. Let R be a domain and let I ⊂ R be an ideal. Then R/I is a Noetherian ring.

Proof. This proof is almost the same as the proof of Lemma 2.14. We will use the elementary fact from abstract
algebra that the ideals of R/I correspond to ideals of R containing I, where the correspondence is given by
J 7→ J + I.If J1 ⊆ J2 ⊆ . . . is an ascending chain of ideals of R/I, we use the above fact to find a chain of
ideals I1 ⊆ I2 ⊆ . . . satisfying Ik/I = Jk. Since R is Noetherian, we know that for all big enough n we have
In = In+1. But then we also have Jn = Jn+1, showing that every ascending chain of ideals stabilizes.

Finally, the last step will be to show that Fq[X,Y ] is Noetherian. For this, we use the Hilbert basis theorem.

Lemma 2.16. If R is a Noetherian ring, so is the polynomial ring R[X].

Proof. This proof follows the approach presented in [17]. Let J1 ⊆ J2 ⊆ · · · be an ascending chain of ideals in
R[X] and let

Ik,ℓ = {a ∈ A|there is f ∈ Jk with degree ℓ and leading coefficient a},

for k ≥ 1, ℓ ≥ 0 Since Jk are ideals of R[X] for k ≥ 1, we easily see that Ikℓ are also ideals of R. Moreover, the
ideals Ik,ℓ form an ascending chain in both coordinates. This is not hard to see: for k ≤ k′ we have Ik,ℓ ⊆ Ik′,ℓ

since Jk ⊆ Jk′ and for ℓ ≤ ℓ′ we have Ik,ℓ ⊆ Ik1,ℓ′ since Jk is closed under multiplication by X.
Since R is Noetherian, the ascending chain of ideals Ik,0 ⊆ Ik,1 ⊆ · · · stabilizes and we can write Ik,ℓ = mk

for all big enough ℓ. Applying the Noetherian property again, we find that the chain m1 ⊆ m2 ⊆ · · · stabilizes
and that for some A and all k ≥ A we have mk = mA. Note that we also have IA,0 ⊆ IA,1 ⊆ · · · stabilizes at
mA, and so we may write mA = IA,B .

The goal is now to show that we may increase A such that Ik,ℓ = IA,ℓ for all k ≥ A and all ℓ ≥ 0. Note that
for ℓ ≥ B, we have Ik,ℓ ⊆ IA,B ⊆ IA,ℓ ⊆ Ik,ℓ, so we indeed have Ik,ℓ = IA,ℓ. On the other hand, for each ℓ < B,
the ascending chain I0,ℓ ⊆ I1,ℓ ⊆ · · · stabilizes at a finite index Aℓ. Increasing A to obtain A > maxℓ∈[0,B]Aℓ

now suffices to ensure that Ik,ℓ = IA,ℓ for all k ≥ A and all ℓ ≥ 0.
Now, we claim that J1 ⊆ J2 ⊆ · · · stabilizes at JA, i.e. that we have Jk = JA for all k ≥ A. The inclusion

JA ⊆ Jk is clear, and our goal is to prove the reverse inclusion, i.e. to show that for every polynomial f ∈ Jk

we also have f ∈ JA. We do this by the induction on the degree of the polynomial f ∈ Jk.
If f has degree 0, we have f ∈ R and so f ∈ Ik,0 ⊆ IA,0 ⊆ JA. To perform the induction step, let f be a

polynomial of degree ℓ with leading coefficient a and note a ∈ Ik,ℓ. We then have a ∈ IA,ℓ and so there exists a
polynomial g ∈ JA with degree ℓ and leading coefficient a. Since JA ⊆ Jk we also have g ∈ Jk and so f−g ∈ Jk.
Note that f − g has degree ℓ− 1 and by the induction hypothesis we obtain f − g ∈ JA. Since g ∈ JA, this also
implies f ∈ JA, and we conclude that Jk ⊆ JA. This completes the proof.

Proof of Proposition 2.12. The proof follows directly from the algebraic machinery that we have introduced.
Since we are working with local ring, we may assume we are working with an affine rather than a projective
curve.

We have Fq is a field and hence a Noetherian ring. By applying Hilbert’s basis theorem (i.e. Lemma 2.16)
twice, we obtain that Fq[X,Y ] is Noetherian. Then, by Lemma 2.15, we conclude that Fq[X,Y ]/(f) is a
Noetherian ring. Further, the local ring OP is a localization of Fq[X,Y ]/(f) at the maximal ideal MP , and by
Lemma 2.14 it is also Noetherian. This completes the proof.

Proposition 2.17. If a ring R is Noetherian, local domain whose maximal ideal is principal, then R is a DVR.

Proof. Let t be the generator of the maximal ideal M ⊂ R. We start from the observation that M contains
all non-unit elements of R. To see this, let r be a non-unit element, and consider the ideal (r) generated by it.
This ideal is contained in a maximal one, by the fact R is Noetherian, and hence it must be contained in M .
In particular, r is contained in M .

Now, let us pick r ∈ R and show how to produce a representation r = utn. If r is a unit, the claim is
obvious. Otherwise, we have r ∈ M and so r = tr1. If r1 is a unit, the claim is proven and otherwise we have
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r1 = tr2. This process continues to produce a sequence (r) ⊆ (r1) ⊆ (r2) ⊆ . . . . If any of the elements rn is
a unit, we have the representation r = tnrn. Otherwise, we obtain an infinite ascending chain of ideals, which
must have a maximal element since R is Noetherian. In other words we have (rn) = (rn+1) for some n. But
this means that the rn and rn+1 differ by a unit u, i.e. we have rn = urn+1. However, recall that we have
rn = trn+1, and so t = u must be a unit. But this is a contradiction since M is a proper ideal. Hence, the
described process ends and we have r = utn for some u ∈ R,n ∈ Z≥0. Once the existence of the representation
has been established, the uniqueness is clear.

2.3 Rings of regular functions as DVRs

In this section, we show the proof of Proposition 2.10, using the algebraic machinery developed in the Section 2.2.
Equipped with this result, we are finally ready to prove the main result of this section, Proposition 2.10.

Proof of Proposition 2.10. Our exposition follows Fulton’s approach from [11]. Using the strategy established in
Section 2.2, we only need to check that OP satisfies the conditions of Proposition 2.17. That OP is Noetherian
we have already checked in Proposition 2.12. Note that P belongs to some affine chart of P2(Fq), and hence we
may restrict the curve C to this affine subset giving us an affine curve.

Furthermore, it is not hard to check that OP is a local domain. The fact OP is a domain follows from
the irreducibility of the defining equation for the curve C. To show OP is local, we note that the maximal
ideal MP ⊂ OP consists of all functions vanishing at P , and if a function g

h does not vanish at P , i.e. we have
g(P ) ̸= 0, then we have h

g ∈ OP and so g
h is a unit. Hence, all non-units of OP belong to the maximal ideal

MP .
Finally, we need to check that the MP is a principal ideal. This is the key part of the proof, where we

make use of the smoothness of the curve C/Fq. To simplify the rest of the proof, we will assume our curve is
affine and that P lies at the origin. Furthermore, since C is smooth at P , we will assume that ∂f

∂X (0, 0) = 0

and ∂f
∂Y = 1. This is not a loss of generality since this may be ensured through an affine change of coordinates,

which does not affect the structure of OP .
Now, the ideal MP = { g

h : g(0, 0) = 0, h(0, 0) ̸= 0, g, h ∈ Fq[X,Y ]/(f)} can be generated by elements
X and Y . The reason for this is that every polynomial g ∈ Fq[X,Y ] satisfying g(0, 0) = 0 can be written as
g = Xg1 + Y g2, and consequently every element g

h of MP can be written as X g1
h + Y g2

h . To prove that MP is
principal, we will show that Y can be expressed as g′

h′X
2, for some g′

h′ ∈ OP .
The key trick we will use to express Y in this form is that we are working modulo f . More precisely, since

∂Xf(0, 0) = 0 and ∂Y f(0, 0) = 1, we have f(X,Y ) = Y + (terms of degree≥ 2). The higher degree terms can
be split into those containing X2 and the rest, giving us the following expression f = Y (1 + h) +X2g, where
h(0, 0) = 0. Hence, we have Y = g

1+hX
2 (mod f) and hence MP is generated solely by X. This completes the

proof and shows that OP is a DVR.

Remark 2.18. The last part of this proof actually shows that not only is MP a principal ideal, but it is generated
by the equation of any line through P = (x, y) ∈ C which is not tangent to the curve C. More precisely, if
g(X,Y ) = a(X − x) + b(Y − y) defines a line through P , we have that g is a uniformizer for the ring OP if
[a : b] ̸= [∂Xf : ∂Y f ]. By applying an affine transformation, one can easily convert our situation into the one
described in the proof of Proposition 2.10. Of course, it is important to keep in mind that even though we are
phrasing the results in terms of affine plane curves for concreteness, the same discussion applied to projective
plane curves without any change.

Remark 2.19. The smoothness of the curve C/Fq is absolutely crucial for the proof of Proposition 2.10, since
the statement is simply not true without this assumption. Consider for example the affine curve C/Fq given by
X3 = Y 2. Let us show that the ring of regular functions at P = (0, 0) is not a DVR. Suppose for contradiction OP

is a DVR and recall that OP is the valuation ring of its field of fractions Fq(C). If we denote the induced valuation
by νP , we have νP

(
Y 2

X2

)
= νp

(
X3

X2

)
= νp(X) ≥ 1, since X vanishes at P . Hence, we must have νP

(
Y
X

)
≥ 1/2

and so Y/X has positive valuation, hence belonging to the maximal ideal MP . Therefore, Y/X = g/h, for some
polynomials g, h ∈ Fq[X,Y ] with h(0, 0) ̸= 0, g(0, 0) = 0. In other words, we have X3 − Y 2|hY − gX and so
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hY = gX + (X3 − Y 2)q, for some q ∈ Fq[X,Y ]. Dividing by Y , we obtain h = X g+X2q
Y − Y q, and since h is a

polynomial we have Y |g+X2q. But evaluating h = X g+X2q
Y −Y q at (0, 0) shows h(0, 0) = 0, contradicting the

assumption. Hence, OP is not a DVR.

Now that we know OP is a DVR, we have an induced valuation on the function field of C, denoted by νP .
If νP (φ) > 0, we know φ ∈ MP and therefore φ(P ) is zero. In this case, we say that φ has a zero of order νP
at P . On the other hand, if νP (φ) < 0, we say that φ has a pole of order −νP (φ) at P .

Earlier, we observed that a DVR R is the set of elements with nonnegative valuation in its field of fractions,
under the induced valuation. The same observation applies here, and we see that OP is the set of elements
φ ∈ Fq(C) with νP (φ) ≥ 0.

Thus far, we have discussed how to associate a valuation to the functions of Fq(C). Since Fq(C) ⊆ Fq(C),
these valuations naturally restrict to the function field Fq(C). The important property of these restrictions is
that if P1, P2 are Gal(Fq/Fq)-conjugate, then νP1 and νP2 restrict to the same valuation on Fq(C). This means
that for a prime divisor P = {P1, . . . , Pd}, all valuations to its points restrict to the same valuation of Fq(C)

and thus we can talk about the valuation νP associated to this divisor.

Proposition 2.20. Let C/Fq be a projective plane curve and let P1, P2 ∈ C/Fq be points with σ(P1) = P2 for
some σ ∈ Gal(Fq/Fq). Then, the valuations νP1 and νP2 agree on Fq(C).

Proof. The key observation is that for any g ∈ Fq[X,Y, Z] we have g(P1) = 0 if and only if g(P2) = 0. This
is because applying σ to g(P1) = 0 gives 0 = σg(P1) = g(σP1) = g(P2), where g is invariant under σ because
g ∈ Fq[X,Y, Z]. Then, for a rational function φ ∈ Fq(C), which can be written as φ = g

h , we have h(P1) ̸= 0 if
and only if h(P2) ̸= 0. This shows that νP1(φ) ≥ 0 is equivalent to νP2(φ) ≥ 0, i.e. OP1 ∩Fq(C) = OP2 ∩Fq(C).
In other words, the valuation rings induced by the restrictions of νP1 , νP2 to Fq(C) are identical, meaning that
the induced valuations must be identical too.

Having defined the valuation associated to a prime divisor P , we also define OP to be the set rational
functions φ ∈ Fq(C) which are regular at all points of P . Similarly, we define MP to be the set of rational
functions vanishing at all points of P . Then, we can describe the residue field of P in the following way.

Proposition 2.21. Let P = {P1, . . . , Pd} be a prime divisor on a curve C/Fq, let OP be the ring of regular
functions at P and let MP be the maximal ideal of OP . Then dimFq

(OP ∩ Fq(C))/(MP ∩ Fq(C)) = degP .

Proof. The main idea behind this proof is to consider the evaluation map ev : OP ∩ Fq(C) → Fq, which
evaluates a rational function φ at the point P1. In other words, we have ev(φ) = φ(P1). The kernel of this map
is MP ∩ Fq(C) and we claim that its image is Fqd .

By Proposition 1.17, we have that P1 is a Fqd -rational point of C and therefore P1 can be written so that all
of its coordinates lie in Fqd . This means φ(P1) ∈ Fqd , showing imev ⊆ Fqd . On the other hand, Proposition 1.17
also shows that Fqd is the smallest extension of Fq in which the ratios of coordinates of P1 can lie. Forming the
rational functions from the ratios of coordinates of P1 then show that imev contains all of Fqd , completing the
proof.

Proposition 2.22. Let P1, . . . , Pn be a finite set of distinct prime divisors on a curve C/Fq. There exists a
function φ ∈ Fq(C) such that νP1

(φ) = 1 and νPi
(φ) = 0 for i ≥ 2.

Proof. For this proof, we assume that we are working with affine curves for the sake of concreteness. Extending
it to projective curve makes no big difference. Let P1 = {P11, . . . , P1d1

}, . . . , Pn = {Pn1, . . . , Pndn
}, where

di = degPi. Furthermore, let us assume that Pij has coordinates Pij = (xij , yij) for all i, j. We will construct
φ explicitly in the following way.

Consider the line L in the projective plane P2(Fq) containing P1,1 but no other points Pi,j . More formally,
we pick a polynomial ℓ defining L by setting g(X,Y ) = a(X −x11)+ b(Y − y11) where a, b are chosen such that
g(Pij) ̸= 0. This constraint is equivalent to a(xij−x11)+b(yij−y11) ̸= 0, meaning [a : b] ̸= [yij−y11 : x11−xij ].
This means that is suffices to choose a, b such that [a : b] avoids a finite set, which we can definitely do since
a, b ∈ Fq.
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Now, consider the field extension Fqd1 , which is the smallest extension of Fq containing P1,1, . . . , P1,d1 , as
guaranteed by Proposition 1.17. Hence, the Galois group, Gal(Fqd/Fq), acts transitively and freely on the points
of P1. Consider now the product h =

∏
σ∈Gal(F

qd
/Fq)

σg, where σg is the polynomial obtained by applying σ to
all coefficients of g.

Note that σg vanishes at a single point of P1 and at no other points Pij . Therefore, νP1j
(h) = 1 for all

points P1j ∈ P1. Moreover, h is invariant under Gal(Fqd/Fq) action, implying h ∈ Fq[X,Y ]. Hence, h is a
Fq-polynomial with νP1(h) = 1 and νPi(h) = 0 for all i ≥ 2.

Remark 2.23. Once we have proven Proposition 2.22, it is very easy to extend it and construct a rational function
φ ∈ Fq(C) with νPi

(φ) = ki for any set of integers k1, . . . , kn. It suffices to construct φ1, . . . , φn ∈ Fq(C) having
νPj (φi) = δij and take φ =

∏n
i=1 φ

ki
i .

2.4 Divisors of rational functions

In this section, we will define the divisors associated to a rational functions.

Definition 2.24. The divisor of a nonzero rational function φ ̸= 0 on a curve C/Fq is defined as

div(φ) =
∑

vP (φ)̸=0

vP (φ) · P.

A priori, it is not obvious that the sum in the definition of div(φ) is finite, and that the above sum is indeed a
divisor. It is not hard to see this directly, by showing that two coprime polynomials in the plane intersect only
in a finite number of points. For this approach, one may consult Shafarevich [26], page 4. However, we take
a slightly different approach, which will allow us to show later that the degree of the divisor defined above is
always zero. For this approach, we will show that φ has finitely many zeros, even with multiplicity. Hence, we
have

Proposition 2.25. Let φ be a non-constant rational function on the curve C/Fq and let Fq(φ) be a transcen-
dental extension of Fq generated by φ. Then, we have

deg

 ∑
νP (φ)>0

νP (φ) · P

 ≤
[
Fq(C) : Fq(φ)

]
.

However, we still need to show that [Fq(C) : Fq(φ)] < ∞. Hence, we begin our argument by showing this
first, and then proceeding to prove Proposition 2.25.

Lemma 2.26. If C/Fq is a smooth projective plane curve given by the equation F (X,Y, Z) = 0 and φ ∈ Fq(C)

a nonconstant rational function, then Fq(C)/Fq(φ) is a finite extension.

Proof. Let φ = g/h, where g, h ∈ Fq[X,Y, Z] are homogeneous polynomial with d = deg g = deg h. We will
show [Fq(C) : Fq(φ)] ≤ degF · d. To show this, we will show that if m > degF · d, any m rational functions
ψ1, . . . , ψm satisfy a linear relation over Fq[φ].

To establish some notation, let ψi = gi
hi

, where gi, hi ∈ Fq[X,Y, Z] are homogeneous polynomial with
di = deg gi = deg hi. The first observation is that a linear relation between ψ1, . . . , ψm can be rewritten by
clearing the denominators in the following way. Starting from

m∑
i=0

ψi

n∑
ℓ=0

akℓφ
k = 0, for some akℓ ∈ Fq,

we can clear the denominators to obtain

m∑
k=0

gi∏
j ̸=i

hj

 n∑
ℓ=0

akℓg
ℓht−ℓ

1 ≡ 0 (mod F ).



24 2.4. Divisors of rational functions

Hence, in order to show that ψ1, . . . , ψm are Fq[φ]-linearly dependent, one needs to find a linear relation among
polynomials

(
gi
∏

j ̸=i hj

)
gℓht−ℓ

1 , for i ∈ {1, . . . ,m}, ℓ ∈ {0, . . . , n} modulo F . We will do this using dimension
counting.

Namely, let us denote the set of homogeneous polynomials in X,Y, Z of degree N =
∑m

i=1 di + td by VN .
Note that the polynomials

(
gi
∏

j ̸=i hj

)
gℓht−ℓ

1 belong to VN for all i ∈ {1, . . .m}, ℓ ∈ {0, . . . , n}, and we denote
their Fq-span by SN . Finally, let TN be the set of polynomials in VN divisible by F , i.e. TN = {P (x, y, z) ∈
VN : F (x, y, z)|P (x, y, z)}.

The main goal is to show that SN and TN intersect nontrivially, since this gives a nontrivial relation between
the polynomials

(
gi
∏

j ̸=i hj

)
gℓht−ℓ

1 modulo F . To ensure this, we check that dimFq
SN +dimFq

TN > dimFq
VN

for large enough n. Let us now compute the dimensions of the relevant spaces.
The space VN has a basis of monomials xiyjzk with i+ j + k = N . There are

(
N+2
2

)
such monomials and

therefore dimVN =
(
N+2
2

)
. The dimension of TN can be computed in a similar way, since this space has the

basis consisting of polynomials xiyjzkF (x, y, z), where i+ j + k = N − degF . Therefore, the dimension of the
space TN is equal to the number of triples (i, j, k) of nonnegative integers with i + j + k = N − degF , which
means dimFq

TN =
(
N+2−degF

2

)
. Finally, the space SN is a span of m(n+1) polynomials of the form, which are

supposed to be linearly independent. Our goal now is to verify that dimFq SN > dimFq VN − dimFq TN for large
enough n. This is not hard to see from the following computation

dimFq
VN − dimFq

TN =

(
N + 2

2

)
−
(
N + 2− degF

2

)
= nd degF + degF

m∑
i=1

di −
degF (degF − 3)

2
.

On the other hand, we have dimFq SN = m(n+ 1), which is linear in n with a leading factor m > ddegF . The
conclusion is that for big enough n we have dimFq

SN > dimFq
VN − dimFq

TN just as needed.

Proof of Proposition 2.25. Before starting the proof, let us observe that φ is a non-constant function and hence
not algebraic over Fq. In particular this means that the transcendence degree of Fq(φ) over Fq is 1 and hence
[Fq(C) : Fq(φ)] is finite. Hence, this proposition is indeed non-trivial and can be used to show that div(φ) has
finite degree.

Now starting the proof, assume for contradiction that
∑

νP (φ)>0 νP (φ) · degP > [Fq(C) : Fq(φ)] and pick
prime divisors P1, . . . , Pl with

∑l
i=1 νPi

(φ) · degPi > [Fq(C) : Fq(φ)].2

By Proposition 2.22 we can pick elements ti for i = 1, . . . , l such that νPj
(ti) = 0 for j ̸= i and νPi

(ti) = −1.
Moreover, by Proposition 2.21, for every i = 1, . . . , l, we can find a basis {uim : m = 1, . . . ,degP} of OPi

/MPi
.

We now claim that the set of rational functions S = {uimt−j
i : 1 ≤ i ≤ l, 1 ≤ m ≤ degPi, 1 ≤ j ≤ nPi}

is linearly independent over k(φ). Since uimt
−j
i are all elements of Fq(C), we must have dimFq Fq(C)/Fq(φ) ≥∑

νP (φ)>0 νP (φ) · degP , which is precisely what we need.
Suppose there was a linear relation among the elements of S, with coefficients λijm ∈ Fq(φ). By clearing

out the denominators and cancelling the remaining powers of φ, we may assume that all λijm are polynomials
in φ with coefficients in Fq, and therefore they can be written as λijm = µijm + φκijm, where µijm ∈ Fq and
not all µijm are equal to zero. Expressed in a formula, we have

l∑
i=1

nPi∑
j=1

(
degPi∑
m=1

µijmuim

)
t−j
i + φ

l∑
i=1

nPi∑
j=1

(
degPi∑
m=1

κijmuim

)
t−j
i = 0.

Since we know that µijm is nonzero for some choice of indices i, j,m, we can take the νPi valuation of the linear
dependence relation to find:

νPi

 l∑
i=1

nPi∑
j=1

(
degPi∑
m=1

µijmuim

)
t−j
i

 < 0,

since the coefficient
∑degPi

m=1 µijmuim next to t−j
i is nonzero (recall that uim we chosen to be a basis of OP /MP ).

On the other hand, we have
2If we knew a priori that there were only finitely many prime divisors P where φ vanishes, we could simply pick all of them.

However, since we do not know this and since finiteness in used in the proof, we must pick a finite subset where the conclusion is
violated (which we can do since [Fq(C) : Fq(φ)] is finite).
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νPi

φ l∑
i=1

nPi∑
j=1

(
degPi∑
m=1

κijmuim

)
t−j
i

 = νPi(φ) + νPi

 l∑
i=1

nPi∑
j=1

(
degPi∑
m=1

κijmuim

)
t−j
i

 ≥ νPi(φ)− nPi ≥ 0.

This presents a contradiction to the linear dependence relation and we conclude that the functions of S are
linearly independent. As described above, this completes the proof.

In light of Proposition 2.25, it is natural to consider the divisor describing the zeros of φ separately from
the divisor describing the poles of φ. We can thus make the following definition.

Definition 2.27. Let φ be a rational function on the curve C. Its zero-divisor is defined as div0(φ) =∑
vP (φ)>0 vP (φ) · P . Its pole-divisor is defined as div∞(φ) =

∑
vP (φ)<0(−vP (φ)) · P .

A way to rephrase Proposition 2.25 is to say that deg(div0(φ)) ≤ [Fq(C) : Fq(φ)]. In other words, Propo-
sition 2.25 states that a rational function φ has only finitely many zeros on the curve C.

Definition 2.28. Let D,E be divisors on the curve C/Fq. We call D and E linearly equivalent, or just
equivalent, if they differ by a principal divisor, i.e. if D − E = div(φ) for some φ ∈ Fq(C).

We end this section by describing an application of Proposition 2.25 which will be used in Chapter 5.

Proposition 2.29. If f(X,Y ), g(X,Y ) ∈ Fq[X,Y ] and f(X,Y ) is absolutely irreducible, then f(X,Y ) either
divides g(X,Y ) or has only finitely many roots in common with g(X,Y ).

Proof. The idea of the proof is to construct a curve C/Fq defined by the equation f(X,Y ) = 0 and consider a
function φ = g(X,Y )

g(X,Y )+1 on it. Then, the common roots of f and g correspond to zeros of φ on C/Fq, of which
there are only finitely many as shown by Proposition 2.25.3

2.5 Regular functions

The goal of this section is to show that every rational function φ ∈ Fq(C) has zeros and poles on a projective
plane curve C/Fq. In order to show this, we will introduce a notion of regular functions and characterize regular
functions on affine and projective plane curves.

Definition 2.30. A rational function φ ∈ Fq(C) is regular if it is regular at every point P ∈ C/Fq. In other
words, the set of regular function, denoted by OC , is defined as OC = ∩P∈C/Fq

OP .

Note that C/Fq may be an affine or a projective curve in the above definition. There are several motivations
behind introducing this notion, but we will look at it in the context of proving that every nonconstant rational
function on a projective curve C has a pole. Namely, if we assume that φ ∈ Fq(C) has no poles, then φ is
a regular function on C/Fq. Hence, characterizing regular functions on projective curves directly leads to our
goal for this section. However, before we characterize regular functions on projective curves, we will introduce
Hilbert’s Nullstellensatz and apply it to characterize regular functions on affine curves.

Lemma 2.31 (Weak form of Hilbert’s Nullstellensatz). If I ⊂ Fq[X1, . . . , Xn] is an ideal and the polynomials
of I have no common zeros, then I = Fq[X1, . . . , Xn].

Since the proof of this classical theorem requires a bit of algebraic terminology, we prefer to postpone it to
the end of this section, and first show to to apply it to the characterization regular functions.

Proposition 2.32. Let C/Fq be an affine plane curve, given by the equation f(X,Y ) = 0 for some f ∈ Fq[X,Y ].
If φ ∈ OC is a regular function on C, then φ is a polynomial, i.e. φ ∈ K[X,Y ]/(f).

3Technically, we have shown Proposition 2.25 for projective curves, but since restricting to affine curves cannot increase the
number of zeros of a rational function, the statement still holds for affine plane curves as well.
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Proof. This proof follows is based on the approach given by Shafarevich in [26], page 53. Since φ is regular at
every point of C/Fq, we have that for any P ∈ C/Fq the function φ can be written as φ = gP

hP
, where hP (P ) ̸= 0.

Consider the ideal generated by hP for P ∈ C/Fq and f , i.e. I = ({hP : P ∈ C/Fq}, f) ⊆ Fq[X,Y ]. Lemma 2.16
guarantees that Fq[X,Y ] is a Noetherian ring and therefore every ideal of Fq[X,Y ] is finitely generated. This
means that there exists a finite collection of points P1, . . . , Pk such that I = (hP1

, . . . , hPk
, f).

Note that the polynomials hP1 , . . . , hPk
, f do not have a common zero in Fq

2
. If they had a common zero,

say at the point P ∈ C/Fq, we would have hP (P ) = 0 since hP ∈ I, which would contradict the construction
of hP . Therefore, the polynomials in I have no common zero, and Lemma 2.31 guarantees that I = Fq[X,Y ].
In particular, there exist polynomials u1, . . . , uk for which u1hP1

+ · · · + ukhPk
≡ 1 (mod f). Multiplying

this relation by φ now gives φ ≡
∑k

i=1 uigi (mod f), where both ui and gi are in Fq[X,Y ]. Hence, φ is a
polynomials, as claimed.

With the characterization of affine regular functions obtained, we can pass to setting of projective plane
curves.

Proposition 2.33. Let C/Fq be a projective plane curve. Then every nonconstant rational function φ ∈ Fq(C)

has a pole and a zero.

Proof. This proof follows the presentation of Hartshorne, [14], pages 18-19 and Atiyah-MacDonald, [3], page
31. As discussed previously, if φ has no poles on C/Fq, then φ is a regular function. Therefore, our aim will
be to show that all regular functions are constants. If we show this, the statement easily follows, since any
nonconstant φ must have poles, and since φ−1 is also nonconstant, it must have poles, which correspond to
zeros of φ.

The idea is to consider the restriction of φ onto the subset of P2(Fq) which corresponds to the affine
plane Fq

2
. More precisely, we define U = {[x : y : z] ∈ P2(Fq) : z ̸= 0} and consider the affine plane

curve C ′ = C ∩ U . As discussed in Section 2.1, the curve C ′ is given by the equation F (X,Y, 1) = 0, where
F (X,Y, Z) = 0 is the defining equation of C/Fq. Moreover, φ(X,Y, Z) = G(X,Y,Z)

H(X,Y,Z) restricts to the function
φ′(X,Y ) = φ(X,Y, 1). Note that φ′ is regular on the affine curve C ′/Fq and therefore Proposition 2.32 ensures
that φ′ is given by a polynomial. In terms of φ, this means that φ(X,Y, 1) is a polynomial in X,Y and therefore
φ(X,Y, Z) = GZ(X,Y,Z)

ZnZ
, where GZ ∈ Fq[X,Y, Z] is a homogeneous polynomial of degree NZ .

The analogous argument show that φ = GX/X
NX and φ = GY /Y

NY for some homogeneous polynomials
GX , GY of degrees NX , NY . Further, this means that XNXφ, Y NY φ,ZNZφ ∈ Fq[X,Y, Z]/(F ). For simplicity
of notation, we will denote the ring Fq[X,Y, Z]/(F ) by R. If we define N = NX +NY +NZ , we see that any
monomial XaY bZc with a+b+c = N we either have a ≥ NX , b ≥ NY or c ≥ NZ , and therefore XaY bZcφ ∈ R.
In other words, we have φFq

(N)SN ⊆ SN , where SN denotes the set of homogeneous polynomials of degree N
in R = Fq[X,Y, Z]/(F ). Of course, this implies φkSN ⊆ SN for all k ≥ 0, and therefore XNφk ∈ R for all
k ≥ 0. This implies R[φ] ⊆ X−NR, where we consider X−NR to be a finitely generated module over the ring
R, which we will denote by M .

Our next step is to show that φ satisfies an algebraic equation over Fq using the analogue of the Cayley-
Hamilton for modules. More precisely, if v1, . . . , vm is the generating set of the module M and suppose that
φvi =

∑m
j=1 aijvj where aij ∈ R. Then, we have the matrix equation

φ− a11 a12 · · · a1m

a21 φ− a22 · · · a2m
...

...
. . .

...
am1 am2 · · · φ− amm

 vi = 0,

for all generators vi. Let us denote the matrix in the above equation by Φ. Multiplying the above equation
with the adjugate of the matrix, we conclude that detΦ · Ivi = 0 for all vi. Recall that vi are elements of
X−NFq[X,Y, Z]/(F ) and therefore the only way we could have detΦ · Ivi = 0 is that detΦ = 0. Expanding
detΦ = 0, we obtain the equation of the form φm+bm−1φ

m−1+· · ·+b0 = 0, where b0, ·, bm−1 ∈ Fq[X,Y, Z]/(F ).
Since φ is homogeneous of degree 0, we may replace bi by their homogeneous part of degree 0. But these are
simply the constant terms in the polynomials bi and therefore they lie in Fq. In other words, we obtain an
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equation of the form φm + cm−1φ
m−1 + · · ·+ c0 = 0, where cm−1, . . . , c0 ∈ Fq. Since Fq is algebraically closed,

any such function φ must be constant, completing the proof.

The only thing that is left is to prove the weak Nullstellensatz, Lemma 2.31. To prove it, we follow the
approach presented by Allcock [1], who follows the original Zariski’s proof. We begin by introducing several
new algebraic notions.

Definition 2.34. Let L/K be a field extension, and let x be an element of L. We say that x is algebraic
over K if it satisfies a polynomial relation of the form xn + an−1x

n−1 + · · · + a0 = 0 for some elements
an−1, . . . , a0 ∈ K. Elements which are not algebraic are called transcendental. More generally, we say that
elements x1, . . . , xk ∈ L are algebraically dependent if there exists a polynomial p ∈ K[X1, . . . Xk] satisfying
p(x1, . . . , xk) = 0. Otherwise, we say that these elements are algebraically independent. Finally, if all elements
of L are algebraic, we say that the extension L/K is algebraic.

Proof of Lemma 2.31. Suppose that I ̸= Fq[X1, . . . , Xn] and let m be a maximal ideal containing it. Our goal
will be to show that the only maximal ideals of Fq[X1, . . . , Xn] are of the form (X1 − a1, . . . , Xn − an) for
some a1, . . . , an ∈ Fq. This would imply that all polynomials of I vanish at (a1, . . . , an) which provides a
contradiction.

To prove this statement, we consider the field L = Fq[X1, . . . , Xn]/m, which is a field extension of Fq since
m is proper. Since Fq is algebraically closed, we have two cases - either L = Fq or L contains a transcendental
element over Fq.

In the first case, we consider the projection map Fq[X1, . . . , Xn] → Fq[X1, . . . , Xn]/m = Fq and let ai be
the element of Fq corresponding to the image of Xi under the projection map. This means that Xi − ai ∈
Fq[X1, . . . , Xn] projects to zero, i.e. that Xi − ai ∈ m. In particular, we see that (X1 − a1, . . . , Xn − an) ⊆ m,
but since (X1 − a1, . . . , Xn − an) is a maximal ideal, we must have equality, thus proving the statement.

Our goal now is to show that the second case does not occur, i.e. that it is impossible for L to contain
transcendental elements over Fq. Let x1, . . . , xm be a maximal set of algebraically independent elements over
Fq.4 Under this definition, L is an algebraic extension of Fq(x1, . . . , xm). If we define K = Fq(x1, . . . , xm−1)

and write x = xm, then L is an algebraic extension of K(x).
There exists a finite number of elements of L, say y1, . . . , ym, such that every other element of L can

be written as a Fq-polynomial in y1, . . . , ym (for example, one might take the images of X1, . . . , Xn in L =

Fq[X1, . . . , Xn]/m). In other words, L is a finitely generated Fq-algebra. If we pick the minimal such set
y1, . . . , ym, we can write any element z ∈ L as

z =

d1∑
i1=0

d2∑
i2=0

· · ·
dm∑

im=0

λi1,...,imy
i1
1 · · · yimm , for some λi1,...,im ∈ Fq, d1, . . . , dm ∈ Z≥0. (2.1)

Moreover, since y1, . . . , ym are algebraic over K(x), we can choose the degrees d1, . . . , dm in (2.1) to be
bounded by the degrees of y1, . . . , ym as algebraic elements over K(x). In other words, every element of L can
be written as a linear combination of a finite number of monomials in y1, . . . , ym and thus L is finite-dimensional
vector space over K(x).

Let us now pick a linear basis for L over K(x), say e1, . . . , ed. Since y1, . . . , ym are certainly linearly
independent over K(x), we may assume that e1 = y1, . . . , em = ym and that other elements of the basis are
products of yis. Of course, we can still multiply the elements e1, . . . , ed within the field L and therefore we can
write

eiej =

d∑
k=1

λijkek, for some λijk ∈ K(x).

Since λijk ∈ K(x), we can write λijk =
aijk(x)
bijk(x)

, for some polynomials aijk, bijk ∈ K[X].

4Technically, we need to show that there are no infinite sets of algebraically independent elements. To see this, recall that L =

Fq [X1, . . . , Xn]/m, which means that it suffices to show that there are no infinite algebraically independent subsets of Fq [X1, . . . , Xn].
But it can easily be seen that every n+1 polynomials of Fq [X1, . . . , Xn] must be algebraically dependent, by a dimension counting
argument similar to the one presented in the proof of Lemma 2.26.
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Therefore, if we represent z ∈ L as a linear combination e1, . . . , ed in the form

z =

d1∑
i1=0

d2∑
i2=0

· · ·
dm∑

im=0

λi1,...,imy
i1
1 · · · yimm =

k∑
i=1

a′k(x)

b′k(x)
ek,

where b′k is a polynomial obtained as a product of bijk ∈ K[X]. In other words, if we assume that a′
k

b′k
is a

reduced fraction, all irreducible factors of b′k be among irreducible factors of bijk. But not every element can
be expressed in this form - it suffices to pick z = 1

x−ce1, where c ∈ Fq is chosen such that none of the bijk have
X − c as an irreducible factor. This presents a contradiction, showing that the second case is impossible and
thus completing the proof.



Chapter 3

The Riemann-Roch theorem

3.1 Riemann-Roch spaces and the Riemann-Roch theorem

In this section, we will introduce perhaps the most important theorem of the algebraic geometry on curves, the
Riemann-Roch theorem. However, before we state the main theorem, let us introduce the fundamental object
of interest - the Riemann-Roch spaces.

Definition 3.1. If D is a divisor of C/Fq, the Riemann-Roch linear space associated to D is defined as follows

L(D) = {φ ∈ k(C) : νP (φ) + νP (D) ≥ 0 for all P ∈ PDiv(C/Fq)} ∪ {0}.

The properties of the valuations νP guarantee that L(D) is a Fq-vector space and therefore we may talk
about its dimension. In fact, the Riemann-Roch theorem gives us a formula to compute its dimension.

Theorem 3.2 (Riemann-Roch). Let C/Fq be a projective plane curve. There exists an integer g, called the
genus of the curve C, and a divisor K of degree 2g − 2, called the canonical divisor, such that the following
relation is true for any divisor D:

dimFq L(D) = degD + 1− g + 1 + dimFq L(K −D).

Given the importance of this result, before trying to prove it we will overview on the high level one possible
interpretation, as well as general steps in the proof. One should think of the right hand side of the equation as
having three main terms degD+ 1, −g and dimL(K −D). We will begin the proof of Riemann-Roch theorem
by showing that dimL(D) ≤ degD + 1. In fact, in the proof we will use only the local behavior of the rational
functions, which will make the whole proof much easier. Furthermore, Riemann’s theorem shows that the actual
dimension is still within a constant of the value predicted by local considerations. In other words, Riemann’s
theorem states that dimFq

L(D) ≥ degD + 1 − g, for some finite integer g depending only on the curve C/Fq,
which is called the genus. Finally, pinning down the exact value of dimFq

L(D) between degD + 1 − g and
degD + 1 will be the hardest part of the proof, and it will require us to introduce several new objects, such as
adèles and differentials.

Before launching into the proof, we begin with preliminary lemmas which will help set the ground for the
proof in the later sections.

Proposition 3.3. Let D ≤ E be divisors of C/Fq. Then, we have L(D) ⊆ L(E) and

dimFq
L(E)/L(D) ≤ degE − degD.

Proof. The first statement, that L(D) ⊆ L(E), follows almost from the definition and we will focus on showing
only the second statement. Since E −D =

∑
P nP · P for positive values of nP , we will prove the statement by

induction on
∑

P nP , where the base case is trivial since dimL(D)/L(D) = 0.
For the induction step, we essentially need to show that the statement holds when E = D+ P for a prime

divisor P = {P1, . . . , PdegP }. We will show dimL(E)/L(D) ≤ degP . To do this, we fix an arbitrary element

29
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φ ∈ Fq(C) with νP (φ) = νP (E). This is possible, since it suffices to choose any element φ ∈ M
νP (E)
P \MνP (E)+1

P

(and this difference is not empty since νP is surjective).
Consider now a linear transformation T : L(E) 7→ OP ∩Fq(C) defined by ψ 7→ ψφ. Note that ψφ is indeed

regular at P , since the assumption implies νP (φψ) = νP (φ) + νP (ψ) ≥ νP (E) − νP (E) ≥ 0. Furthermore,
we have L(D) = kerT . The reason for this is simple - for ψ ∈ L(D) we have νP (ψφ) = νP (ψ) + νP (φ)

and thus ψφ vanishes at P if and only if νP (ψ) ≥ −νP (φ) + 1 = νP (D). Therefore, T induces a injective
linear map T : L(E)/L(D) → (OP ∩ Fq(C))/(MP ∩ Fq(C)), showing that dimFq L(D)/L(E) ≤ dimFq (OP ∩
Fq(C))/(MP ∩ Fq(C)). Since dimFq (OP ∩ Fq(C))/(MP ∩ Fq(C)) = degP by Proposition 2.21, we obtain
dimFq

L(E)/L(D) ≤ degP , as claimed.

Corollary 3.4. The space L(D) is a finite-dimensional vector space over Fq. Furthermore, if D is positive we
have dimFq L(D) ≤ degD + 1.

Proof. It suffices to consider only positive divisors, since any for any divisor D one can find a positive divisor
E with D ≤ E and L(D) ⊂ L(E).

Every positive divisor can be written as a sum of prime divisors D =
∑

P nPP . We will show the statement
that dimFq L(D) ≥ degD+ 1 by induction on

∑
P nP . In the base case, D = 0, we have L(0) = Fq, since every

non-constant function has a pole on C/Fq by Proposition 2.33. Hence, the dimension of L(0) is 1.
To perform an induction step, we consider E = D + P , where P is a prime divisor recall that Proposi-

tion 3.3 shows that dimFq
L(E)/L(D) ≤ degP . Combining this with the induction hypothesis which states

dimFq
L(D) ≤ degD + 1, we obtain dimFq

L(E) ≤ degD + degP + 1 = degE + 1, as needed.

Here is another basic tool we will use to understand the Riemann-Roch spaces, which shows that equivalent
divisors have isomorphic Riemann-Roch spaces. More precisely, we have the following isomorphism of vector
spaces.

Proposition 3.5. If D ∼ E are equivalent divisors of C/Fq, in the sense that D + div(φ) = E for a nonzero
rational function φ ∈ Fq(C), then L(D) ∼= L(E).

Proof. Consider the isomorphism T : L(D) → L(E) given by ψ 7→ ψφ. The conditions νP (ψ) ≥ −νP (D) are
equivalent to νP (ψφ) ≥ −νP (D) − νP (φ) = −νP (E), and hence we have ψφ ∈ L(E). Checking that T is a
homomorphism is direct and since T has an inverse given by ϑ 7→ ϑφ−1 it is also an isomorphism.

We will now use the Riemann-Roch spaces and Corollary 3.4 to show a general fact about rational functions
on a curve, that every function have an equal number of zeros and poles when counted with multiplicity. To
show this, we begin by showing the equality holds in Proposition 2.25.

3.2 Interlude: Rational functions have equally many zeros and poles

In this section, we will divert our attention for a second from the aim of proving the Riemann-Roch theorem
and demonstrate how the Riemann-Roch spaces that were just introduced can help us show that a rational
function has equally many zeros and poles, when counted with multiplicity.

Proposition 3.6. Let φ be a rational function on C/Fq. Then deg(div0(φ)) = [Fq(C) : Fq(φ)]

Proof. The upper bound on deg(div0(φ)) was already shown in Proposition 2.25. Now, we focus on showing
that deg(div0(φ)) ≥ [Fq(C) : Fq(φ)]. The overall idea of the proof is the following. We can use Corollary 3.4
to obtain a lower bound on the degree of a divisor in terms of dimFq

L(D), for some divisor D. Then, the
goal would be to relate the Fq-dimension of L(D) and Fq(φ)-dimension of Fq(C) by transforming a basis of the
Fq(C) into a large independent set in L(D). Now, we will present the details of the argument, starting from
the way to relate the dimensions of the mentioned vector spaces.

Let ψ1, . . . , ψn be the Fq(φ)-basis of Fq(C), where n = [Fq(C) : Fq(φ)], and let D =
∑n

i=1 div∞(ψ). Then,
we know that ψi ∈ L(D), and moreover for any l ≥ 0 we have φ−lψi ∈ L(D+ ldiv0(φ)). In other words, if we fix
an integer m, the space L(D +mdiv0(φ)) contains a set of elements S = {φ−lψi : 0 ≤ l ≤ m, 1 ≤ i ≤ n}. Since
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the functions ψi are linearly independent over Fq(φ), we conclude that the functions of the set S are linearly
independent over Fq. Hence, dimFq

L(D +mdiv0(φ)) ≥ n(m+ 1).
On the other hand, Corollary 3.4 implies that dimFq

L(D + mdiv0(φ)) ≤ m deg(div0(φ)) + degD + 1.
Combining the two derived inequalities, we obtain m(deg(div0(φ)− n) ≥ n− deg(D)− 1. Since this holds for
any m, we must have deg(div0(φ)) ≥ n = [Fq(C) : Fq(φ)], which completes the proof.

Corollary 3.7. Let φ ∈ k(C) be a nonzero rational function. Then deg div(φ) = 0. In other words, all principal
divisors have degree 0.

Proof. We will assume that φ is not a constant function, since the statement is otherwise trivial. From the
definition of div0(φ),div∞(φ) we have div(φ) = div0(φ) − div∞(φ) and hence deg div(φ) = deg div0(φ) −
deg div∞(φ). Proposition 3.6 shows that deg div0(φ) = [Fq(C) : Fq(φ)], while applying the same proposition to
φ−1 shows deg div∞φ = deg div0φ

−1 = [Fq(C) : Fq(φ
−1)] = [Fq(C) : Fq(φ)]. Hence, the degrees of div0φ and

div∞φ are equal, completing the proof.

A direct consequence of Corollary 3.7 is that equivalent divisors have the same degree. Another corollary
of this result allows us to compute L(D) for all divisors D of negative degree.

Corollary 3.8. If D is a divisor of C/Fq with degD < 0, then L(D) = {0}.

Proof. For any nonzero rational function φ ∈ Fq(C) we have deg div(φ) = 0, and thereofre deg(div(φ)+D) < 0.
Hence, degφ+D cannot be a positive divisor.

3.3 Riemann’s inequality

We are now ready to prove the first part of the Riemann-Roch theorem, Riemann’s inequality.

Proposition 3.9. There exists an integer g ≥ 0 depending on the curve C/Fq such that for all divisors D one
has dimFq L(D) ≥ deg(D) + 1− g.

One way to interpret Riemann’s theorem is that it shows tightness of inequalities given in Corollary 3.4 up
to an additive error of g. However, this is only half of the way to the full Riemann-Roch theorem which pins
down the exact value of the error term between dimFq

L(D) and degD + 1.

Proof of Proposition 3.9. For a general divisor D, we denote by s(D) the difference (degD + 1)− dimFq L(D).
To goal is to find an integer g such that g ≥ s(D) for all D.

Let us begin by picking an arbitrary function φ ∈ Fq(C) and repeating the procedure in the proof of
Proposition 3.6 to find a divisor A for which dimFq

L(mdiv0(φ)+A) ≥ deg(div0(φ))(m+1). Denoting div0(φ) =

B for simplicity of notation, using Proposition 3.3 we find that

dimFq
L(mB) + degA ≥ dimL(mB +A) ≥ (m+ 1) degB.

Therefore, s(mB) = degA − degB + 1, which is independent of m. Hence, we conclude that there exists an
integer g for which s(mB) ≤ g for all m.

Before continuing the proof, let us add a motivational paragraph explaining the intuition behind the rest of
the proof. The only remaining thing to do is to extend the bound s(D) ≤ g to all divisorsD and not only to those
of the form D = mB for some m. Let us fix a general divisor D, with the aim of showing s(D) ≤ g for the integer
g defined as above. We use a simple trick - if D ≤ E are divisors, Proposition 3.3 directly implies s(D) ≤ s(E).
If we could find a divisor E for which E ≤ mB for some m, we would obtain s(D) ≤ s(E) ≤ s(mB) ≤ g,
completing the proof. Unfortunately this is not quite possible. Instead, we will try to find a divisor F ∼ E for
which F ≤ mB. The reason this is useful is because E ∼ F implies degE = degF and dimL(E) = dimL(F ),
implying s(E) = s(F ). Then, we will have the chain of inequalities s(D) ≤ s(E) = s(F ) ≤ s(mB) ≤ g, and
thus complete the proof.

Let us now present the details for the remainder of the proof. Having fixed an arbitrary divisor D, we pick
an arbitrary positive divisor E ≥ D and note that

dimL(mB − E) ≥ dimL(mB)− degE ≥ degmB + 1− g − degE.
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Hence, for big enough m, one can ensure that the space L(mB − E) has dimension ≥ 2 and thus contains a
non-constant function φ. Choosing F = E− divφ, we find that F ≤ mB from the assumption φ ∈ L(mB−E).
Hence, we obtain our chain of inequalities s(D) ≤ s(E) = s(F ) ≤ s(mB) ≤ g, completing the proof.

We will use Proposition 3.9 to define the genus of the curve.

Definition 3.10. The smallest integer g for which Riemann’s inequality is satisfied is called the genus of the
curve C/Fq. In other words, g = maxD∈Div(C/Fq) degD + 1− dimFq

L(D).

Even though this definition is sufficient for our purposes, it is not very convinient to work with. For
example, from this definition, it is a priori whether the genus of C/Fq is the same as the genus of C/Fqm .

Let us now show that, with the genus defined as above, Riemann’s inequality is tight for all divisors of
large enough degree.

Proposition 3.11. Let D be a divisor of C/Fq of large enough degree, depending on C/Fq. Then, dimL(D) =

degD + 1− g, where g is the genus of the curve.

Proof. By the definition of g, we have a divisor E ∈ Div(C/Fq) for which g = degE + 1 − dimFq
L(E). We

claim that if degD ≥ degE + g, one must have dimFq L(D) = degD + 1 − g. There are two main steps
towards obtaining this, both of which were already shown in esentially the same form in the proof of Riemann’s
inequality. The first step will be to show that for all divisors F ≥ E we have dimFq

L(F ) = degF + 1− g. The
second step will then be to show that D is linearly equivalent to a divisor F ≥ E.

To show the first step, take F ≥ E and recall that we have shown s(F ) ≥ s(E) = g in the proof of
Riemann’s theorem, while we know that s(F ) ≤ g for all divisors F . Hence, s(F ) = g, or in other words
dimFq L(F ) = degF + 1 − g. As for the second step, our goal is to find a rational function φ for which
D + div(φ) ≥ E, i.e. div(φ) + (D − E) ≥ 0. Hence, it suffices to show that dimFq L(D − E) ≥ 1, which is true
by Riemann’s inequality since

dimFq
L(D − E) ≥ deg(D − E) + 1− g ≥ 1.

Hence, both steps of our plan combine to give s(D) = s(D + div(φ)) = g, meaning dimFq
L(D) = degD + 1−

g.

3.4 Adèles and differentials

In order to pin down the exact error term in the Riemann-Roch theorem, we introduce several more abstract
notions, including the notion of adèles and differentials. Before diving into the definitions, let us say a couple
of words about the reasons for introducing them.

When looking at rational functions on a given algebraic curve, one might consider their local properties,
such as the order of vanishing at a particular prime divisor, or global properties, such as having a zero or a pole.
The general intuition we have obtained so far is that the local properties are comparatively easy to understand.
For example, Proposition 2.22 allows us to construct functions satisfying arbitrary local properties. However,
when viewed from the global perspective, the rational functions are much more rigid - they must have the same
number of zeros and poles, they satisfy the continuation principle and so on.

This interplay allows us to understand why the dimension of L(D) is not simply degD + 1, as one would
expect from local considerations. The reason for this is simple enough - not every function with prescribed
zeros and poles can be extended to the whole curve without introducing any new poles. In a way, the global
conditions on the rational functions is what makes the understanding the size of L(D) an intricate business.
Hence, in an attempt to understand the interplay between global and local conditions better, we will introduce
a local analogue of rational functions, which are not bound to satisfy any rigid global constraints, and we will
call them adèles.

Definition 3.12. An adèle of the curve C/Fq is a map α : PDiv(C/Fq) → Fq(C) which assigns to every prime
divisor P ∈ PDiv(C/Fq) of C/Fq a rational function α(P ) ∈ Fq(C) such that νP (α(P )) < 0 for only finitely
many prime divisors P .
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As we suggested previously, the adèles are objects which resemble functions around every single point, but
which are not bound to satisfy any rigid global constraints. Thus, our program for understanding the dimension
of L(D) from now on will have two steps. The first step will be to generalize the notions of Riemann-Roch
spaces to adèles and compute the dimension of the corresponding spaces. Then, our second step will be to
relate the adèle spaces to the usual Riemann-Roch spaces and compute the dimension of L(D) through the use
of differentials.

Let us begin slowly by carrying over the notions defined for functions to the world of adèles. For the curve
C/Fq, we denote the space of all adèles by A. The space A can be made into a Fq-vector space by defining
coordinatewise addition and multiplication. Furthermore, one can extend the valuations νP to A by defining
νP (α) = νP (α(P )). In analogy with the definition of the Riemann-Roch spaces, for a divisor D ∈ Div(C/Fq),
we can define A(D) = {α ∈ A : νP (α) + νP (D) ≥ 0 for all P}. Finally, every rational function φ ∈ Fq(C) has
an adèle αφ naturally associated to it which satisfies αφ(P ) = φ for all P . Hence, from now on we will abuse
the terminology slightly by thinking of Fq(C) as a subspace of A and calling its elements principal adèles.

Having introduces A as a vector space over Fq, a word of caution is needed. It is quite clear that A is
infinite-dimensional, precisely because no rigid global constrains are imposed, and hence we need to work with
quotients in order to compute various dimensions. However, this does not present a major problem, and we
have our first proposition, analogous to Proposition 3.3.

Proposition 3.13. Let D ≤ E be divisors of C/Fq. Then A(D) ⊂ A(E) and dimFq
A(E)/A(D) = degE −

degD.

Proof. This proof completely mirrors the proof of Proposition 3.3. It suffices to consider the case E = D+P , for a
prime divisor P , and so we pick φ ∈ Fq(C) such that νP (φ) = νP (E). Then, we construct a isomorphism of vector
spaces T : A(E)/A(D) → (OP ∩Fq(C))/(MP ∩Fq(C)) induced by α 7→ φα(P ), where αφ denotes the principal
adèle corresponding to φ. The map is is injective, as in the case L(E)/L(D) → (OP ∩Fq(C))/(MP ∩Fq(C)), but
it is also surjective. To see this, pick an arbitrary element ψ ∈ OP and define an adèle α by setting α(P ) = φ−1ψ

and α(Q) = 0 for Q ̸= P . Then we must have T (α) = φ(φ−1ψ) = ψ, as needed.
Hence, we have dimFq

A(E)/A(D) = dimFq
(OP ∩ Fq(C))/(MP ∩ Fq(C)) = degP , by Proposition 2.21.

Now, we will turn to the connection between the spaces A(D) and L(D). To this end, fix divisors D ≤ E

and introduce the spaces A(D) + Fq(C) which are simply the direct sum of subspaces corresponding to A(D)

and the principal adèles.
Consider now the map σ : Fq(C) → A given by σ(φ) = αφ and note that νP (φ) = νP (σ(φ)) by definition.

Hence, σ also takes L(D) to A(D), and hence we have the following diagram.

L(E) A(E) A(E)/A(D)

L(D) A(D)

σ π

ι

σ

ι

Noting that L(D) lies in the kernel of the composition π ◦ σ ◦ ι, we see that π ◦ σ can be extended to a map
L(E)/L(D) → A(E)/A(D). By abuse of notation, we will call the induced map σ too.

In the exact same way, one can construct the map τ : A(E)/A(D) 7→ (A(E) + Fq(C))/(A(D) + Fq(C))

given by τ(α+A(D)) = α+A(D)+Fq(C). Now, we have a proposition that establishes the connection between
the Riemann-Roch spaces and adèles.

Proposition 3.14. We have the following short exact sequence:

0 7→ L(E)

L(D)

σ−→ A(E)

A(D)

τ−→ A(E) + Fq(C)

A(D) + Fq(C)
7→ 0.

As a consequence, we have dimFq
A(E)/A(D) = (degE − dimFq

L(E))− (degD − dimFq
L(D)).

Proof. We need to check three conditions, none of which are particularly hard. Namely, we need to show that
σ is injective, that τ is surjective and that imσ = ker τ .
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The injectivity of σ follows easily, since αφ ∈ A(D) means precisely that νP (αφ) = νP (αφ(P )) = νP (φ) ≥
νP (−D) and so φ ∈ L(D). Showing surjectivity of τ is also simple since we have τ(α+A(D)) = α+A(D)+Fq(C)

for any α ∈ A(E). Finally, showing that imσ = ker τ is a little harder.
First of all, we have imσ ⊆ ker τ since αφ ∈ Fq(C) for all φ. On the other hand, if τ(α) = 0 for some

α ∈ A(E), we must have α+A(D) = αφ +A(D) for some αφ ∈ Fq(C). Then, we have α−αφ ∈ A(D) ⊂ A(E)

and therefore αφ ∈ A(E). This also means that φ ∈ L(E) and hence σ(φ+ L(D)) = αφ +A(D) = α+A(D).
This shows ker τ ⊆ imσ and completes the proof.

Let us now introduce the last missing ingredient for the proof of the Riemann-Roch theorem, the notion of
the differential.

Definition 3.15. A differential ω on a curve C/Fq is simply a linear map ω : A → Fq which vanishes on
A(D) + Fq(C) for some divisor D ∈ Div(C/Fq).

Remark 3.16. Although this definition may seem unintuitive, it mirrors the notion of the differential in the
theory of Riemann surfaces very closely. Namely, a meromorphic differential form ω on a Riemann surface
X can be locally expressed as in the form f dz where f is a meromorphic function and z a local coordinate.
Thus, the differential form may be integrated against any meromorphic function h on a Riemann surface, thus
producing a pairing (h, ω) 7→

∫
X
hω. Furthermore, if one prescribes a zero of high enough order for h, i.e. we

assume div0(h) ≥ div∞(ω) at every point where ω has a pole, the resulting product will have no poles, and
hence the integral

∫
X
hω would be equal to zero. However, it is not possible to find such a function h because

of the "global constraints", but it is possible in the case of adèles.

Let Ω be the set of all differentials ω and let Ω(D) be the set of differentials vanishing on A(D) + Fq(C).
The set Ω(D) is clearly a Fq-vector space and we will now see that the space Ω(D) corresponds exactly to the
error term in the Riemann-Roch theorem.

Proposition 3.17. Let D be a divisor on the curve C/Fq. Then

dimFq
L(D) = degD + 1− g + dimFq

Ω(D).

Remark 3.18. Note that Proposition 3.17 almost completes the proof of the Riemann-Roch theorem, and the
only remaining ingredient will be showing that dimFq

Ω(D) = dimFq
L(K − D) for an appropriately defined

divisor K. This will be the main goal of the Section 3.5.

Proof. Let us rewrite the inequality in the following form dimFq
L(D)−degD−1+g = dimFq

Ω(D). Let E ≥ D

be a divisor of high enough degree, such that s(E) = g. The proof will then proceed in three steps, following
this chain of equalities

dimFq L(D)− degD − 1 + g = dimFq

A(E) + Fq(C)

A(D) + Fq(C)
= dimFq

A
A(D) + Fq(C)

= dimFq Ω(D).

Under the above choice of E, the first step is a direct application of Proposition 3.14. To show the second
inequality, it suffices to show that A(F ) +Fq(C) = A(E) +Fq(C) for all F ≥ E, since A =

⋃
F∈Div(C/Fq)

A(F ).
Recall from the proof of Proposition 3.11 that s(F ) = s(E) = g, and therefore Proposition 3.14 shows that
dimFq

(A(F ) + Fq(C))/(A(E) + Fq(C)) = (s(F ) − 1) − (s(E) − 1) = 0. Finally, to show the third step, recall
that all differentials of Ω(D) vanish identically on A(D) + Fq(C), and therefore are in bijection with the linear
maps from A/(A(D) +Fq(C)) to Fq. Since basic linear algebra guarantees that the dimension of the space and
its dual is the same, the proof is complete.

3.5 Serre duality

The main goal of this section will be to relate the dimensions of the spaces L(K − D) and Ω(D), for some
divisor K. Before we can even formulate this statement precisely, we need show how to define the divisor K in
question. We will do this by showing how to associate divisors to differentials.
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Proposition 3.19. Let ω be a nonzero differential on the curve C/Fq and let S be the set of divisors D ∈
Div(C/Fq) for which ω vanishes identically on A(D) + Fq(C). Then S contains a maximal element with respect
to the relation ≤, i.e. there is a divisor K ∈ S such that D ≤ K for all D ∈ S.

Proof. The proof of this lemma is just a infinite-dimensional version of the fact that every linear map has a
maximal subspace on which it vanishes, called the kernel. We rely on two simple claims: that if D,E ∈ S, then
max{D,E} ∈ S1 as well and that divisors in S have bounded degree. This shows that any ascending chains in
S are finite, which suffices to show that S has a maximal element.

To show the first step, pick arbitrary divisors D,E ∈ S and note that since ω vanishes on A(D) + Fq(C),
A(E) + Fq(C), it must vanish on A(D) + A(E) + Fq(C) too. Hence, it is sufficient to prove that A(F ) ⊂
A(D) + A(E), since this shows that A(F ) + Fq(C) ⊂ A(D) + A(E) + Fq(C) and thus ω|A(F )+Fq(C) ≡ 0. Let
α ∈ A(F ) and let T = {P ∈ PDiv(C/Fq) : νP (α) + νP (D) < 0}. Note that at all prime divisors P ∈ T we have
νP (α) ≥ −νP (F ) and hence νP (α) ≥ −νP (E). Therefore, one may write α = αD + αE , where

αD(P ) =

α(P ), P ̸∈ T

0, P ∈ T
αE(P ) =

0, P ̸∈ T

α(P ), P ∈ T
.

It is obvious that αD ∈ A(D), αE ∈ A(E) and hence α ∈ A(D) + A(E), which completes the first step as
discussed above.

For the second step, recall that we have showed in the proof of Proposition 3.17 that for E of high enough
degree one has A(E) + Fq(C) = A. Since ω is nonzero, no such E is an element of S. Hence, the degree of
divisors in S is bounded, and the proof is complete.

Proposition 3.19 shows that one can associate to every differential ω a well-defined divisor K which we will
from now on call the divisor of ω and denote by div(ω). In analogy with the notion of principal divisors, any
divisor that occurs as a divisor of a differential will be called a canonical divisor. Note that this also allows us to
redefine Ω(D) in a way which is completely analogous to L(D), by putting Ω(D) = {ω ∈ Ω : div(ω) ≥ D}∪{0}.

With the definition of canonical divisors, we can now state the main theorem of this section, the Serre
duality theorem.

Theorem 3.20. LetD be a divisor of C/Fq and letK be a canonical divisor of C/Fq. Then we have L(K−D) ∼=
Ω(D) as Fq-vector spaces.

We postpone the proof to the end of this section and begin by making a seemingly paradoxical observation
about the statement of this theorem. Note that the Ω(D) does not depend on K, implying that the dimension
of L(K − D) is independent of K. This is maybe surprising, but one should recall that if D + div(φ) = E

then L(D) ∼= L(E), where the isomorphism is given by ψ 7→ φψ. Hence, if we managed to prove that any two
canonical divisors differ by a principal divisor, the above seeming paradox would be less surprising. Restating
this in a different way, to show that differences of canonical divisors are principal divisors intuitively corresponds
to showing that the "ratio" of the corresponding differentials is a rational function. Of course, we do not have a
definition for the ratio of two linear maps ω1, ω2 : A → Fq, but this restatement is very reminiscent of another
idea in the theory of the Riemann surfaces.

Namely, one way to construct a meromorphic function on a Riemann surface is precisely by obtaining it
as a ratio of two meromorphic differentials. In other words, one can directly show that the ratio of any two
differentials on a Riemann surface is a meromorphic function. As always, it is good to recall that the connection
to Riemann surfaces nothing more than an analogy, but still the intuition gained from recalling this approach
can be very valuable.

Let us now show how to formalize the above discussion, showing that any two canonical divisors differ by
a principal divisor. The main idea is to consider Ω as a Fq(C)-vector space. Namely, if φ ∈ Fq(C) and ω ∈ Ω

we can define the differential φω by setting φω(α) = ω(φα) for any α ∈ A. It is not hard to check that with

1What is implicitly understood here is that we are considering the set of divisors as a partially ordered set under the relation
≤ and that the maximum of two divisors is simply their join. More explicitly, max{D,E} is a divisor F which satisfies νP (F ) =

max{νP (D), νP (E)} for all P ∈ PDiv(C/Fq).
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this definition, the space Ω indeed becomes a Fq(C) vector space. What is more interesting, however, is that
this vector space now has dimension 1 over Fq(C). In other words, for any two nonzero differentials ω1, ω2,
there exists a rational function φ such that ω1 = φω2. Before we prove this, let us comment on how multiplying
differentials by a rational function affects their divisors.

For any two nonzero rational functions φ,ψ ∈ Fq(C) we have div(φψ) = div(φ)+div(ψ), and therefore one
would expect to have a similar statement when φ ∈ Fq(C) and ω ∈ Ω. And indeed, the following Proposition
shows the direct analogy.

Proposition 3.21. For any nonzero rational function φ ∈ Fq(C) and any nonzero differential ω ∈ Ω we have

div(φω) = div(φ) + div(ω).

Proof. The first step will be to show that φω vanishes on div(ω) + div(φ). Let D = div(ω) and α ∈ A(D +

div(φ)) + Fq(C). Since div(α) + div(φ) +D ≥ 0, we also have div(φα) +D ≥ 0, meaning ω(φα) = 0. Hence,
φω(α) = 0 and we conclude div(φω) ≥ div(ω) + div(φ). By applying this inequality to φ−1 and φω we have
div(φ−1(φω)) ≥ div(φω) + div(φ−1). Combining these two inequalities now yields the result.

Proposition 3.22. The dimension Ω as a Fq(C)-vector space is 1.

Proof. We need to show that for any two nonzero differentials ω1, ω2, there exists a rational function φ for which
ω1 = φω2. In fact, we will show that there are two rational functions, φ1, φ2 such that φ1ω1 = φ2ω2, which
definitely suffices.

To show this, we pick a divisor D such that both ω1 and ω2 vanish on A(D)+Fq(C) (we know such divisors
exist for both ω1 and ω2 separately, and we may take their minimum). Furthermore, we pick a large positive
divisor G and construct two maps T1, T2 : L(D +G) → Ω(−G) given by T1 : φ 7→ φω1 and T2 : φ 7→ φω2. It is
clear that φωi is in Ω(−G), since div(φωi) = div(φ) + div(ωi) ≥ −(D +G) +D = −G for i = 1, 2. Now, if we
show that imT1 ∩ imT2 ̸= {0}, this automatically produces two nonzero functions φ1, φ2 with φ1ω1 = φ2ω2,
completing the proof.

Checking that the images of T1, T2 intersect nontrivialy in now a simple exercise in dimension counting.
Since both T1, T2 are injective, we have dimFq imT1 = dimFq L(D + G) ≥ degD + degG − g by Riemann’s
inequality. Analogously we have dimFq

imT2 ≥ degD + degG− g. Finally, the Fq-dimension of Ω(−G) can be
computed from Proposition 3.17 giving:

dimFq
Ω(−G) = dimFq

L(−G)− deg(−G)− 1 + g = degG+ g − 1,

where we have used Corollary 3.8 to claim dimFq L(−G) = 0. Hence, for big enough degG we obtain

dimFq imT1 + dimFq imT2 − dimFq Ω(−G) ≥ degG+ 2degD − 3g + 1 ≥ 1,

which, as explained above, completes the proof.

With Propositions 3.22 and 3.21, we can easily prove that the difference of any two canonical divisors is a
principal divisor, a statement that we were interested in earlier. Namely, if ω1, ω2 are nonzero differentials, we
have ω1 = φω2 for some φ ∈ Fq(C) and div(ω1) = div(φω2) = div(φ) + div(ω2). Hence div(ω1) − div(ω2) =

div(φ) is indeed principal.
With all of the above in mind, we are finally ready to prove Serre duality theorem, which is the last step

towards the Riemann-Roch theorem.

Proof of the Theorem 3.20. Since K is a canonical divisor, one can pick a nonzero differential ω such that
div(ω) = K. Now, consider the linear map between T : L(K − D) → Ω(D) given by φ 7→ φω. Note the
equivalence div(φω) ≥ D ⇐⇒ div(φ) + (K −D) ≥ 0, which shows that φω is indeed in Ω(D).

To show that T is an isomorphism, we check that it is injective and surjective. The injectivity is clear - if
φ ∈ kerT and φ ̸= 0, we have ω = φ−1φω = φ−10 = 0, a contradiction to the assumption that ω is nonzero. On
the other hand, if ω′ ∈ Ω(D) is any differential, we have ω′ = φω for some φ ∈ Fq(C) by Proposition 3.22. Since
φω ∈ Ω(D), the equivalence presented above shows φ ∈ L(K −D), completing the proof that T is surjective.

Hence, T is an isomorphism and we have Ω(D) ∼= L(K −D).
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Proof of the Theorem 3.2. The Riemann-Roch theorem follows immediately as a combination of Proposition 3.17
and Theorem 3.20.

Corollary 3.23. Let D be a divisor with degD > 2g − 2. Then we have dimFq
L(D) = degD + 1− g.

Proof. From the Riemann-Roch theorem we have dimFq L(D) = degD+1− g+dimFq L(K −D), where K −D

is a divisor of degree degK − degD < 0. Since the divisor of any rational function φ has deg div(φ) = 0, we
cannot have div(φ)+K−D ≥ 0. Therefore, dimFq

L(K−D) = 0 and the statement of our corollary follows.

3.6 History

The first steps towards the Riemann-Roch theorem were initiated by Riemann in the 1850s, in the study of
meromorphic functions on Riemann surfaces. Namely, Riemann was interested in the spaces of meromorphic
functions with bounded order of poles at certain points, and derived a version of what we have called Riemann’s
inequality. Almost a decade later, Riemann’s student Roch extended the theorem further, pinning down the
exact error term between dimC L(D) and degD + 1− g.

Since then, the Riemann Roch theorem has been extended to various other settings, such as the one
presented in this thesis. The setting of the Riemann-Roch theorem in the function fields was first studies by
F.K. Schmidt, with the goal of showing the rationality and functional equation, as we will do in the next chapter.
Of course, the proof had to be significantly reworked, since the original approach relied heavily on the complex
analytic structure of Riemann surfaces. Even though we have phrased the proof for curves over finite fields Fq,
the same argument shows the analogue of the Riemann-Roch theorem for any other perfect field.

Finally, let us remark that many analogues of the Riemann-Roch theorem were developed over the years,
including an analogue related to graph theory and chip firing games introduces by Baker and Norine [7].



Chapter 4

Rationality and functional equation

The goal of this chapter is to show the first two assertions of Theorem 1.6, namely the rationality and the
functional equation for the zeta function. As we will see, these two properties of zeta functions are much
easier to show than the Riemann Hypothesis for curves, as they follow almost directly from the Riemann-Roch
theorem. The high-level description of the argument is quite simple - first, we rewrite the zeta function of
a curve in terms of the divisors of that curve, and then we apply the Riemann-Roch theorem to count these
divisors. As before, we will fix a curve C/Fq and work with it throughout the whole chapter.

4.1 Picard group of a curve

In order to motivate the introduction of the Picard group, let us recall an analogous notion from algebraic
number theory, the class group of a number field. Namely, if K/Q is a number field, with the ring of integers
OK , we know that not every element of OK may have a unique factorization into primes. The primary issue
behind this is that there may be ideals of OK which are not principal. However, one of the great results of
classical algebraic number theory guarantees that every ideal can be uniquely factored into prime ideals.

Furthermore, one can define the equivalence classes of ideals by setting two ideals to be equivalent if one can
be obtained from the other through a multiplication with a principal ideal. The set of equivalence classes can
then be turned into a group under the standard ideal multiplication and the resulting group is called the class
group Cl(K). The class group plays the central role in describing many arithmetic properties of the number
field K. An interested reader can find more information about the class group and their relation to number
fields in [18].

To define a Picard group of a curve, we follow the same recipe applied to divisors rather than ideals. Recall
that Div(C/Fq) is the group of divisors of the curve C/Fq under the addition operation and Princ(C/Fq) the
subgroup of its principal divisors. Recall that we have also introduced a notion of equivalence between divisors
in Definition 2.28 and that the equivalence classes of divisors in Div(C/Fq) correspond exactly to elements of
the quotient Div(C/Fq)/Princ(C/Fq). Unlike the case of number fields, this quotient will not be finite for a very
simple reason. Since all principal divisors have degree 0 and there exist divisors D ∈ Div(C/Fq) of arbitrarily
high degree, we cannot have only finitely many equivalence classes of divisors.

However, there is a simple way to remedy the situation. Consider the group of divisors of degree 0, denoted
by Div0(C/Fq), and consider its quotient with Princ(C/Fq). This object, the analogue of the class group of a
number field, will indeed be finite, and we will use it to help us count the number of positive divisors of a given
degree on C/Fq.

Definition 4.1. The Picard group of the curve C/Fq is the defined as Pic(C/Fq) = Div0(C/Fq)/Princ(C/Fq).

To set up some notation, we denote the equivalence class of the divisor D by [D].

Proposition 4.2. The Picard group of a curve is finite and we denote its order by h.

Proof. Our goal is to show that there are only finitely many equivalence classes of divisors of some degree d > 0,

38
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say {[D1], . . . , [Dk]} for some k ≥ 1. This suffices because these classes are in one-to-one correspondence with
the equivalence classes of degree 0, where the correspondence is given by subtracting [D1] from a given class.

If the degree d is at least g, say d = g+1, we can show that every divisor D of degree d is in the equivalence
class of a positive divisor of degree d. Let D be a divisor of degree d ≥ g, where we have dimFq

L(D) ≥
degD + 1 − g ≥ 1 by Riemann’s inequality. Hence, there exists a rational function φ ∈ Fq(C) for which
D + div(φ) ≥ 0. Then, the divisor D + div(φ) is positive and equivalent to D.

The last step of the proof is to show that there are only finitely many nonnegative divisors of degree d.
But again, this is not hard to show. Since nonnegative divisors are sums of prime divisors, which all have
degree at least 1, it suffices to check that there are only finitely many prime divisors of every given degree. But
prime divisors of degree d are constituted of points of P2(Fqd) by Proposition 1.17. Hence, there are at most
q2d + qd + 1 prime divisors of degree d, completing the proof.

4.2 Divisors of degree 1

In this section, we will show that for any d ∈ Z, there exists a divisor of degree d on the curve C/Fq. Of course,
this is equivalent to showing that there exists a divisor D of degree 1, since scaling D gives divisors of arbitrary
degrees. Interestingly, the proof of this fact will be indirect and will rely on comparing the orders of poles at
t = 1 of zeta functions associated to curves C/Fq and C/Fqm . We begin this section by showing how these zeta
functions relate to each other.

Lemma 4.3. If Z(C/Fqm , t) is the zeta function of the curve C/Fqm and Z(C/Fq, t) is the zeta function of
C/Fq, then

Z(C/Fqm , t
m) =

m∏
k=1

Z(C/Fq, e
2iπk
m t).

Proof. The key insight we will use in this proof is the relation between prime divisors of the curve C/Fqm and
the prime divisors of C/Fq, as described in Proposition 1.17. More precisely, the proof of Proposition 1.19 shows
that we have the following expression for Z(C/Fqm , t

m):

Z(C/Fqm , t
m) =

∏
P∈PDiv(C/Fqm )

1

1− tm degP
=

∏
Q∈PDiv(C/Fq)

∏
P∈PDiv(C/Fqm ),P⊂Q

1

1− tm degP
.

The inner product can be evaluated easily, since Proposition 1.17 ensures that degP = degQ
(degQ,m) and there are

exactly (degQ,m) divisors P ⊆ Q. Hence, we have

Z(C/Fqm , t
m) =

∏
Q∈PDiv(C/Fq)

(
1− (tdegQ)

m
(m,deg Q)

)−(degQ,m)

=
∏

Q∈PDiv(C/Fq)

∏
ζ=e2iπk/m

1

1− (ζt)degQ
,

where the second equality comes from the basic properties of cyclotomic polynomials. This suffices to complete
the proof because

Z(C/Fqm , t
m) =

∏
ζ=e2iπk/m

∏
Q∈PDiv(C/Fq)

1

1− (ζt)degQ
=

m∏
k=1

Z(C/Fq, e
2iπk
m t).

As indicated previously, the main idea behind showing the existence of degree 1 divisor on C/Fq is to analyze
the order of the pole of Z(C/Fq, t) at t = 1. However, in order to be able to do this, we need a rudimentary
form of rationality of Z(C/Fq, t) which will allow us to analyze this pole. Hence, before dealing with degree
1 divisors, we present a general lemma about counting positive divisors, which will be used to establish this
rudimentary form of rationality. In this lemma, and further throughout this chapter, the number of positive
divisors of degree d on C/Fq is denoted by Dd.

Lemma 4.4. Let d be an integer and suppose that there exists a divisor of degree d on the curve C/Fq. Then,
we have the following relation between Dd and D2g−2−d:

Dd = D2g−2−dq
d+1−g + h

qd+1−g − 1

q − 1
.
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Proof. We will start the proof from the following simple observation. If D is a divisor of degree d, there
exist exactly qdimL(D)−1

q−1 nonnegative divisors E which are equivalent to D. This is relatively easy to see - if
E = D + div(φ) is a nonnegative divisor, then φ must be a nonzero element of L(D). Moreover, if φ and ψ

are not scalar multiples of each other, we have div(φ) ̸= div(ψ) and hence the resulting divisors E are different.
Hence, we conclude that the number of nonnegative divisors E equivalent to D is simply the number of nonzero
rational functions in L(D) up to scalar multiplication, just as claimed above.

Hence, we may express Dd as
∑

D
qdimL(D)−1

q−1 , where the sum runs over the representatives of equivalence
classes among degree d divisors. The Riemann-Roch theorem implies that dimL(D) = d+1−g+dimL(K−D),
where the divisor K−D has degree 2g−2−d. Moreover, as D runs through the representatives of the classes of
degree d, the divisor K −D runs over all classes of degree 2g− 2− d. Hence, the following simple computation
completes the proof.

Dk =
∑
D

qdimL(D) − 1

q − 1
=
∑
D

qd+1−g+dimL(K−D) − 1

q − 1
=

=
∑

E=K−D

qd+1−g(qdimL(E) − 1) + qd+1−g − 1

q − 1
= D2g−2−dq

d+1−g + h
qd+1−g − 1

q − 1
.

Corollary 4.5. If d > 2g−2 and there exists a divisor of degree d on C/Fq, the number of nonnegative divisors
of degree d is Dd = h · qd−g+1−1

q−1 , where h is the cardinality of the Picard group of C.

Proof. Applying Lemma 4.4 and noting that there are no nonnegative divisors of degree 2g− 2− d < 0 suffices
to prove this corollary.

Finally, the stage is set and we are ready to prove the main result of this section - the existence of degree 1

divisors. The proof of this result, which only talks about the divisors on a curve, uses the properties of zeta
functions to deduce this. This is an interesting interplay between the analytic properties of zeta functions and
algebraic properties of the curves over a finite field.

Proposition 4.6. There exists a divisor of degree 1 on the curve C/Fq.

Proof. Consider the degree map, which takes divisors to integers, deg : Div(C/Fq) → Z and consider its image
in Z. Clearly, the image is a subgroup of Z, generated by an number m > 0. Our goal is to show that m = 1.
The way we do this is by considering the pole of the zeta function of C/Fq and C/Fqm at t = 1 and showing
that both of these must be simple poles. We will then show that the zeta function of C/Fqm depends only on
tm, and obtain a contradiction using Lemma 4.3. Let us now present the details of the argument.

Our first step will be to obtain a formula for Z(C/Fq, t), using the expression (1.6). For d = km and
d > 2g − 2 by Corollary 4.5 we have Dd = h qd−g+1−1

q−1 and therefore

Z(C/Fq, t) =

2g−2∑
d=0,m|d

Ddt
d +

∑
d>2g−2,m|d

h
qd−g+1 − 1

q − 1
td = F (tm) +

h

q − 1

(
qd0td0

1− qmtm
− td0

1− tm

)
,

where d0 is the smallest multiple of m bigger than 2g− 2 and F is some polynomial. Therefore, Z(C/Fq, t) can
be associated with a rational functions with a simple pole at t = 1. Analogously, we have that Z(C/Fqm , t) is
a rational function with a simple pole at t = 1, and therefore Z(C/Fqm , t

m) also has a simple pole at t = 1.
However, Lemma 4.3 states

Z(C/Fqm , t
m) =

n∏
k=1

Z(C/Fq, e
2iπk/mt).

The main observation is that Z(C/Fq, t) depends only on tm and therefore we have Z(C/Fq, e
2iπk/mt) =

Z(C/Fq, t) for all k ∈ {1, . . . , n}. We conclude that Z(C/Fqm , t
m) = Z(C/Fq, t)

m. However, both functions
have a simple pole at t = 1, and therefore m = 1. This completes the proof.



Chapter 4. Rationality and functional equation 41

4.3 Rationality of the zeta function

In this section, we establish rationality of Z(C/Fq, t) in the form given by equation (1.1).

Proposition 4.7. The zeta function is a rational function and it can be written in the form Z(C/Fq, t) =
L(t)

(1−t)(1−qt) , where L(t) is a polynomial of degree at most 2g with integer coefficients.

Proof. The main idea behind the proof is to exploit the divisor counting formula from Corollary 4.5 along with
the alternative expression for Z(C/Fq, t) presented in Proposition 1.19 to compute Z(C/Fq, t). More precisely,
we have

Z(C/Fq, t) =
∑
d≥0

Ddt
d =

2g−2∑
d=0

Ddt
d +

∑
d≥2g−1

h
qd−g+1 − 1

q − 1
td.

We will denote the first sum by F (t), for a general polynomial F of degree at most 2g−2, and we will explicitly
compute the remaining sum:∑

d≥2g−1

qd−g+1 − 1

q − 1
td =

t2g−1

q − 1

∑
k≥0

(
qg+ktk − tk

)
=
t2g−1

q − 1

(
qg

1− qt
− 1

1− t

)
=
t2g(q − qg) + t2g−1(qg − 1)

(q − 1)(1− t)(1− qt)
.

Hence, we obtain the following expression for Z(C/Fq, t), which evidently verifies the statement of this propo-
sition.

Z(C/Fq, t) =
ht2g q−qg

q−1 + ht2g−1 qg−1
q−1 + F (t)(1− t)(1− qt)

(1− t)(1− qt)
. (4.1)

Remark 4.8. The proof given above given allows us to be even more precise about the polynomial L(t). Namely,
using the Riemann-Roch theorem, we can easily calculate that there are (h − 1) q

g−1−1
q−1 + qg−1

q−1 nonnegative
divisors of degree 2g − 2, since dimFq

L(D) = g − 1 whenever D is not a canonical divisor and dimFq
L(D) = g

for canonical divisors. In turn, this expression corresponds to the coefficient of t2g−2 in F (t). Hence, computing
the coefficient of t2g in L(t) from the expression (4.1) gives that the leading coefficient of L(t) is qg.

4.4 Functional equation

The goal of this section is to prove the functional equation (1.2) for Z(C/Fq, t).

Proposition 4.9. The zeta function Z(C/Fq, t) satisfies the functional equation Z(C/Fq,
1
qt ) = q1−gt2−2gZ(C/Fq, t).

Proof. The proof proceeds in three major steps. First, we will reformulate the functional equation for Z(C/Fq, t)

into an equivalent functional equation for L(t), and find a condition on the coefficients of the polynomial L(t)
equivalent to it. Secondly, we will obtain a formula for the coefficients of L(t) in terms of the nonnegative
divisors of the curve C/Fq. Finally, we will then use the appropriate symmetry of divisor counts coming from
Lemma 4.4 to verify this condition on the coefficients of L(t). Let us now present the details of the proof.

We begin by reformulating the functional equation for Z(C/Fq, t) into a condition for the coefficients of
the polynomial L(t). Recall that the zeta function is rational and that it has the form Z(C/Fq, t) =

L(t)
(1−t)(1−qt) .

The denominator of this fraction (1 − t)(1 − qt) transforms very predictably under the map t 7→ 1/qt, and we
have (1− 1

t )(1−
1
qt ) = t−2q−1(1− t)(1− qt). Hence, the functional equation for Z(C/Fq, t) is equivalent to the

following functional equation for L(t):

L

(
1

qt

)
= q−gt−2gL(t). (4.2)

Writing the polynomial L(t) as L(t) =
∑2g

d=0 adt
d, we find that the above equation is equivalent to

2g∑
d=0

adq
−dt−d =

2g∑
d=0

adt
d−2gq−g.

By comparing the corresponding coefficients, we see this polynomial identity is equivalent to having adq−d =

a2g−dq
−g, i.e. ad = a2g−dq

d−g for all d ∈ {0, . . . , 2g}. Hence, showing the functional equation for L(t) is
equivalent to verifying that ad = a2g−dq

d−g for all d ∈ {0, . . . , 2g}.
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The coefficients ad of the polynomial Dd are very closely connected to the number of nonnegative divisors
of degree d, which we can see from the proof of Proposition 4.7. More precisely, we have

L(t) = ht2g
q − qg

q − 1
+ ht2g−1 q

g − 1

q − 1
+ F (t)(1− t)(1− qt),

where F (t) =
∑2g−2

d=0 Ddt
d. Hence, for d ∈ {2, . . . , 2g − 2} we have ad = Dd−2q − Dd−1(q + 1) + Dd and the

remaining coefficients can be computes as a0 = D0, a1 = D1 − (q + 1)D0, a2g = qg (recall the computation in
Remark 4.8) and a2g−1 = qD2g−3 − (q + 1)D2g−2 + h qg−1

q−1 .
Let us check the condition ad = a2g−dq

d−g first for d ∈ {2, . . . , 2g − 2}. In terms of the divisor counts,
we can express this equivalently as qDd−2 − (q + 1)Dd−1 + Dd = qd−g(D2g−2−d − (q + 1)D2g−1−d + D2g−d).
These relations follow almost immediately from Lemma 4.4 applied to d− 2, d− 1 and d through the following
computation

qDd−2 − (q + 1)Dd−1 +Dd =

= q

(
D2g−dq

d−1−g + h
qd−1−g − 1

q − 1

)
− (q + 1)

(
D2g−1−dq

d−g + h
qd−g − 1

q − 1

)
+

(
D2g−dq

d+1−g + h
qd+1−g − 1

q − 1

)
= qd−g(D2g−d +D2g−1−d + qD2g−d) +

h

q − 1

(
qd−g − q − (q + 1)(qd−g − 1) + qd+1−g − 1

)
,

where the second term in the final line is easily seen to be zero.
Now, we are left with only two things to check - that a0 = q−ga2g and that a1 = q1−ga2g−1. The first one

is trivial - we know that a0 = D0 = 1 (since 0 is the only nonnegative divisor of degree 0) and a2g = qg. Finally,
to show a1 = q1−ga2g−1 we have another application of Lemma 4.4

a1 = D1 − (q + 1)D0 = D2g−3q
2−g − (q + 1)D2g−2q

1−g +
h

q − 1

(
q2−g − 1

q − 1
− (q + 1)

q1−g − 1

q − 1

)
= q1−g

(
qD2g−3 − (q + 1)D2g−2 + h

q − qg−1 − (q + 1)(1− qg−1)

q − 1

)
= q1−ga2g−1.



Chapter 5

Schmidt’s approach to Stepanov’s method

In this chapter, we will depart from all the machinery we developed in the previous chapters and present an
elementary proof of the Riemann Hypothesis for curves. Our approach will be based on the polynomial method
as presented by Schmidt [25].

Unlike in previous sections, we will work in affine space Fq
2, where q = pk is a power of a prime, and

consider an absolutely irreducible polynomial f(X,Y ) ∈ Fq[X,Y ] of degree d. We will also adopt a notational
convention that capital letters, such as X,Y , denote the variables while the lowercase ones, such as x, y, refer
to the values of these variables. Finally, since we will be working with polynomials in several variables, e.g.
F (X1, . . . , Xk), we need a notation convention for their degrees with respect to a subset of variables. Therefore,
we will be denoting the degree of F with respect to variables X1, . . . , Xℓ by degX1,...,Xℓ

F .
We will show the following theorem.

Theorem 5.1. If N = #C/Fq is the number of solutions to the equation f(x, y) = 0 with x, y ∈ Fq, where
f ∈ Fq[X,Y ] is a polynomial of degree d, then

|N − q| ≤ O
(
q1/2d3

)
. (5.1)

Combined with Proposition 1.12, this implies the Riemann hypothesis for curves, which itself gives a much
better bound |N − q| ≤ 2gq, where g is the genus of the corresponding curve. Hence, the exact constant and the
power of d in the bound (5.1) is not crucial, and the most important thing is that the bound is proportional to
q1/2. Therefore, in order to improve the clarity of the argument, our bounds will be slightly cruder than those
presented by Schmidt in [25], but this has no effect on the final conclusion as described above.

For the proof of this theorem, we use the polynomial method. The basic idea is that we will construct
a nonzero polynomial of low degree which will vanish at all Fq-rational points of C/Fq. Since the number of
points where the polynomial can vanish is bounded by its degree, this provides a bound on the number of
Fq-rational points of C/Fq. To construct the nonzero auxiliary polynomial, we will consider its coefficients
as unknowns and consider the vanishing at points of C/Fq as linear constraints on these coefficients. Then,
a linear algebra argument will guarantee that if we have more unknowns than constraints, the homogeneous
system of equations has a nonzero solution, which will construct our nonzero polynomial. In our particular case,
the auxiliary polynomial constructed in this manner will be in two variables, and we will need to transform it
slightly, eliminate one of the variables, and prove that the polynomial remains nonzero after this transformation.

Let us now describe the steps of the proof is a slightly more formal manner.

• Step 1: We will begin by preprocessing the polynomial f to show that without loss of generality we can
assume f(X,Y ) = Y d + g1(X)Y d−1 + · · ·+ gd(X) where deg gi(X) ≤ i and ∂Y f is not a zero polynomial.

• Step 2: For a fixed x ∈ Fq, consider the roots of f (x)(Y ) = f(x, Y ) as a univariate polynomial in Y . If all
of its roots are distinct, let I1(x) be the set of roots in Fq and I2(x) be the set of roots not in Fq. We will
construct polynomials e1(X,Y, Y ′) of degree d1 = 1 and e2(X,Y, Y

′) of degree d2 = d − 1 such that for
all y ∈ I1(x) we have e1(x, y, yq) = 0 and for all y ∈ I2(x) we have e2(x, y, yq) = 0.

43
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• Step 3: On the set of rational functions in two variables, Fq(X,Y ), we define a map D by the following
equation

Dg(X,Y ) = ∂Xg(X,Y )− ∂Xf(X,Y )

∂Y f(X,Y )
∂Y g(X,Y ).1

We will use the property of It(x) (where t ∈ {1, 2}) established in Step 2 to construct a polynomial
ct(X,Y ), not divisible by f(X,Y ), which satisfies deg ct(X,Y ) ≤ dt

d qM + q(d − 1) and Dlct(x, y) = 0

for all x ∈ Fq, y ∈ It(x), l ∈ {0, . . . ,M − 1} (here, M will be a parameter left to be chosen later). This
step is where we employ our linear algebraic argument together with dimension counting to construct the
auxiliary polynomial.

• Step 4: We will convert the polynomial ct(X,Y ) into a nonzero univariate polynomial ht(x) of degree at
most dtqM+qd(d−1) such that ht has a zero of order M |It(x)| at every point x ∈ Fq. Then, by bounding
the sum of vanishing multiplicities of a polynomial ht(X) we obtain the needed bound on

∑
x∈Fq

|It(x)|,
i.e. on the total number of roots of f(X,Y ).

In the attempt to execute this program, we will run into several difficulties. We require the auxiliary polynomial
ht we construct to vanish to order M at various points of Fq

2 and we set M ∼ q1/2/d. Suppose for a moment
that M < p, where p is the characteristic of the underlying field. Then, we claim that the sum of vanishing
multiplicities at points of the finite field is at most deg ht, which is proved by showing that if first M derivatives
of ht vanish at x, then (X − x)M |ht.

However, note that q = pk and therefore p could be smaller than M . Then, the natural question arises
- what does it mean for a polynomial to vanish to order M > p at a point? Our previous definition, that a
polynomial vanishes at x0 to order M is the first M − 1 derivative vanish, is not sufficient anymore. The reason
for this is that the derivatives of order bigger than p always vanish identically, and hence we cannot hope to
show (x− x0)

M |ht in this setting. Essentially, the problem is that the usual derivatives can accurately capture
only the orders of zeros up to p. Hence, we need a new definition of the derivative, that will take into account
the positive characteristic we are working with. We call this new notion a hyperderivative, and we introduce it
in the Section 5.1.

5.1 Setup: Hyperderivatives

The main idea behind the definition of the hyperderivatives will be simple enough - we will define the ℓ-th
hyperderivative of a polynomial r ∈ Fq[X] as 1

ℓ! times the usual derivative, where the factor 1
ℓ! is intended

to cancel out factors which make the higher-order derivatives zero in positive characteristic. Of course, the
difficulty is that if ℓ ≥ p, we are dividing by zero since ℓ! = 0 in Fq. To avoid dividing by zero, we will pretend
we work in characteristic zero before we cancel out the corresponding powers of p, and then come back to Fq.
Let us now formulate more precisely the procedure we use.

The main ingredient that will allow us to calculate without worrying about positive characteristic will be
lifting to the characteristic zero fields. Namely, recall that the p-adic valuation νp on Q introduced in the
example 2.8. We will denote by RQ the valuation ring of this valuation, and by MQ its maximal ideal (i.e.
the set of elements with valuation at least 1). The residue field of ν, FQ is simply Fp and we have a natural
projection map πQ : RQ → FQ = RQ/MQ. In general, for a field K with a valuation νp on it, we will denote by
RK its valuation ring, MG its maximal ideal and by FK the residue field, as introduced in section 2.2.

1At first sight, this definition of D may seem completely unmotivated and we will try to provide some motivation for it in
this footnote. The main idea behind this definition is that we want to measure the order of vanishing of a polynomial g along
a curve by considering its derivatives. Hence, it is natural to take derivatives of the polynomial g along the curve defined by
f(x, y) = 0, instead of taking the partial derivatives in all directions. If we imagine that we are working over the complex numbers,
say with (x, y) ∈ C2 and we have ∂Y f(x, y) ̸= 0, the implicit function theorem guarantees that y can be written as an analytic
function of x, y = y(x). Then, taking the derivative of f along the curve f(x, y) = 0 correspond to differentiating g(x, y(x))

with respect to x, which gives Dg(x, y(x)) = ∂Xg(x, y(x)) + ∂Y g(x, y(x))y
′(x). Finally, y′(x) can be computed from the equation

Df(x, y) = ∂Xf(x, y) + ∂Y f(x, y)y
′(x) = 0, giving y′(x) = − ∂Xf(x,y)

∂Y f(x,y)
. Plugging this back into the formula for Dg(x, y) gives

exactly the above formula for Dg. Of course, it is important to keep in mind that our definition works over finite fields, without
any relation to analytic derivatives which only served as a inspiration.
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Consider the number field K = Q(ζ̂) which is obtained by adjoining a primitive (q−1)-th root of unity ζ̂ to
Q. If [Q(ζ̂) : Q] = δ, we may write every element of K as a0 + a1ζ̂ + · · ·+ aδ−1ζ̂

δ−1, for some a0, . . . , aδ−1 ∈ Q.
Our initial observation is that we can extend νp to the field K by setting

νp(a0 + a1ζ̂ + · · ·+ aδ−1ζ̂
δ−1) = min{νp(a0), . . . , νp(aδ−1)}. (5.2)

As we will later show, this formula defines a proper valuation on K, whose residue field is Fq.
The next step will be to extend the valuation νp to the field of rational functions L = K(X,Y1, . . . , Yd)

in a similar way, and show that the corresponding residue field is FL = Fq(X,Y1, . . . , Yd). We will show this
by induction on the number of variables. This will also induce projection maps RL 7→ Fq(X,Y1, . . . , Yd), and
pulling back along these maps will allow us to compute the derivatives in characteristic zero. Schematically, we
will have the following diagram.

Q K = Q(ζ̂) L = K(X,Y1, . . . , Yd)

RQ RK RL

FQ = Fp FK = Fq FL = Fq(X,Y1, . . . , Yd)

π π π

Before we state the results of this section, let us establish some conventions. The image φ under the map
π : φ 7→ φ̂ of an element φ̂ in valuation ring is called its projection, while φ̂ is called a lift of φ. Furthermore, the
variables with hats will refer to the lifts, while the variables without hats will refer to elements of the residue
field. Let us now check that the valuations in question do extend as we expect them to. First, we deal with the
case of adjoining a variable.

Proposition 5.2. Let G be a field with a valuation νp. If G(X) is the field of rational functions in a single
variable X with coefficients in G, the valuation νp can be extended to G(X) by setting

νp

(
a0 + a1X + · · ·+ anX

n

b0 + b1X + · · ·+ bmXm

)
= min{νp(a0), . . . , νp(an)} −min{νp(b0), . . . , νp(bm)}.

Moreover, the residue field of this valuation is FG(X) = FG(X) and the projection map π : RG(X) → FG(X)

extends the existing map π : RG → FG.

Proof. The essence of this proof is just carefully checking that all properties of νp are maintained under this
new definition. Throughout the proof, a general rational function will be denoted by φ = g

h , where g(x) =

a0 + a1X + · · ·+ anX
n, h(x) = b0 + b1X + · · ·+ bmX

m.
It is obvious that νp : G(X) → Z ∪ {∞} is surjective, since it is already surjective on G. Furthermore, if

νp(φ) = 0, we must have min{νp(ai)} = ∞, meaning that g(X) ≡ 0 and so φ = 0. Finally, note that it suffices
to check the properties νp(φ1φ2) = νp(φ1)+νp(φ2) and νp(φ1+φ2) ≥ min{νp(φ1), νp(φ2)} just on polynomials,
since the valuation extends additively to all rational functions.

Let us now take two polynomials g, h ∈ G[X], and an element t ∈ G with νp(t) = 1.2 To check νp(g+ h) ≥
min{νp(g), νp(h)} is easy, since

νp(g + h) = min{νp(a0 + b0), . . . , νp(an + bn)}

≥ min{min{νp(a0), νp(b0)}, . . . ,min{νp(an), νp(bn)}} = min{νp(g), νp(h)}.

We will now check that νp(gh) = νp(g) + νp(h). By multiplying g, h by an appropriate power of t, we may
assume νp(g) = νp(h) = 0. Then, the goal is to show that νp(gh) = 0. We have a0, . . . , am, b0, . . . , bn ∈ RG and
so all coefficients of gh are also in RG, meaning νp(gh) ≥ 0. To show the reverse bound, choose minimal indices
i, j for which νp(ai) = 0, νp(bj) = 0. Then, the coefficient of Xi+j in gh has valuation 0, by the strict triangle
inequality, and hence νp(gh) = 0.

2In our case, t can simply be the rational prime p, but since the Proposition is phrased for general fields, we prefer to use
notation in line with Section 2.2.
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Finally, the projection map to the residue field is defined by π(a0 + · · ·+ anX
n) = π(a0) + · · ·+ π(an)X

n

on the polynomials, and extended multiplicatively to the rational functions. It is not hard to check that the
arising residue field is then FG(X).

Proposition 5.2 guarantees that we can extend a valuation ν to the field of rational functions. We can do the
same with an algebraic extension of a field, almost by the same argument. Since we only need to apply this
once, to extend νp from Q to Q(ζ̂), we will prove it only in this case, although the general case follows easily
too.

Proposition 5.3. The valuation νp extends from Q to K = Q(ζ̂), where ζ̂ is a primitive (q − 1)-th root of
unity, by setting νp(ζ̂) = 0. Moreover, the residue field of this valuation is FK = Fq and the projection map
π : RK → Fq extends the existing map π : RQ → Fp.

Proof. Similarly to the proof of Proposition 5.2, we extend the valuation νp by defining νp(a0 + a1ζ̂ + · · · +
aδ−1ζ̂

δ−1) = min{νp(a0), . . . , νp(aδ−1)}, where δ = [K : Q].
The main thing we need to check in this proof is that the residue field FK = Fq, since the checking

that the valuation and the projection map extend is almost identical to the argument given in the proof of
Proposition 5.2.

Say under the projection map π : RK 7→ FK , the element ζ̂ is mapped to ζ. Then, ζ is still a primitive q−1-th
root of unity in FK and FK is generated by the projections of element of Q and ζ. Hence, FK = Fp(ζ) = Fq.

Hence, by applying Proposition 5.3 first and then Proposition 5.2 repeatedly, we conclude that the valuation
νp extends from Q to L.

The reason for the discussion of extensions of these valuations is for us to able to define hyperderivatives,
which we are now ready to do. If f̂(X,Y ) is a fixed lift of f(X,Y ) of degree d and φ̂ an arbitrary rational
function of K(X,Y1, . . . , Yd), we define a linear operator D by setting

Dφ̂(X,Y1, . . . , Yd) = ∂X φ̂(X,Y1, . . . , Yd)−
d∑

i=1

∂X f̂(X,Yi)

∂Y f̂(X,Yi)
∂Yi

φ̂(X,Y1, . . . , Yd).

Then, the ℓ-th hyperderivative of a rational function φ̂ ∈ L is defined as E(ℓ)φ̂ = 1
ℓ!D

ℓφ̂.
The hyperderivatives E(ℓ) are linear operators satisfying many of the familiar properties of derivatives.

The following proposition shows that some well known formulas for derivatives even simplify in the case of
hyperderivatives.

Proposition 5.4. Let r̂1, . . . , r̂k be arbitrary polynomials in L = K[X,Y1, . . . , Yd], and let ŝ =
∏k

i=1 r̂i. Then,
we have

E(ℓ)ŝ =
∑

ℓ1+···+ℓk=ℓ

E(ℓ1)r̂1 · · ·E(ℓk)r̂k.

Proof. Recalling that E(ℓ) = 1
ℓ!D

ℓ, one can rewrite this equation as

Dℓŝ =
∑

ℓ1+···+ℓk=ℓ

ℓ!

ℓ1! · · · ℓk!
Dℓ1 r̂1 · · ·Dℓk r̂k.

Of course, this relation follows immediately from the product rule for derivatives, and hence it suffices to show
that D(r̂1r̂2) = r̂1Dr̂2+ r̂2Dr̂1 for arbitrary polynomials r̂1, r̂2. Since the operator D is just a linear combination
of partial derivatives, the product rule follows easily

D(r̂1r̂2) = ∂X(r̂1r̂2)−
∑
i

∂X f̂(X,Yi)

∂Y f̂(X,Yi)
∂Yi

(r̂1r̂2)

= r̂1∂X r̂2 + r̂2∂X r̂1 −
∑
i

∂X f̂(X,Yi)

∂Y f̂(X,Yi)
(r̂1∂Yi

r̂2 + r̂2∂Yi
r̂1)

= r̂1Dr̂2 + r̂2Dr̂1.
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Let us now show how to define hyperderivatives of functions in the residue field. If φ ∈ Fq(X,Y1, . . . , Yd) is a
rational function with a lift φ̂ ∈ L satisfying π(φ̂) = φ, the ℓ-th hyperderivative of φ is defined by

E(ℓ)(φ) = π(E(ℓ)φ̂). (5.3)

A priori, it is not obvious that E(ℓ)(φ) does not depend on the choice of the lift φ̂ or that E(ℓ)φ̂ is indeed in
the valuation ring. Hence, we present the proof of this fact in the form of the following proposition.

Proposition 5.5. Equation (5.3) gives a well-defined linear operator E(ℓ) on Fq(X,Y1, . . . , Yd).

Proof. As previously indicated, we have to check two things - that hyperderivatives of a lift are still in the
valuation ring (so that we may take their projection) and that E(ℓ)φ does not depend on the lift φ̂.

Let us first show that for any choice of φ̂ ∈ RL, where L = K(X,Y1, . . . , Yd), we have E(ℓ)φ̂ ∈ RL, i.e. that
νp(E

(ℓ)φ̂) ≥ 0. We do this in steps. The first step will deal with the case when φ̂ is a polynomial in X. Then,
we will check that the statement holds for general polynomials φ̂ ∈ RL ∩ K[X,Y1, . . . , Yd], and only then we
will extend the result to all rational functions.

Suppose φ̂ ∈ Fq[X] with the form φ̂(X) =
∑deg φ̂

k=0 λ̂kX
k. Since E(ℓ)Xk =

(
k
ℓ

)
Xk−l for k ≥ ℓ we have

E(ℓ)φ̂(X) =
∑deg φ̂

k=ℓ λ̂k
(
k
ℓ

)
Xk−l, which clearly satisfies νp(E(ℓ)φ̂) ≥ 0.

If φ̂ is a polynomial in X,Y1, . . . , Yd, by expanding E(ℓ)φ̂ as above using the product rule (Proposition 5.4),
it is sufficient to check that νp(E(ℓ)Yi) ≥ 0. We will show his by induction on ℓ. By design of the operators D
and E(ℓ), we see that E(ℓ)f̂(X,Yi) = 0 for all ℓ > 0. Expanding this relation using the product rule, we find

0 = E(ℓ)

(
d∑

k=0

ĝk(X)Y d−k
i

)
=

d∑
k=0

E(ℓ)
(
ĝk(X)Y d−k

i

)
=

d∑
k=0

∑
ℓ0+···+ℓd−k=ℓ

E(ℓ0)ĝk(X)E(ℓ1)Yi · · ·E(ℓd−k)Yi.

By induction and the above discussion, we know that all terms in the above expression lie in the valuation ring
of L, except perhaps those including E(ℓ)Yi. Hence, we find that

d∑
k=0

ĝk(X) · (d− k)Y d−k
i E(ℓ)Yi ∈ RL.

In other words, we have νp(∂Y f̂(X,Yi)E(ℓ)Yi) ≥ 0. However, note that π(∂Y f̂(X,Yi)) = ∂Y f(X,Yi) ̸≡ 0, and
therefore νp(∂Y f̂(X,Yi)) = 0. Using the additivity of νp, we finally at

νp(E
(ℓ)Yi) = νp(∂Y f̂(X,Yi)E

(ℓ)Yi)− νp(∂Y f̂(X,Yi)) = νp(∂Y f̂(X,Yi)E
(ℓ)Yi) ≥ 0.

Finally, we need to check that νp(E(ℓ)φ̂) ≥ 0 for general rational functions. We do this by induction on
ℓ again and we pick a polynomial ψ̂ ∈ K[X,Y1, . . . , Yd] with νp(ψ̂) = 0 and such that ψ̂φ̂ is a polynomial.
Applying E(ℓ) to ψ̂φ̂ we find

E(ℓ)(ψ̂φ̂) =

ℓ∑
j=0

E(j)ψ̂E(ℓ−j)φ̂ ∈ RL.

Note that, by inductive hypothesis, all terms except maybe ψ̂E(ℓ)φ̂ are in RL already. Since νp(ψ̂) = 0, we
have νp(E(ℓ)φ̂) = νp(ψ̂E

(ℓ)φ̂) − νp(ψ̂) ≥ 0. This completes the verification of the first condition for E(ℓ) to be
a well-defined operator on Fq(X,Y1, . . . , Yd).

The only thing that remains to be checked is that for any two lifts φ̂1 and φ̂2 of φ ∈ Fq(X,Y1, . . . , Yd) we
have π(E(ℓ)φ̂1) = π(E(ℓ)φ̂2). In fact, it suffices to check that νp(E(ℓ)(φ̂1 − φ̂2)) ≥ 1. Since π(φ̂1) = π(φ̂2), we
obtain νp(φ̂1 − φ̂2) ≥ 1 and so φ̂1 − φ̂2 = pψ̂ for some rational function ψ̂ ∈ L with νp(ψ̂) ≥ 0. Then

νp(E
(ℓ)(φ̂1 − φ̂2)) = νp(pE

(ℓ)ψ̂) = 1 + νp(E
(ℓ)ψ̂) ≥ 1,

just as we needed to show. This completes the proof that E(ℓ) is well-defined on Fq(X,Y1, . . . , Yd).

Now, we arrive at a new definition of the vanishing multiplicity for a polynomial at a given point x ∈ Fq. We will
say that a polynomial h ∈ Fq[X] vanishes to order M at x if E(ℓ)h(x) = 0 for all 0 ≤ ℓ ≤M − 1. Having made
this definition, we need to justify why this complicated operator E(ℓ) solves the problem indicated previously,
i.e. why this notion is better than the usual notion of the derivative. The following proposition takes care of
this point.
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Proposition 5.6. If h(X) ∈ Fq[X] is a nonzero polynomial for which E(ℓ)h(x) = 0 for some x ∈ Fq and
0 ≤ ℓ ≤M − 1, then (X − x)M |h(X).

Proof. This proof is very similar to proof in case of usual polynomials. If we write h(X) = a0 + a1(X − x) +

· · ·+ an(X − x)n and take ℓ-th hyperderivative we obtain

E(ℓ)h(X) =

n∑
k=ℓ

ak

(
k

ℓ

)
(X − x)k−ℓ.

From this equation, it is easy to see that E(ℓ)h(x) = 0 is equivalent to aℓ
(
ℓ
ℓ

)
= 0. Therefore, the vanishing of

E(ℓ)h(x) for 0 ≤ ℓ ≤ M − 1 corresponds to the vanishing of the coefficients a0, a1, . . . , aM−1, and we obtain
(X − x)M |h(X).

Corollary 5.7. If h(X) ∈ Fq[X] is a nonzero polynomial vanishing to orders M1, . . . ,Mk at distinct points
x1, . . . , xk respectively, then we have M1 + · · ·+Mk ≤ deg h(X).

Proof. Since h vanishes to order Mi at xi, Proposition 5.6 implies that (X−xi)Mi |h(X). Since xi are distinct, we
also have

∏k
i=1(X−xi)Mi |h(X). Since h is nonzero, its degree must be at least as big as deg

∏k
i=1(X−xi)Mi =

M1 + · · ·+Mk, completing the proof.

Proposition 5.8. For any positive integer m and any 1 ≤ ℓ < q we have E(ℓ)(Xqm) = 0 and E(ℓ)(Y qm) = 0.

Proof. In fact, one can show that for any rational function φ we have E(ℓ)(φqm) = 0. Let us begin by taking
the lift φ̂ of φ and using the definition of E(ℓ):

E(ℓ)φ̂qm =
1

ℓ!
Dℓ−1

(
qmφ̂qm−1Dφ̂

)
=
qm

ℓ
E(ℓ−1)

(
φ̂qm−1Dφ̂

)
.

The first factor projects to zero in Fq while the second one is still in the valuation ring of L, showing that the
projection π(E(ℓ)φ̂qm) = E(ℓ)φqm must be zero. This completes the proof.

5.2 Step 1: Preprocessing

The main goal of this section is to show that it is not a loss of generality to assume that f(X,Y ) is a polynomial
of the form f(X,Y ) = Y d + g1(X)Y d−1 + · · ·+ gd(X), where deg gi(X) ≤ i and ∂Y f(X,Y ) ̸≡ 0. For simplicity
of notation, we will also define g0(X) = 1. We will also assume f is not linear, as Theorem 5.1 is trivial in this
case.

Note that the derivative ∂Y f(X,Y ) is identically zero if and only if all powers of y appearing in f(X,Y )

are divisible by p. In other words, this happens if f(X,Y ) is a polynomial in x, yp, where we may write
f(X,Y ) = f̃(X,Y p). Note that the map y 7→ yp permutes the elements of Fq and therefore f̃(X,Y ) and
f(X,Y ) has the same number of roots in Fq

2. In particular, this means that we may perform our analysis on
f̃ instead of f , and that the bound (5.1) carries over unchanged. Since this process decreases the degree of Y
in f , it terminates and the resulting polynomial does not have all power of y divisible by p.

Now, we may write f(X,Y ) = fd(X,Y )+ fd−1(X,Y )+ · · ·+ f0(X,Y ), where fi(X,Y ) is the homogeneous
part of degree i. If we knew that the coefficient of Y d in f(X,Y ) is nonzero, we could scale f by an appropriate
constant to bring it into the required form. However, if the coefficient of Y d is zero, we may consider the
polynomial fa(X,Y ) = f(X + aY, Y ), where a ∈ Fq is a scalar. It is clear that the number of roots of f and
fa is the same. Furthermore, the coefficient of yd in fa(X,Y ) comes from the highest degree homogeneous
part fd(X + aY, Y ). Since this is a homogeneous polynomial, the coefficient next to Y d can be found by
setting x = 0, y = 1, meaning that the coefficient of Y d in fa(X,Y ) is fd(a, 1). Note that fd(a, 1) is a nonzero
polynomial of degree d in a, and hence if q is bigger than d there exists a value of a for which fd(a, 1) ̸= 0.

However, we need to ensure that there are still powers of Y not divisible by p after performing this procedure.
In other words, we have to ensure that ∂Y fa(X,Y ) ̸= 0. We know from our first step that there is a monomial
cXiY j in f(X,Y ) with c ̸= 0, j not divisible by p. Then, the coefficient of XiY j in fa(X,Y ) will be a nonzero
polynomial of degree d in a which has at most d roots. Hence, if q is big enough, we can choose a for which
fa(X,Y ) has nonzero coefficients next to both Y d and XiY j , ensuring all the properties we need. Hence, we
have proven the following proposition.
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Proposition 5.9. For every absolutely irreducible polynomial f ∈ Fq[X,Y ], there exists an absolutely irre-
ducible polynomial f̃ ∈ Fq[X,Y ] with the following properties:

• f̃(X,Y ) = Y d + g1(X)Y d−1 + · · ·+ gd(X), for some polynomials g1, . . . , gd ∈ Fq[X] satisfying deg gi ≤ i,

• deg f̃ ≤ deg f ,

• ∂Y f̃(X,Y ) does not vanish identically, and

• equations f̃(X,Y ) = 0 and f(X,Y ) = 0 have the same number of solutions in Fq
2.

In the remaining sections, we will always work with f̃ instead of f (although we will, for simplicity of
notation, denote it by f).

5.3 Interlude: Variable elimination and degree reduction

The purpose of this section is to introduce two tools that we will use throughout the proof. We begin by
presenting a construction that allows us to convert two-variable polynomials into single-variable polynomials,
while maintaining information about the zeros of these polynomials on the curve C/Fq. This construction will
also be the basis the Step 4, which is presented in the last section of this chapter. However, we prefer to present
this equation earlier, since it turns out to be useful in certain arguments of Step 3 as well.

To set up the construction, let a(X,Y ) ∈ R[X,Y ] be an arbitrary polynomial, where R is a ring containing
Fq.3 Let us consider the polynomial

u(X,Y1, . . . , Yd) =

d∏
i=1

a(X,Yi). (5.4)

Note that u is a symmetric polynomial in variables Y1, . . . , Yd. To simplify notation, we introduce Y =

(Y1, . . . , Yd) and σi(Y ) which denotes the i-th elementary symmetric polynomial in variables Y1, . . . , Yd.
By the fundamental theorem of symmetric polynomials, there exists a polynomial v(X,σ1, . . . , σd) ∈

Fq[X,σ1, . . . , σd] which satisfies

v(X,σ1(Y ), . . . , σd(Y )) = u(X,Y1, . . . , Yd). (5.5)

Then, we define the f(X,Y )-elimination of a(X,Y ) to be the polynomial b(X) defined by

b(X) = v(X,−g1(X), g2(X), . . . , (−1)dgd(X)). (5.6)

We claim that this construction allows us to detect various properties of vanishing of a on C/Fq. We will now
try to provide some intuition behind this definition. Suppose y1, . . . , yd are the roots of f(x, Y ) for some x ∈ Fq.
Then the Vieta formulas guarantee that σk(y1, . . . yd) = (−1)kgk(x), where gk(x) are the coefficients of the
polynomial f(x, Y ) ∈ Fq[Y ]. This implies

b(x) = v(x,−g1(x), . . . , (−1)dgd(x)) = u(x, y1, . . . , yd) =

d∏
i=1

a(x, yi). (5.7)

In other words, b vanishes at a certain point x ∈ Fq if and only if a vanishes on a point (x, yi) ∈ C/Fq. In fact,
much more is true - the vanishing multiplicity of b at a point x is at least the sum of the vanishing multiplicities
of a over all points (x, yi). We will postpone the proof of this particular fact until Step 4, and we will describe
some simpler properties of this construction.

Proposition 5.10. Let a ∈ R[X,Y ] be a polynomial, and let b(X) be its f(X,Y )-elimination with respect to
X. Then b is identically zero if and only if f(X,Y ) divides a(X,Y ).

3In our applications, R will either be Fq or a polynomial ring over Fq .



50 5.4. Step 2: Splitting the roots

Proof. Let us begin by assuming f(X,Y )|a(X,Y ). Then, for any x ∈ Fq and any root yi of f (x)(Y ) = f(x, Y ),
we know a(x, yi) = 0. Using equality (5.7), this gives b(x) = 0. Therefore, b(x) vanishes at every point x ∈ Fq,
implying b vanishes identically.

Suppose now that b vanishes identically. Then, for every x ∈ Fq, we have a root yi of f (x)(Y ) for which
a(x, yi) = 0. In other words, f(X,Y ) and a(X,Y ) share infinitely many roots. Proposition 2.29 guarantees this
is impossible unless f(X,Y ) divides a(X,Y ), completing the proof.

Let us now introduce another useful tool, the degree reduction procedure, which is nothing else than long
division of polynomials in a ring. We prefer to state this result as a separate proposition however, because this
allows us to refer back to the degree bounds explicitly.

Proposition 5.11. Let a(X,Y ), b(X,Y ) ∈ R[X,Y ] and suppose a(X,Y ) is polynomial of degree d, with a lead-
ing term Y d. Then, there exists a polynomial c(X,Y ) ∈ R[X,Y ] such that b(X,Y ) ≡ c(X,Y ) (mod a(X,Y ))

and degY c(X,Y ) ≤ d− 1,deg c(X,Y ) ≤ deg b(X,Y ).

Proof. The idea behind the proof is, as stated above, nothing else than long division of polynomials. Namely,
if a(X,Y ) = Y d +

∑d−1
i=0 Y

iad−i(X), where deg ad−i(X) ≤ d − i, we can replace all terms of the form Y k in
b(X,Y ) with k ≥ d by −Y k−d

∑d−1
i=0 Y

iad−i(X), hence reducing the degree of b(X,Y ) in Y . Note that such
a replacement does not increase the total degree of the polynomial throughout the procedure. Furthermore,
note that this replacement does not change the residue class of the polynomial modulo a(X,Y ). Hence, we
can perform this process until the degree of the remaining polynomial becomes at most d − 1, at which point
we obtain the polynomial c(X,Y ). By construction, we have b(X,Y ) ≡ c(X,Y ) (mod a(X,Y )) and since our
process did not increase the total degree of the polynomial, we have deg c(X,Y ) ≤ deg b(X,Y ).

5.4 Step 2: Splitting the roots

In this section, we begin to set up the proof of Theorem 5.1. The way we will count the roots of f(X,Y ) is by
fixing X = x and analyzing the roots of the univariate polynomial in Y , f (x)(Y ) = f(x, Y ).

We begin by a simple observation - for almost all values of x, the polynomial f (x)(Y ) has d distinct roots
in Fq.

Proposition 5.12. Let S be the set of x ∈ Fq for which f (x)(Y ) = f(x, Y ) = 0 has d distinct roots in Y . Then
|S| ≥ q − 2d2.

Proof. Let ∆f(x)(x) be the discriminant of the polynomial f (x)(Y ). The key property we will use is that a poly-
nomial has d distinct roots if and only if its discriminant is nonzero. The coefficients of the polynomial f (x)(Y )

are themselves polynomials in x, and hence the discriminant of f (x) is a polynomial in x. The discriminant
∆f(x) is a polynomial of degree 2d − d in the coefficients of f (x) and hence of degree at most 2(d − 1)2 in x.
Hence, ∆f(x) has at most 2(d − 1)2 roots (note that ∆f(x) is not identically zero, since f(x, y) is absolutely
irreducible). The conclusion is that S contain all but at most 2(d− 1)2 < 2d2 elements of Fq.

Here, as throughout the rest of the proof, we will think of d as constant as q as going to infinity. In this setting,
S is really almost all of Fq. For every x ∈ S, we set

I1(x) = {y ∈ Fq|f(x, y) = 0} I2 = {y ∈ Fq\Fq|f(x, y) = 0}.

Our goal will be to bound the sum of sizes of I1(x) over all x ∈ Σ, both from above and from below. However,
since we are able to establish only the upper bounds using the polynomial method, the lower bounds on I1(x)

will come from the upper bounds on I2(x), since for all x ∈ S we have |I1(x)| + |I2(x)| = d. Let us now state
the precise bounds we obtain. These bounds will be proven at the end of Step 4.

Proposition 5.13. In the setup described above, we have∑
x∈S

|I1(x)| ≤ q +O(q1/2d3) and
∑
x∈S

|I2(x)| ≤ (d− 1)q +O(q1/2d3). (5.8)
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This is a good place to introduce a minor notational convention which we will follow throughout the rest of the
proof. Since many arguments are very similar for I1(x) and I2(x), we will often phrase the bounds in terms of
It(x), where the index t is either 1 or 2.

Now, we will demonstrate how Proposition 5.13 lead to the proof of Theorem 5.1.

Proof of Theorem 5.1 assuming Proposition 5.13. Let N denote the number of solution to f(x, y) = 0 in Fq
2.

The upper bound on N can be established from the observation that for every x outside S, f (x)(Y ) has at most
d roots, and therefore

N ≤ d|Fq\S|+
∑
x∈S

|I1(x)| ≤ 2d3 + q +O(q1/2d3) ≤ q +O(q1/2d3).

The lower bound follows from the bounds on |I2(x)|, by noting that |I1(x)|+ |I2(x)| = d for all x ∈ S:

N ≥
∑
x∈S

|I1(x)| = d|S| −
∑
x∈S

|I2(x)| ≥ dq − 2d3 − (d− 1)q −O(q1/2d3) ≥ q −O(q1/2d3).

The main tool we will use in bounding the size of It will be a certain polynomial et(X,Y, Y q) which will vanish
on all points (x, y) where x ∈ Σ, y ∈ It(x). Then, the idea will be to bound the number of common zeros of et
and f .

Proposition 5.14. Define the polynomials e1(X,Y, Y ′) = Y ′ − Y and

e2(X,Y, Y
′) =

d−1∑
i=0

gi(X)(Y ′d−1
+ Y ′d−2

Y + · · ·+ Y d−1).

Then et(x, y, yq) = 0 for all x ∈ S, y ∈ It(x).

Proof. The case t = 1 is obvious, since yq = y for all y ∈ I1(x) ⊂ Fq and therefore et(x, y, yq) = 0. If y ∈ I2(x),
we have that f(x, y) = 0 and so 0 = f(x, y)q = f(xq, yq) = f(x, yq). In particular, we have f(x, y) = f(x, yq)

and therefore

0 = f(x, yq)−f(x, y) =
d∑

i=0

gi(x)y
q(d−i)−

d∑
i=0

gi(x)y
d−i =

d−1∑
i=0

gi(x)(y
q−y)

(
yd−i−1 + yqyd−i−2 + · · ·+ yq(d−i)

)
.

Since y ∈ I2(x) is not in Fq, we know yq − y ̸= 0 and the conclusion is e2(x, y, yq) = 0, as claimed.

If we were to apply Bezout’s theorem directly to polynomials e1(X,Y, Y q) = Y q − Y and f(X,Y ), one could
bound the number of common points by qd. However, this is very far from the bound in Proposition 5.13. In
a way, the key to the proof of Theorem 5.1 lies precisely in improving this bound, by using the polynomial
method.

From now on, we will denote by dt the degree of et(X,Y, Y ′) in variable Y ′. In other words, we have
d1 = 1, d2 = d− 1.

5.5 Step 3: Constructing the auxiliary polynomial

In this section, we will construct two auxiliary polynomials in variablesX,Y , which we call ct(X,Y ) for t ∈ {0, 1}.
These polynomials should be of low degree, vanish at all points (x, y) for x ∈ S, y ∈ It(x) and not be divisible
by f . In the following proposition, we present the precise bounds required by these polynomials. From now on,
we will assume that M is a parameter satisfying d|M and d2 < M < q1/2

2d , whose value we will optimize at the
end.

Proposition 5.15. There exist polynomials ct(X,Y ), for t ∈ {1, 2}, satisfying the following three properties

• f(X,Y ) does not divide ct(X,Y ),
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• E(ℓ)ct(x, y) = 0 for all x ∈ S, y ∈ It(x), 0 ≤ ℓ ≤ M − 1. In other words, the polynomial ct vanishes at
(x, y) to order M .

• The degree of ct is bounded by deg ct ≤ dt

d qM + 2qd.

We will look for ct in the form of ct(X,Y ) = (∂Y f(X,Y ))2Mat(X,Y ). The reason this is useful is that the
definition of D (and consequently E(ℓ)) involved dividing by ∂Y f , which may introduce denominators in our
polynomial. However, it is much easier for us if we keep the derivatives of ct to be polynomials, especially
because we do not have to pay much for this convenience in increasing the degree. Namely, multiplying a
polynomial by (∂Y f)

2M increases its degree by at most 2Md ≤ q1/2, which is much smaller than the leading
term of deg ct ∼ dt

d qM . Let us now justify this intuition, and show that all hyperderivatives of ct(X,Y ) are
indeed polynomials, if ct(X,Y ) is chosen to be of this form.

Proposition 5.16. Let at(X,Y ) ∈ Fq[X,Y ] be a polynomial and define ct(X,Y ) = (∂Y f(X,Y ))2Mat(X,Y ).
Then, for all 1 ≤ ℓ ≤M , we have

E(ℓ)ct(X,Y ) = (∂Y f(X,Y ))2(M−ℓ)a
(ℓ)
t (X,Y ),

where a(ℓ)t (X,Y ) ∈ Fq[X,Y ] is a polynomial of degree at most deg a
(ℓ)
t ≤ deg at + 2dℓ.

Proof. Let ât(X,Y ), f̂(X,Y ) be the lifts of at(X,Y ), f(X,Y ), chosen in the valuation ring of νp on K[X,Y ]. If
we define â(ℓ)t (X,Y ) through the relation E(ℓ)

(
(∂Y f̂(X,Y ))2M ât(X,Y )

)
= (∂Y f̂(X,Y ))2(M−ℓ)â

(ℓ)
t (X,Y ). We

will show by induction on ℓ that â(ℓ)t (X,Y ) is a polynomial of degree ≤ deg ât + 2dℓ. We have

E(ℓ+1)
(
(∂Y f̂)

2M ât

)
=

1

ℓ+ 1
DE(ℓ)

(
(∂Y f̂)

2M ât

)
=

1

ℓ+ 1
D
(
(∂Y f̂)

2M−2ℓâ
(ℓ)
t

)
=

(2M − 2ℓ)∂Y f̂
2M−2ℓ−1

(
∂XY f̂ − ∂X f̂

∂Y f̂
∂Y Y f̂

)
â
(ℓ)
t + ∂Y f̂

2M−2ℓ
(
∂X â

(ℓ)
t − ∂X f̂

∂Y f̂
∂Y â

(ℓ)
t

)
ℓ+ 1

=
∂Y f̂

2M−2ℓ−2

l + 1

((
∂XY f̂∂Y f̂ − ∂X f̂∂Y Y f̂

)
â
(ℓ)
t + ∂Y f̂

(
∂X â

(ℓ)
t ∂Y f̂ − ∂X f̂∂Y â

(ℓ)
t

))
.

Since deg ∂Y f̂ ,deg ∂X f̂ ≤ d, we easily find that deg â(ℓ+1)
t ≤ deg â

(ℓ)
t +2d, thus giving us deg â(ℓ+1)

t ≤ deg at+2dℓ

as needed.
Furthermore, we have νp(â

(ℓ)
t ) ≥ 0. To show this recall that we have νp(∂Y f̂2M−2ℓâ

(ℓ)
t ) = νp(E

(ℓ)(∂Y f̂
2M ât)) ≥

0 and νp(∂Y f̂) = 0 (since π(∂Y f̂) = ∂Y f ̸= 0). Thus, we have

0 ≤ νp(∂Y f̂
2M−2ℓâ

(ℓ)
t ) = (2M − 2l)νp(∂Y f̂) + νp(â

(ℓ)
t ) = νp(â

(ℓ)
t ).

Hence, we can take the projection π(â
(ℓ)
t ) = a

(ℓ)
t ∈ Fq[X,Y ] and we easily find the required degree constraints

deg a
(ℓ)
t ≤ deg â

(ℓ)
t ≤ deg at + 2dℓ. This completes the proof.

Now, the question reduces to constructing at(X,Y ) such that a(ℓ)t (x, y) = 0 for all x ∈ S, y ∈ It(x), or
alternatively a

(ℓ)
t (X,Y ) ∈ (f(X,Y ), et(X,Y, Y

q)). Note that the coefficients of a(ℓ)t (X,Y ) are linear in the
coefficients of at(X,Y ), simply because the operators Dℓ and E(ℓ) are linear. The idea behind constructing a
polynomial at(X,Y ) we need is to pick it in the form

at(X,Y ) =

K∑
j=0

d−1∑
k=0

d−1∑
i=0

aijk(X)XqjY i+qk, (5.9)

where aijk(X) will be of degree at most deg aijk(X) ≤ q
d − 3d− j and K = dt

d M + d.
The advantage of choosing at(X,Y ) in this form is that as long as at least one of the coefficients aijk(X)

is nonzero, we can always guarantee that f(X,Y ) does not divide at(X,Y ), as the following proposition shows.

Proposition 5.17. Let F (X,Y, Z,W ) ∈ Fq[X,Y, Z,W ] be a nonzero polynomial with degX F ≤ q
d−d, degY F ≤

d− 1 and degW F ≤ d− 1. Then, f(X,Y ) does not divide F (X,Y,Xq, Y q).
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Proof. Let us begin by considering the polynomialG(X,Y, Z) which is the f(Z,W )-elimination of the polynomial
F (X,Y, Z,W ).4 By construction, we have degX,Y G(X,Y, Z) ≤ ddegX,Y F (X,Y, Z,W ) < q. Furthermore, we
take H(X,Y, Z) ∈ Fq[X,Y, Z] such that H(X,Y, Z) ≡ G(X,Y, Z) (mod f(X,Y )) and degY H(X,Y, Z) ≤ d−1,
degX,Y H(X,Y, Z) ≤ degX,Y G(X,Y, Z) < q (the existence of such H is guaranteed by Proposition 5.11).

The first step of our proof will be to show that if f(X,Y )|F (X,Y,Xq, Y q), then we also have H(X,Y,Xq) =

0. Then, we will use the degree conditions on H to show that H(X,Y, Z) = 0, which will suffice to show that
F (X,Y, Z,W ) ∈ (f(X,Y ), f(Z,W )) by a simple application of Proposition 5.10. Finally, we will obtain a
contradiction from the degree conditions on F (X,Y, Z,W ).

Now, we execute the first step of the proof. We fix x ∈ Fq and let y1, . . . , yd be the roots of f (x)(Y ) =

f(x, Y ). Then yq1, . . . , y
q
d are roots of f(xq, Y ) (since 0 = f(x, yi)

q = f(xq, yqi )) the Vieta formulas ensure
that σi(y

q
1, . . . , y

q
d) = (−1)igi(x

q). Since f(X,Y )|F (X,Y,Xq, Y q) we have F (x, yi, xq, y
q
i ) = 0 and therefore

G(x, yi, x
q) = 0 by equality (5.7). Since f(x, yi) = 0, we also have H(x, yi, x

q) = 0. If x was such that f (x)(Y )

has d distinct roots, the polynomial H(x, Y, xq) would also have d roots. Since degY H(x, Y, xq) ≤ d − 1 we
must have H(x, Y, xq) ≡ 0. But this holds for almost any x ∈ Fq (as shown by Proposition 5.12), implying
H(X,Y,Xq) = 0, as claimed.

Now, we want to show H(X,Y, Z) = 0. Recall that degX H ≤ q − 1,degY H ≤ d− 1 and therefore we can
write H(X,Y, Z) =

∑q−1
i=0

∑d−1
j=0

∑
k≥0 hijkX

iY jZk. Plugging in Z = Xq we have

H(X,Y,Xq) =

q−1∑
i=0

d−1∑
j=0

∑
k≥0

hijkX
i+kqY j ,

where the key observation is that all monomials Xi+qkY j are different and therefore the only way to make
H(X,Y,Xq) = 0 would be to have hijk = 0 for all i, j, k, meaning H(X,Y, Z) = 0.

Finally, this means that f(X,Y )|G(X,Y, Z) and therefore G̃(X,Y, Z) = 0, where G̃ is the residue of G
modulo f , i.e. G̃(X,Y, Z) ∈ Fq[X,Y, Z,W ]/(f(X,Y )). If F̃ (X,Y, Z, T ) denotes the residue of F (X,Y, Z,W ),
note that G̃(X,Y, Z) is still a f̃(Z,W )-elimination of F̃ (X,Y, Z,W ). In particular, since G̃(X,Y, Z) = 0, we
must have f̃(Z,W )|F̃ (X,Y, Z,W ). But this is just another way to say that F (X,Y, Z,W ) belongs to the ideal
I = (f(X,Y ), f(Z,W )).

Now, we claim that the monomials Y iW j for 0 ≤ i, j ≤ d − 1 are Fq[X,Z]-linearly independent in
Fq[X,Y, Z,W ]/I, and that therefore F (X,Y, Z,W ) cannot be in this ideal unless it is equal to zero. Sup-
pose for the contrary, that we had an relation of the form

F (X,Y, Z,W ) =
d−1∑
i=0

d−1∑
j=0

pij(X,Z)Y
iW j = α(X,Y, Z,W )f(X,Y ) + β(X,Y, Z,W )f(Z,W ).

Choosing a root (z, w) of f(Z,W ) = 0, this relation implies that f(X,Y )|
∑d−1

i=0 Y
i
∑d−1

j=0 pij(X, z)w
j . Since the

degree in Y of the sum is at most d− 1, this is impossible unless all its coefficients are zero. In other words, we
have

∑d−1
j=0 pij(X, z)w

j = 0 for all i. If f(z,W ) has d distinct roots, so does the polynomial
∑d−1

j=0 pij(x, z)W
j

in W , for any x, and thus we must have pij(x, z) = 0 for any x ∈ Fq and almost any z ∈ Fq. But this means
that all coefficients pij(X,Z) are zero, giving a contradiction. This completes the proof.

Now, we will show how to pick the coefficients of aijk(X,Y ) such that a(ℓ)t (X,Y ) vanishes on all pairs (x, y)

with x ∈ S, y ∈ It(x). The idea is that, for each 0 ≤ ℓ ≤M−1, we construct another polynomial b(ℓ)t (x, y, yq) of
much smaller degree than a(ℓ)t such that a(ℓ)t vanishes on all pairs (x, y) with x ∈ S, y ∈ It(x) if the polynomial
b
(ℓ)
t (X,Y, Y q) vanishes on these pairs too.

Proposition 5.18. There exists a polynomial b(ℓ)t (X,Y, Y ′) ∈ Fq[X,Y, Y
′] satisfying the following degree

bounds
degX b

(ℓ)
t ≤ q

d
+ 2dℓ degY b

(ℓ)
t ≤ d− 1 degY ′ b

(ℓ)
t ≤ dt − 1

4In more concrete terms, we define the symmetric polynomial u(X,Y, Z,W1, . . . ,Wd) =
∏n

i=1 F (X,Y, Z,Wi) and
find a polynomial v for which u(X,Y, Z,W ) = v(X,Y, Z, σ1(W ), . . . , σd(W )). Then, we define G(X,Y, Z) =

v(X,Y, Z,−g1(Z), . . . , (−1)dgd(Z)). This corresponds to our construction from Section 5.3 with R = Fq [X,Y ] and the variables
Z,W .
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and the following property: if b(ℓ)t (X,Y, Y q) vanishes on all points (x, y) with x ∈ S, y ∈ It(x), then a(ℓ)t (X,Y )

vanishes on all these points too. Moreover, b(ℓ)t can be chosen to that its coefficients are linear combinations of
the coefficients of at(X,Y ).

Proof. The main ingredient of this proof is the degree reduction procedure described in Proposition 5.11. We
will perform two basic degree reduction steps to get from a

(ℓ)
t to b(ℓ)t . In the first step, we will reduce the degree

of Y ′ using that et(x, y, yq) vanishes for x ∈ S, y ∈ It(x). Then, we will use the fact that f vanishes at all of
these points to reduce the degree of Y to d − 1, which will essentially complete the proof. Let us now present
the details.

Since the statement of this proposition concerns the vanishing of a(ℓ)t (X,Y ), let us begin by calculating
a
(ℓ)
t (X,Y ). If introduce the notation ajk(X,Y ) =

∑d−1
i=0 Y

iaijk(X), we have

at(X,Y ) =

K∑
j=0

d∑
k=0

ajk(X,Y )XqjY qk.

Proposition 5.8 implies that E(ℓ)(Xqj) = E(ℓ)(Y qk) = 0 since ℓ < M < q. Hence, we may write

a
(ℓ)
t (X,Y ) =

K∑
j=0

d−1∑
k=0

a
(ℓ)
jk (X,Y )XqjY qk, (5.10)

where a(ℓ)jk (X,Y ) are defined through the equation E(ℓ)
(
(∂Y f)

2Ma
(ℓ)
jk

)
= (∂Y f)

2(M−ℓ)a
(ℓ)
jk and therefore satisfy

deg a
(ℓ)
jk ≤ deg ajk + 2dℓ ≤ q

d − 2d− j + 2dℓ.

Furthermore, since b(ℓ)t is a polynomial in variables X,Y, Y ′ (where Y ′ corresponds to Y q in the end), it
will be easiest if we considered a polynomial a(ℓ)t as a polynomial in three variables

a
(ℓ)
t (X,Y, Y ′) =

K∑
j=0

d−1∑
k=0

a
(ℓ)
jk (X,Y )XqjY ′k.

In our first degree reduction step, we can reduce the degree of a(ℓ)t (X,Y, Y ′) modulo et(X,Y, Y ′) to obtain
a polynomial b̃(ℓ)t (X,Y, Y ′) ∈ Fq[X,Y, Y

′] with deg b̃
(ℓ)
t ≤ q

d + 2dℓ and degY ′ b̃
(ℓ)
t (X,Y, Y ′) = 0 = dt − 1. In

particular, we have
a
(ℓ)
t (X,Y, Y q) ≡ b̃

(ℓ)
t (X,Y, Y q) (mod et(X,Y, Y

q)).

The polynomial b̃(ℓ)t (X,Y, Y ′) satisfies all of the degree constraints from the statement of this proposition
except the condition on degY b

(ℓ)
t (X,Y, Y ′). Hence, we need to perform another degree reduction step, this time

modulo f(X,Y ). Namely, we can find a polynomial b(ℓ)t (X,Y, Y ′) which satisfies

b
(ℓ)
t (X,Y, Y ′) ≡ b̃

(ℓ)
t (X,Y, Y ′) (mod f(X,Y )),

and the degree constrains degX b
(ℓ)
t ≤ degX,Y b̃

(ℓ)
t ,degY b

(ℓ)
t ≤ d− 1 and degY ′ b

(ℓ)
t (X,Y, Y ′) ≤ dt − 1.

Observe now that our construction yields a(ℓ)t (X,Y, Y q) ≡ b
(ℓ)
t (X,Y, Y q) (mod (f(X,Y ), et(X,Y, Y

q))),
and that both f(X,Y ) and et(X,Y, Y

q) vanish for all x ∈ S, y ∈ It(x). This means that a(ℓ)t (X,Y, Y q) and
b
(ℓ)
t (X,Y, Y q) take the same values on these points, just as required.

Now, we are ready to construct our auxiliary polynomial at(X,Y ) and prove Proposition 5.15.

Proof of Proposition 5.15. As suggested in the informal overview, we look for the polynomial ct(X,Y ) in the
form ct(X,Y ) = (∂Y f(X,Y ))2Mat(X,Y ), and for at(X,Y ) in the form given by (5.9). The fact that f(X,Y )

does not divide ct(X,Y ) is ensured by Proposition 5.17 and the fact that ∂Y f(X,Y ) is coprime to f(X,Y )

(since f(X,Y ) is absolutely irreducible). Furthermore, it is not hard to observe from (5.9) that deg at ≤
qK + q(d− 1) + q

d ≤ dt

d Mq + 2qd, as claimed.
Finally, we need to ensure that a(ℓ)t (x, y) vanished for all x ∈ S, y ∈ It(x). Performing the degree reduction

procedure, Proposition 5.18, for any 0 ≤ ℓ ≤M − 1 we obtain a polynomial b(ℓ)t (X,Y, Y ′) satisfying a(ℓ)t (x, y) =

b
(ℓ)
t (x, y, yq) on the points x ∈ S, y ∈ It(x). In fact, it suffices to ensure that all coefficients of b(ℓ)t vanish,
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for 0 ≤ ℓ ≤ M − 1. Noting that the coefficients of the polynomials b(ℓ)t depend linearly on the coefficients of
at(X,Y ) basic linear algebra and dimension counting are sufficient to complete the proof.

The number of available coefficients for at(x, y) is at least

A ≥
K∑
j=0

d−1∑
k=0

d−1∑
i=0

deg aijk ≥ d2
K∑
j=0

q

d
− 3d− j = qKd− 3d3K −

(
K + 1

2

)

≥ dtqM + d2q − 3d3M − 3d4 − 2M2 ≥ dtqM +
d2q

2
,

if q is big enough compared to d and M ≤ q1/2. On the other hand, the number of linear constraints on these
coefficients equals the number of coefficients of all polynomials b(ℓ)t for 0 ≤ ℓ ≤M − 1, which is

B =

M−1∑
ℓ=0

ddt

( q
d
+ 2dℓ+ 1

)
≤ dtqM + 3d3M.

Again, as long as q is big enough compared to d, we have A > B, thus ensuring that there exists a nonzero
assignment of aijk(x) satisfying that all polynomials b(ℓ)t are identically zero. This guarantees that ct(x, y)
vanishes for all x ∈ S, y ∈ It(x) and the proof is thus complete.

5.6 Step 4: Eliminating variables

In this section, we show how to go from a bivariate auxiliary polynomial ct(X,Y ) to a univariate auxiliary
polynomial ht(X) using the technique from Section 5.3. Before we do this, let us explain why this is needed.

One way we could try to approach this completion of the proof is to bound the sum of the vanishing
multiplicities of a bivariate polynomial by its degree using the Schwartz-Zippel lemma. A version of the Schwartz-
Zippel lemma states that the sum of vanishing multiplicities of a bivariate polynomial ct(X,Y ) ∈ Fq[X,Y ] is at
most nq. Here, the vanishing multiplicity of the polynomial ct(X,Y ) at the point (x, y) ∈ Fq

2
is defined as the

largest integer M such that all partial derivatives of ct(X,Y ) of order 0, 1, . . . ,M − 1 vanish at (x, y). However,
there are several problems with applying this lemma in our case.

First of all, the definition of the vanishing multiplicity used in the Schwartz-Zippel lemma is different from
the version used in this proof. In this proof, the vanishing multiplicity of ct(X,Y ) is inherently a 1-dimensional
quantity since the definition of D was tailored to imitate taking the derivative along a curve f(X,Y ) = 0.
Hence, the Schwartz-Zippel lemma does not really apply here.

Secondly, even if we somehow managed to apply this lemma, it would give a bound on the number of zeros
of f of the order deg ct · q ∼ dt

d q
2M , which will be useless in our application. Hence, in order to bound the

sum of vanishing multiplicities for single variable by using Proposition 5.6, we need to construct a univariate
polynomial out of ct(X,Y ). The precise way we eliminate the variable Y differs slightly from Schmidt’s approach
in [25], which uses field extensions and norms of elements.

Throughout this section, we will make a careful distinction about equality of polynomials and equality of
their values. Therefore, throughout this section, we remind the reader that X,Y1, . . . , Yd denote the variables
and x, y1 . . . , yd ∈ Fq denote their values.

We construct ht(X) as a f(X,Y )-elimination of ct(X,Y ). As explained in Section 5.3, this construction
guarantees that for any x ∈ S and y1, . . . , yd roots of f (x) one has

ht(x) =

d∏
i=1

ct(x, yi). (5.11)

The key feature of this definition is that we also have the following equality of derivatives

Dht(x) =

d∑
i=1

Dct(x, yi)
∏
j ̸=i

ct(x, yj) = Du(x, y1, . . . , yd),

where u(X,Y1, . . . , Yd) =
∏d

i=1 ct(X,Yi). This equality guarantees that ht has a double zero at x if the poly-
nomial ct has a double zero at all of yi, for example. This will in turn allow us to transfer the vanishing
multiplicities from ct to ht as we intended.
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Note that the equality of the derivatives does not follow directly from (5.7) or (5.11), since these expressions
only talk about the equality of elements in Fq. Hence, a little effort will be needed to derive the equality of
derivatives. The following lemma is actually a little big more general than this, primarily because we will reuse
it later on to show the equality of hyperderivatives as well.

Proposition 5.19. Let x ∈ S and y1, . . . , yd be the roots of f(x, Y ). Let u(X,Y1, . . . , Yd) be any Fq-polynomial
symmetric in Y1, . . . , Yd, and let v be the polynomial satisfying

v(X,σ1(Y ), . . . , σd(Y )) = u(X,Y1, . . . , Yd).

If we define h(X) = vt(X,−g1(X), g2(X), . . . , (−1)dgd(X)), we have

Dht(x) = Du(x, y1, . . . , yd).

Proof. The proof of this statement mainly relies on unpacking the definitions and showing a simple statement
about symmetric polynomials. Let us fix some notation - we denote the partial derivative along (i + 1)-st
argument of u, v by ∂iu, ∂iv for i ∈ {0, . . . , d}. Then, we have

Dh(X) = ∂0v(X,−g1(X), . . . , (−1)dgd(X)) +

d∑
k=1

(−1)k∂Xgk(X)∂kv(X,−g1(X), . . . , (−1)dgd(X))

and

Du(X,Y1, . . . , Yd) = ∂0u(X,Y1, . . . , Yd) +

d∑
i=1

∂Xf(X,Yi)

∂Y f(X,Yi)
∂iu(X,Y1, . . . , Yd).

If we differentiate the equality u(X,Y1, . . . , Yd) = v(X,σ1(Y ), . . . , σd(Y )) with respect to Yi we obtain

∂iu(X,Y1, . . . , Yd) =

d∑
k=1

∂kv(X,σ1(Y ), . . . , σd(Y ))∂Yi
σk(Y ).

It is well-known that the derivative of the k-th symmetric polynomial σk(Y ) with respect to yi is the (k − 1)-
th symmetric polynomial σk−1(Y

−
i ), where Y −

i denotes the (d − 1)-tuple obtained from Y by removing Yi.
Therefore, we have

Du(X,Y1, . . . , Yd) = ∂0v(X,Y1, . . . , Yd) +

d∑
k=1

∂kv(X,Y1, . . . , Yd)

d∑
i=1

∂Xf(X,Yi)

∂Y f(X,Yi)
σk(Y

−
i ).

Plugging in f(X,Y ) =
∑d

j=0 gj(X)Y d−j , we have

Du(X,Y1, . . . , Yd) = ∂0v(X,Y1, . . . , Yd) +

d∑
k=1

d∑
j=1

∂kv(X,Y1, . . . , Yd)Dgj(X)

d∑
i=1

Y d−j
i

∂Y f(X,Yi)
σk−1(Y

−
i )

Hence, in order to show Dht(x) = Du(x, y1, . . . , yd), we only need to check

(−1)k1k=j =

d∑
i=1

yd−j
i

∂Y f(x, yi)
σk−1(Y

−
i ). (5.12)

We claim that relation (5.12) follows directly from the formula for the inverse of the Vandermonde matrix.
Namely, let us define the d× d matrix A by setting Aji = yd−j

i . It is well known that the entries of the inverse
A−1 are given by

(A−1)ik =
(−1)kσk−1(Y

−
i )∏

m ̸=i(yi − ym)
.

Noting that
∏

m ̸=i(yi − ym) precisely corresponds to f ′(yi), we see that the equation
∑d

i=1Aji(A
−1)ik = 1j=k

is really the same as the relation (5.12). This completes the proof.

Remark 5.20. Note that one might worry whether the rational function Du can be evaluated at the point
(x, y1, . . . , yd), i.e. whether the denominators ∂Y f(x, yi) vanish. However, since the roots y1, . . . , yd of f(x, Y )

are distinct, the polynomial f(x, Y ) does not share zeros with its derivative ∂Y f(x, Y ), showing that ∂Y f(x, yi) ̸=
0.
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Note that Proposition 5.19 only deals with first order derivatives. However, if we are to show that the vanishing
multiplicities of ct(X,Y ) carry over to ht(xX), we need a similar statement for higher derivatives. We will see
in the following proposition that this is not much harder than the case we dealt with already.

Proposition 5.21. Let x ∈ S and y1, . . . , yd be the roots of f(x, Y ). Let u, v, ht be defined through the
relations (5.4), (5.5), (5.6) through the process of f(X,Y )-elimination on ct. Then, for all ℓ ≥ 0 we have

E(ℓ)ht(x) = E(ℓ)u(x, y1, . . . , yd).

Proof. To prove that the corresponding hyperderivates are equal, we will lift to the characteristic zero field
and prove the equality there. Hence, let x̂ be a lift of x in K and let f̂ be the lift of f in K[X,Y ]. Then,
we define ŷ1, . . . , ŷd as the roots of f̂(x̂, Y ). Note that ŷ1, . . . , ŷd ∈ K must project to y1, . . . , yd ∈ Fq (up to
rearrangement) and hence they must be different. Finally, let û be a lift of u in K[X,Y1, . . . , Yd] such that û is
symmetric in Y1, . . . , Yd. Then we obtain v̂ and ĥt from û through the procedure analogous to the one described
already. Note that we have π(v̂) = v and π(ĥt) = ht.

Having made these definitions, the goal is now to prove E(ℓ)ĥt(x̂) = E(ℓ)û(x̂, ŷ1, . . . , ŷd). Since we are
working in characteristic zero, we can replace E(ℓ) by 1

ℓ!D
ℓ and prove the statement by iterating Proposition 5.19.

Note that the proof of Proposition 5.19 did not rely on any assumptions regarding the base field. Hence,
the case ℓ = 1 follows directly from it. In other words, we have the relation Dĥt(x̂) = Dû(x̂, ŷ1, . . . , ŷd). Now,
we will show how to iterate this to obtain the case ℓ = 2 (and all higher ℓ will follow similarly). If we started
with

û(1)(X,Y1, . . . , Yd) =

d∑
i=1

Dĉ(X,Yi)
∏
j ̸=i

ĉ(X,Yj) = Dû(X,Y1, . . . , Yd),

which is a symmetric polynomial in Y1, . . . , Yd and constructed polynomials

v̂(1)(X,σ1(Y ), . . . , σd(Y )) = û(1)(X,Y1, . . . , Yd) ĥ(1)(X) = v̂(1)(X,−g1(X), . . . , (−1)dgd(X)),

we would have ĥ(1)(x̂) = Dĥt(x̂) for all x̂ ∈ Q. This means that we also have the equality between polynomials
ĥ(1)(X) = Dĥt(X). Applying Proposition 5.19 to the polynomial ĥ(1) implies that D2ĥt(x̂) = D2û(x̂, ŷ1 . . . , ŷd),
solving the ℓ = 2 case. Repeating this procedure inductively now gives the proof for all ℓ.

We have set the ground for showing the main property of ht now - the high vanishing multiplicity.

Proposition 5.22. If ht is a f(X,Y )-elimination of ct and ct vanishes to order M at all points (x, y) with
x ∈ S, y ∈ It(x), then ht vanishes to order M |It(x)| at x.

Proof. We need to check that E(ℓ)ht(x) = 0 for all 0 ≤ ℓ < M |It(x)|. Combining Proposition 5.21 and the
product rule from Proposition 5.4, we find that

E(ℓ)ht(x) =
∑

ℓ1+···+ℓd=ℓ

E(ℓ1)ct(x, y1) · · ·E(ℓd)ct(x, yd).

If ℓ1 + · · ·+ ℓd = ℓ < M |It(x)|, the Pigeonhole principle implies there exists a term E(ℓi)ct(x, yi) with ℓi < M

and yi ∈ It(x). Since ct vanishes to order M at (x, yi), we find that E(ℓi)ct(x, yi) = 0. Hence, every term in the
sum vanishes and we conclude E(ℓ)ht(x) = 0, as needed.

We are now ready for the proof of Proposition 5.13. Note that we have already derived Theorem 5.1 from
Proposition 5.13 in Step 2. Therefore, with this proof also completes the proof of Theorem 5.1.

Proof of Proposition 5.13. By Proposition 5.22, we know that he auxiliary polynomial ht(X) vanishes to order
M |It(x)| at every x ∈ S, and therefore Corollary 5.7 shows that

∑
x∈SM |It(x)| ≤ deg ht. Let us now bound

the degree of ht. We know deg ut ≤ ddeg ct = dtqM + 2qddt. Furthermore, since deg gi ≤ i = deg σi(Y ), we
find that deg ht ≤ deg ut ≤ dtqM +2qddt. Finally, since f does not divide ct, we know that ht is not identically
zero.

Hence, we can conclude that M
∑

x∈S |It(x)| ≤ dtqM +2d2q, and hence if we choose M ≥ Ω( q
1/2

d ) we have∑
x∈S

|It(x)| ≤ dtq +O(d3q1/2).



Chapter 6

Bombieri’s approach to Stepanov’s
method

In this section, we outline another approach to the proof of the Riemann Hypothesis for curves. This proof was
initially suggested by Bombieri [4] and we follow its adaptation from the book of Niederreited and Xing [22].
In this chapter, unlike Chapter 5, we work with a smooth projective plane curve.

We will start by providing some geometric motivation, following Tao’s blog post [32], and then we will
present the formal proof phrased in terms of the function fields. Still, the main tool behind the proof is the
polynomial method and therefore we will be able to bound the number of points on our curve from above.
Unfortunately, using the polynomial method we will obtain only the upper bounds on this number, which will
not be sufficient to prove the Riemann Hypothesis for curves. We will briefly indicate how one might transform
these upper bounds into lower bounds, but this is be outside of the scope of our presentation.

We will work with a projective plane curve C/Fq, where q = s2 is a square and satisfies q > (g + 1)4. For
the time being, the reader might imagine the case when C is a curve over C or R to obtain some intuition from
the geometric picture. One important ingredient of our proof will be the notion of a polynomial on C.

Definition 6.1. Let P∞ be a fixed rational point on C/Fq. We say that a rational function φ ∈ Fq(C) is a
polynomial of degree n if div∞(φ) = −nP∞.

A way to think about this definition is setting P∞ to be the "point at infinity". For example, if we
consider the standard polynomials p ∈ C[x] and extend them to rational functions on the Riemann sphere
P1(C) = C ∪ {∞}, the corresponding rational function has pole of order deg p at ∞.

From the definition, it is not hard to see that the set of polynomials of degree ≤ n on C, denoted by Pn, is
precisely the Riemann-Roch space L(nP∞). This means that we can compute the dimensions of the polynomial
spaces accurately using the Riemann-Roch theorem.

Let us now present the setup of the proof. As before, we will characterize the Fq-rational points of C using
the Frobenius automorphism, i.e. we will try to find the number of points P ∈ C satisfying P q = P , where
P q denotes the point obtained by raising all coordinates of P to q-th power. Our idea will be to consider the
surface C × C and two special curves on it, C1 = {(P, P s) : P ∈ C} and C2 = {(P s, P ) : P ∈ C}.1 The
motivation behind defining such C1, C2 is that the Fq-rational points of P ∈ C correspond to a point in the
intersection C1 ∩ C2. It is not hard to see this - if P ∈ C and P q = P , then (P, P s) ∈ C1 and since P s ∈ C we
have (P q, P s) = (P, P s) ∈ C2. Thus, our goal will be to bound the size of the intersection C1 ∩ C2 from above
and this is what we use the polynomial method for.

We will be interested in finding a polynomial on C × C whose restriction to C1 vanishes identically and
whose restriction to C2 does not vanish. Then, the size of the intersection C1 ∩ C2 will be bounded by the
degree of this polynomial.

The polynomials on C × C will be given by pairs (φ,ψ), where φ,ψ are polynomials on C and (φ,ψ)

1Technically, we are assuming that P 7→ P s takes points of C to C again. This is true if the coefficients of the defining equation
of C lie in Fs, which is something we may assume.
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evaluates to φ(P1)ψ(P2) at a point (P1, P2) ∈ C × C. In particular, we will be interested in the set Pℓ ⊗ Pn

of polynomials (φ,ψ) on C × C where φ ∈ Pℓ, ψ ∈ Pn. When we consider the restrictions of such polynomial
to C1, we find that their degree is at most ℓ + sn, while the restriction to C2 will have degree at most sℓ + n.
Now, if ℓ and n have different size, one might hope that the map from Pℓ ⊗Pn to polynomials on C2 might be
injective, while the map to polynomials on C1 might not be injective for dimension reasons. This would give a
nonzero polynomial of degree ≤ sℓ+ n on C2 which vanishes on C1, giving us a bound on the size of C1 ∩ C2.

Of course, we need to solve some issues before formalizing this proof. Namely, we have developed a theory
of projective plane curves, and it is not clear how whether one can think of C1, C2 as projective plane curves.
Furthermore, one could ask whether the genus of C1, C2 equals the genus of C, which would be important if
we wanted to apply the Riemann-Roch theorem to compute the dimension of the polynomial spaces. Although
none of these issues are fundamental, developing the machinery from algebraic geometry that we need would
simply took us to far from our topic. Fortunately, we can get around these issues by only considering the spaces
of polynomials on C which imitate the construction of C1, C2, thus fitting this proof into the theory we have
developed so far. Here is how we formally establish the upper bound, by working only within the function field.

Proposition 6.2. Let C/Fq be a smooth absolutely irreducible projective plane curve and assume that q is a
square having q > (g + 1)4. Then, the number of Fq-rational points of C is bounded by

#C/Fq ≤ q + (2g + 1)q1/2.

Proof. The central object will be the space Ps−1 ⊗ Pn, where n = s + 2g and s = q1/2, which intuitively
corresponds to polynomials on C × C. Let us now define the spaces corresponding to the polynomials on C1,
C2. We define the polynomial space V to be the image of the homomorphism T : Ps−1⊗Pn → Ps(n+1)−1 given by
φ⊗ ψ 7→ φψs. More explicitly, V is simply the span of polynomials of the form φψs, where φ ∈ Ps−1, ψ ∈ Pn.
It is not hard to see that if φ ∈ Ps−1, ψ ∈ Pn then νP∞(φψs) = νP∞(φ) + sνP∞(ψ) ≤ s − 1 + sn, and so
φψs ∈ Ps(n+1)−1. The space V corresponds to the space of polynomials on C1.2

Similarly, we define the space W as the image of the homomorphism S : Ps−1 ⊗ Pn → Ps(s−1)+n given by
φ⊗ ψ 7→ φsψ, which corresponds to the polynomials on C2.

As explained in the motivation, our goal is to show that T is injective and that S not is injective. Let
us begin by showing that T is injective. To do this, we choose the bases {φi} and {ψj} of Ps−1 and Pn

such that all their elements have distinct degrees. Then, suppose for contradiction that there is a nonzero
element µ =

∑
i,j ci,jφi ⊗ ψj in the kernel of T , for some ci,j ∈ Fq. In other words, we have

∑
i,j ci,jφiψ

s =∑
i φi

(∑
j c

s
i,jψj

)s
= 0, since s is a power of the characteristic of the field Fq. However, note that the terms

with different i in the sum are polynomials of different degrees. This is simply because modulo s the degree
of φi

(∑
j ci,jψj

)s
is νP (φi). However, the strict triangle inequality (Proposition 2.9) for the valuation νP

shows that nonzero elements of different valuations cannot sum to zero, which completes the proof of injectivity.
Hence, the conclusion is that T : Ps−1 ⊗ Pn → V is a isomorphism.

Let us now show that S : Ps−1 ⊗ Pn → Ps(s−1)+n is not injective using dimension counting. Since
Pn = L(nP∞), Riemann’s inequality states that n + 1 ≥ dimFq

Pn ≥ n + 1 − g. Then, the following simple
calculation shows that S must be injective,

dimFq
Ps−1⊗Pn ≥ (s−g)(n+1−g) = (q1/2−g)(q1/2−g+1) = q+q1/2−g(g+1) > q+g+1 = dimFq

Ps2−s+n.

Note that the last equality follows since dimFq
Ps2−s+n = dimFq

L((s2−s+n)P ) = dimFq
L((q+2g)P ) = q+g+1.

We conclude that S is not injective, an that its kernel contains an element µ ∈ kerS.
Now, we come to the final part of the argument. We claim that µ(Q) = 0 for all Fq-rational points of C/Fq

except P∞. To show this, write µ =
∑

i φiψ
s
i for some ψi ∈ Pn (not necessarily the original elements of the

basis), and note that µ must be regular at Q since div∞(µ) is supported on P∞. Since Q is Fq-rational, we
know that φi(Q), ψi(Q) ∈ Fq and therefore we have the following computation:

µ(Q)s =

(∑
i

φi(Q)ψi(Q)s

)s

=
∑
i

φi(Q)sψi(Q)q =
∑
i

φi(Q)sψi(Q) = 0,

2In the geometric motivation, we said that the polynomial corresponding to (φ,ψ) on C1 should be given by φ(P )ψ(P s), but it
is much easier for us to work with φ(P )ψ(P )s. This is only a minor change and does not affect the course of the proof.
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since µ ∈ kerS. The conclusion is that the number of Fq-rational points of C/Fq is at most the number of zeros
of µ, which can be bounded by its degree since deg div0(µ) = deg div∞(µ) ≤ s − 1 + sn. Therefore, we obtain
#C/Fq ≤ 1 + s− 1 + s(s+ 2g) ≤ q + (2g + 1)s. This completes the proof.

Note that the bound from Proposition 6.2 is one-sided and bounds #C/Fq only from above. Even when
combined with the trace formula, this does not suffice to give us the full Riemann Hypothesis for curves. Hence,
we need an additional argument to convert the upper bounds into lower bounds. Before that, let us briefly
remind ourselves how we obtained lower bounds using Schmidt’s approach. Along with this reminder, we will
perform a brief comparison between the two methods.

One of the drawbacks of Schmidt’s method is that it works very explicitly with the coordinates of the points
on the curve C/Fq, and that it treats the coordinates very asymmetrically. In particular, we count the number
of solutions to f(x, y) = 0 when x ∈ Fq and y either belongs or does not belong to Fq. The key to obtaining
lower bounds is that we know that, without any constraint on y, the equation f(x, y) = 0 has dq + O(d2)

solutions for x ∈ Fq. Hence, by obtaining an upper bound on the number of solutions with x ∈ Fq, y /∈ Fq, we
automatically obtain a lower bound on the number of solutions x ∈ Fq, y ∈ Fq. Note that the key to transferring
these bounds was that passing to (x, y) ∈ Fq × Fq allowed us to count the number of solutions almost exactly.

However, Bombieri’s approach works exclusively with the function field of the curve, without referencing
the coordinates in the way Schmidt’s approach does. This means that Bombieri’s approach is intrinsic to the
curve and that it treats the coordinates in a symmetric fashion. Hence, it is not obvious how to extend the
curve C such that we are able to count the number of solutions exactly. To do this, one usually uses Galois
coverings of curves, and this approach is described in [22], [4], [9]. Since discussing this approach in more detail
would require the development of further machinery beyond the scope of this presentation, we do not choose to
present it here.
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