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Abstract

In 1955, Roth proved his famous theorem on Diophantine approximation, which states that for any
algebraic number α ∈ R and any ε > 0, there are only finitely many rational numbers p

q ∈ Q for

which |α − p
q | ≤

1
q2+ε . This theorem extended previous work of Liouville, Thue, Siegel and Dyson,

and bridged the gap between previously known results and Dirichlet’s theorem which shows that
above theorem no longer holds if the exponent 2 + ε is replaced by 2. The intent of this note is to
present the proof of Roth’s theorem in a self-contained way and give the motivation for certain steps
of the proof.

1 Introduction

A basic question in the area of Diophantine approximation is how well can a real number α ∈ R be
approximated by rationals of small denominator. Starting in 19th century, much work has been put
into this field, using techniques of continued fractions and the polynomial method. One of the first
results in the field was the famous Liouville’s theorem.

Theorem 1.1. (Liouville, 1844) Let α ∈ R be an irrational algebraic number of degree d. Then, there
exist a constant C = C(α) > 0 such that for all rationals p

q ∈ Q:∣∣∣α− p

q

∣∣∣ > C

qd
.

Remark. The original motivation behind this result comes from an attempt to construct explicitly
a transcendental number, by constructing a number which can be approximated ”too well” by the
rationals.

We postpone the proof of Liouville’s theorem, and present it at the end of this section. Although
this result is considerably weaker than Roth’s theorem, its proof will serve as a blueprint for under-
standing Roth’s proof. A natural way to improve the above theorem is to obtain a lower exponent of
q on the right-hand side. This motivates the following definition.

Definition 1.A. Let α ∈ R. The approximation degree of α is the smallest real number τ(α) with
the following property: for all exponents κ > τ(α) there are only finitely many rationals p

q ∈ Q with∣∣∣α− p

q

∣∣∣ < 1

qκ
.

In light of this definition, Liouville’s theorem states τ(α) ≤ d for algebraic numbers α of degree d.
An natural question is whether we can determine exactly what τ(α). If α is rational, it is not hard to
get τ(α) = 1. However, the case when α is irrational and algebraic calls for much subtler techniques.
Using the polynomial method, Roth showed τ(α) ≤ 2 for all algebraic numbers α.

Theorem 1.2. (Roth, 1955) Let α ∈ R be an algebraic number. For any ε > 0, there exist only
finitely many rationals p

q ∈ Q for which: ∣∣∣α− p

q

∣∣∣ ≤ 1

q2+ε
. (1)
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The goal of this note is to present the proof of Roth’s theorem in an elementary way, assuming
no more than standard linear algebra. Even though the theorem can be vastly generalized, in many
directions, it is valuable to see the main ideas of the proof stripped of all technicalities coming from
working in higher generality. The proof given here is essentially a rewriting of the proof given in [1],
using slightly different terminology and notation. Additionally, [2] was used as a source of motivation
and for providing a high-level overview of the proof.

Roth’s theorem comes as a final improvement, building on the work of Thue, who showed τ(α) ≤
1
2d + 1, Siegel, who showed τ(α) ≤ 2

√
d and Dyson, who showed τ(α) ≤

√
2d, where d is the degree

of α. Moreover, in conjunction with the following simple result of Dirichlet, Roth’s theorem proves
τ(α) = 2 for all irrational algebraic α ∈ R.

Theorem 1.3. (Dirichlet) Let α ∈ R be an irrational real number. Then, there exist infinitely many
rational numbers p

q ∈ Q for which: ∣∣∣α− p

q

∣∣∣ ≤ 1

q2
. (2)

Proof. Before proceeding to show the above result, we need to show that for any n ∈ Z>0 there exists

a rational number p
q ∈ Q with q ≤ n and

∣∣∣α− p
q

∣∣∣ ≤ 1
nq .

For a positive integer n, consider the set Sn =
{
{kα}|k = 0, . . . , n

}
, where {kα} denotes the

fractional part of kα. Let us partition the interval [0, 1) into n subintervals of the form
[
k
n ,

k+1
n

)
, for

k = 0, . . . , n − 1. As all n + 1 elements of Sn lie in [0, 1), Pigeonhole principle implies there are two
elements of Sn within the same subinterval, say {k1α} and {k2α}.

Assuming k1 < k2, we subtract these two elements to get {(k2 − k1)α} ∈ (− 1
n ,

1
n). Recalling the

definition of the fractional part, we have an integer p for which (k2 − k1)α ∈ (p − 1
n , p +

1
n). Setting

q = k2 − k1 ≤ n and manipulating the above expression gives:∣∣∣α− p

q

∣∣∣ ≤ 1

nq
≤ 1

q2
.

Assume now the inequality (2) has only finitely many rationals p1
q1
, . . . , pmqm ∈ Q satisfying it. It

suffices to pick n > maxi{ 1
|α−p/q|} and find the corresponding approximation p

q ∈ Q using the above

argument. The rational p
q does not coincide with any of the previous solutions by the definition of n.

Moreover, it is also a solution to inequality (2), implying a contradiction to the fact p1
q1
, . . . , pmqm were

all solutions. This completes the proof.

Before passing to the proof of the main theorem, we will present Liouville’s proof.

Proof of Liouville’s theorem. It does not reduce generality to assume α is an algebraic integer of degree
d. Let p

q ∈ Q with |pq −α| ≤ 1 be an arbitrary rational and let f be the minimal polynomial of α with

deg f = d. The idea of the proof is to evaluate f(pq ) and obtain upper and lower bounds which will

give us information about |α− p
q |.

To bound f(pq ) from below is easy. We know f does not vanish at p
q because it is irreducible

of degree d > 1. Therefore, f(pq ) can be written as a nonzero rational number of denominator qd,

implying |f(pq )| ≥
1
qd
.

On the other hand, f has a Taylor expansion around α of the form f(x) = f(α)+(x−α)f ′(α)+· · · .
As deg f = d, this expansion has d terms. The first term of the expansion vanishes, and all others
can be bounded by C0|x − α|, where the constant C0 depends only on α (and the derivatives of its
minimal polynomial). Therefore, we have the upper bound on f(pq ):

f(
p

q
) ≤ C0d

∣∣∣p
q
− α

∣∣∣.
Combining the upper and lower bounds, we get a lower bound on |pq − α|:

C0d
∣∣∣p
q
− α

∣∣∣ ≥ f(
p

q
) ≥ 1

qd
,

2



which directly implies the Liouville’s theorem with C = (C0d)
−1.

This note will be organized into 6 sections. Section 2 serves to present a high-level sketch of
the proof, where we identify the areas where Liouville’s proof can be improved and which kind of
difficulties arise in doing so. In section 3, notation and terminology to be used throughout the paper
is introduced, and several elementary lemmas are proved. In section 4, we show a way to construct
the auxiliary polynomial, which replaces the minimal polynomial from Liouville’s proof. Section 5
contains the essence of the proof, Roth’s lemma, which shows that the auxiliary polynomial cannot
vanish to high order at a rational point near α, under certain assumptions. Finally, section 6 combines
the previous parts and proves Roth’s theorem.

2 Sketch of the proof

When proving Roth’s theorem, we will follow the strategy outlined in Liouville’s proof. However, in
order to gain an improvement on the exponent, we need to use a different polynomial. The main idea
will be to find an integer polynomial P which vanishes at α and does not vanish at rational points p

q

near α in order to obtain a contradictory bounds on P (pq ).
In order to apply this idea, there is a significant difficulty we need to solve. If P ∈ Z[x] vanishes

at α to order n, we expect P (pq ) to behave like
∣∣∣α− p

q

∣∣∣n for p
q close to α. At the same time, the lower

bound on P (pq ) will be
1

qdegP , where degP is the degree of the P . Taking n-th roots, we would obtain

a lower bound
∣∣∣α − p

q

∣∣∣ ≥ 1
qdegP/n . Therefore, in order to improve upon Liouville’s result and obtain

an exponent lower than d = degα, we would need degP < nd. Unfortunately, it is not possible to
construct a polynomial P of degree less than nd vanishing at α to order n because vanishing constraints
imply fn|P , where f is the minimal polynomial of α. Hence, degP ≥ n deg f = nd.

In order to go around this difficulty, we consider polynomials in more than one variable, P ∈
Z[x1, . . . , xm]. we construct these so that they vanish (α, . . . , α) ∈ Rm to high enough order, which
serves to establish upper bounds on the value of P at a rational point. Then, under reasonable
assumptions we will be able to prove that P does not vanish to high order at the rational point near
(α, . . . , α), which will provide us with lower bounds. More precisely, the proof can be divided into
four main steps.

• Choose m and a sequence of rational approximations for α, denoted by p1
q1
, . . . , pmqm whose de-

nominators increase rapidly. Also, construct a polynomial P vanishing at (α, . . . , α) to high
order.

• Show that P does not vanish at the point
(
p1
q1
, . . . , pmqm

)
.

• From the vanishing of P at (α, . . . , α) and closeness of approximations p1
q1
, . . . , pmqm , derive an

upper bound for P
(
p1
q1
, . . . , pmqm

)
.

• Choose the parameters in order to obtain a contradictions by combining upper and lower bounds.

We proceed to perform the above steps mostly in order - after covering the preliminaries in section
3, section 4 constructs the polynomial P and section 5 argues why it does not vanish to high order.
Finally, section 6 completes the last two steps and presents the complete proof. Let us make three
additional short remarks before introducing formal definitions and statements.

In order to obtain useful upper bounds, we must construct P carefully so that it does not have
too large coefficients. This will be accomplished using Siegel’s lemma, which talks about existence of
small integer solutions to the system of these linear equations with bounded coefficients.

On the other hand, it turns out that P will have very unbalanced degrees in different variables.
Therefore, it is not very useful to measure the standard vanishing order at a certain point. Rather, we
need to introduce a more refined notion of the index at a point which will behave as a scaled version
of the vanishing order. With this new definition, each variable will contribute equally to the index,
even with unbalanced degrees.
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Finally, before developing the whole machinery we reduce the theorem to the case of algebraic
integers. This makes the constructions somewhat simpler, as we only care about integer coefficient
polynomials.

Claim 2.1. It suffices to prove Roth’s theorem in case α is an algebraic integer.

Proof. Assume Roth theorem holds in case α is an algebraic integer and let D be an integer for which
Dα is an algebraic integer. In case there are infinitely many p

q ∈ Q satisfying equation (1), we also
have infinitely many solutions to: ∣∣∣Dα−D

p

q

∣∣∣ < D

q2+ε
.

For all except finitely many of these we have qε/2 > D, and therefore we also have infinitely many

solutions to
∣∣∣Dα − p′

q′

∣∣∣ ≤ 1
q′2+ε/2 . However, this contradicts Roth’s theorem for algebraic integers and

completes the reduction.

3 Preliminaries

Throughout this note, multivariate polynomials will be ubiquitous. Therefore, we start by introducing
the basic terminology, most notably the concept of the index, and proceed to prove a couple of
elementary facts which will be used in the subsequent sections.

The set of polynomials in variables x1, . . . , xm with integer coefficients is denoted Z[x1, . . . , xm].
For a polynomial P ∈ Z[x1, . . . , xm] of the form P =

∑
i1,...,im

ci1,...,imx
i1
1 · · ·ximm , we use the shorthand

notation P =
∑

I cIx
I , where I = (i1, . . . , im) and xI = xi11 · · ·ximm . We also define the partial degree

of P in variable xk as the maximal degree of xk appearing in P , and denote it by degk P . It is also
worth noting that the base of all logarithms is 2, although this is only an ad-hoc convention and has
no real impact on the proof.

For a multi-index µ ∈ Zm
≥0, the differential operator ∂µ is defined in the following unusual way:

∂µP (x1, . . . , xm) =
1

µ1! · · ·µm!

( ∂

∂x1

)µ1

· · ·
( ∂

∂xm

)µm

P (x1, . . . , xm)

Moreover, for µ ∈ Zm
≥0, its size is defined as |µ| = µ1 + · · ·+ µm.

Finally, as a scaled measure of vanishing order at a given point, the definition of the index proves
to be very useful. The index of a polynomial P at a point ξ = (ξ1, . . . , ξm) with respect to a degree
sequence d = (d1, . . . , dm) is defined as:

ind(P ;d, ξ) = min
{ m∑

i=1

µi

di

∣∣∂µP ̸= 0
}

It is also common to talk about the index of the monomial xI , which is simply
∑m

k=1
ik
dk
. Index of the

polynomial behaves in many ways similar to the vanishing order, as shown by the following claim.

Claim 3.1. For arbitrary polynomials P,Q ∈ Z[x1, . . . , xm] and d ∈ Zm
>0, µ ∈ Zm

≥0, ξ ∈ Rm, the index
defined as above has the following properties:

• ind(P +Q;d, ξ) ≥ min
(
ind(P ;d, ξ), ind(Q;d, ξ)

)
• ind(PQ;d, ξ) = ind(P ;d, ξ) + ind(Q;d, ξ)

• ind(∂µP ;d, ξ) ≥ ind(P ;d, ξ)−
∑m

i=1
µi

di

Proof. Generally, a good way to understand the index is to work with the Taylor polynomial. We
may assume that ξ = (0, . . . , 0), and in this case Taylor polynomial coincides with the notation
P =

∑
I cIx

I , Q =
∑

J dJx
J .

We start by showing the first property. Note that all monomials in either of the sums have index
≥ min

(
ind(P ;d, ξ), ind(Q;d, ξ)

)
. Therefore, the polynomial P +Q cannot contain any monomial of

smaller index.
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The second property is similar: we start from PQ =
∑

I,J cIdJx
I+J , where

∑
k

ik
dk

≥ ind(P ;d, ξ),∑
k

jk
dk

≥ ind(Q;d, ξ) for all terms. Summing the constrains gives
∑

k
ik+jk
dk

≥ ind(P ;d, ξ)+ind(Q;d, ξ),
which means ind(PQ;d, ξ) ≥ ind(P ;d, ξ) + ind(Q;d, ξ). Showing the other inequality is straightfor-
ward as well: pick minimal index monomials xI in P and xJ in Q (if there are several choices, pick
the minimal one in lexicographic order on I, J). It is not hard to see that this monomial cannot be
cancelled, which shows the exact equality.

Finally, the third property is also direct. The monomials of ∂µP are of the form xI−µ, and
therefore

∑
k

ik−µk
dk

=
∑

k
ik
dk

−
∑

k
µk
dk

≥ ind(P ;d, ξ)−
∑

k
µk
dk
.

For a polynomial P ∈ Z[x1, . . . , xm], we define its height, or norm, as the maximum absolute value
of its coefficients. In other words, if P =

∑
I cIx

I we have ∥P∥ = maxI |cI |. The following two claims
will be very useful when estimating the height of various polynomials in section 5.

Claim 3.2. Let P ∈ Z[x1, . . . , xm], Q ∈ Z[xm+1, . . . , xn] have independent variables. Then, one has
∥PQ∥ = ∥P∥ · ∥Q∥.

Proof. Coefficients of PQ correspond to products of coefficients of P and Q as there is no cancellations.
Hence, the conclusion follow immediately.

Claim 3.3. (Gelfond’s lemma) Let P1, . . . , Pn ∈ Z[x1, . . . , xm] be any polynomials, and let P =∏n
j=1 Pj. Then, ∥P∥ ≤ 2d

∏n
j=1 ∥Pj∥, where d is the sum of partial degrees of P .

Proof. Let us introduce the notation Pj =
∑

µ c
(j)
µ xµ. Then,

P =
n∏

j=1

∑
µ

c
(j)
µ xµ =

∑
µ1,...,µn

( n∏
j=1

c
(j)
µ

)
xµ1+···+µn .

Each of the products
(∏n

j=1 c
(j)
µ

)
is bounded by

∏n
j=1 ∥Pj∥. The number of n-tuples (µ1, . . . ,µn)

with the same µ1 + · · · + µn is at most the number of all monomials in the full expansion of
∏

j Pj ,

which is
∏n

j=1

∏m
i=1(1 + degi Pj) < 2d. Therefore, the coefficients of the resulting polynomial are

bounded by 2d
∏n

j=1 ∥Pj∥, which completes the proof.

4 Constructing the auxiliary polynomial

The goal for this section is to construct a polynomial P ∈ Z[x1, . . . , xm] which has bounded degree,
high index at (α, . . . , α) and relatively small coefficients.

Lemma 4.1. Let α ∈ R be an algebraic integer of degree r and let ε > 0,m > rε−2. Set t =
(
1
2−ϵ

)
m,

and let d1, . . . , dm be big enough. Then, there exists a nontrivial polynomial P ∈ Z[x1, . . . , xm] and a
constant C = C(α) > 0 such that degi P ≤ di for i = 1, . . . ,m, ind

(
P ; (d1, . . . , dm), (α, . . . , α)

)
≥ t,

and ∥P∥ ≤ 2C
∑m

i=1 di.

Proof. The idea of the proof is to first write P as a polynomial with undetermined coefficients, and to
impose a set of linear equations on the coefficients which will ensure that the index of P at (α, . . . , α)
is big enough. Using Siegel’s lemma to find a small solution to the resulting set of equations, we will
be able to show P can be chosen to have small coefficients.

Let us write P (x1, . . . , xm) =
∑

I cIx
I , where cI ∈ Z are coefficients to be determined. In

order to ensure the index of P at (α, . . . , α) is high, P must satisfy ∂µP (α, . . . , α) = 0 for all
multi-indices µ of index ≤ t. Expanded in terms of the coefficients, these equations take the form∑

I cI
(
i1
µ1

)
· · ·

(
im
µm

)
α(i1−µ1)+···+(im−µm) = 0.

If the goal is to find small integer solution cI to the above system, there are three issues we need
to take care of. First, the coefficients of linear equations are not rational numbers, and therefore we
need to justify why non-trivial integer solutions exist. Second, we need to compare the number of
variables cI and equations, and finally we need to bound the size of the coefficients in the equations.
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To address the first point, note that α is an algebraic integer of degree r. This means αr is a integer
linear combination of αr−1, . . . , α, 1. Moreover, the size of the coefficients of this integer combination
is at most ∥f∥, where f is the minimal polynomial of α. Therefore, one can replace the highest power
of α in every equation by the lower powers of α until only αr−1, . . . , α, 1 are left in the equation. After
replacing a single power of α by smaller ones, the coefficients of the equation increase at most ∥f∥
times. Hence, after forming the new equations, the coefficients have increased at most ∥f∥d1+···+dm

times, as αd1+···+dm is the highest power of α appearing in the equations.
After being left only with r lowest powers of α, the idea is to group the terms of every equation

into r brackets, depending on which power of α the terms contain. As the first r powers of α are
linearly independent, it is natural to split every equation into r new ones, setting every bracket of
every equation to 0. Now, all coefficients of the new equations are integers, and thus we proceed to
count how many equations there are.

As the last step only multiplies the number of equations by r, we need to count how many equations
we originally had. This is precisely equal to the number of multi-indices µ of index ≤ t. The following
lemma counts how many such indices there are.

Lemma 4.2. Let d1, . . . , dm ∈ Z be integers and let ϵ > 0. Let T (ϵ) be the number of m-tuples
(µ1, . . . , µm) ∈ Zm with 0 ≤ µi ≤ di and

∑m
i=1

µi

di
≤ m

(
1
2 − ϵ

)
. Then,

T (ε) ≤ 1

24mϵ2

m∏
i=1

(di + 1).

Proof. The idea is to think of µi as random variables uniformly distributed on {0, . . . , di}. From this

perspective T (ϵ)∏m
i=1(1+di)

corresponds to the probability
∑m

i=1
µi

di
≤ m

(
1
2 − ϵ

)
. To bound this probability,

we use standard probability theory techniques.
The expectation of

∑m
i=1

µi

di
is E[

∑m
i=1

µi

di
] =

∑m
i=1

E[µi]
di

= m
2 . On the other hand, the variance of

this variable is:

V[
m∑
i=1

µi

di
] =

m∑
i=1

V[µi]

d2i
=

m∑
i=1

d2i − 1

12d2i
≤ m

12
.

Therefore, Chebyshev’s inequality completes the proof:

P

[
m∑
i=1

µi

di
≤ m

(1
2
− ϵ

)]
=

1

2
P

[∣∣∣ m∑
i=1

µi

di
− m

2

∣∣∣ ≥ mϵ

]
≤ 1

2

V
[∑m

i=1
µi

di

]
m2ϵ2

≤ 1

24mϵ2
.

Remark. The bounds from this lemma can be significantly improved by using Chernoff bounds
instead of Chebyshev inequality. However, the key takeaway from this lemma is that by increasing m,
one can make T (ϵ)∏m

i=1(1+di)
arbitrarily small. Thus, the exact bounds themselves bear no significance,

we opt for a more elementary proof.
The above lemma now allows us to conclude there are M ≤ r

24mϵ2
∏m

i=1(di + 1) ≤ 1
24

∏m
i=1(di + 1)

equations. On the other hand, there are N =
∏m

i=1(di + 1) undetermined coefficients cI . Finally, the
coefficients of original equations had size at most 2

∑m
i=1 di , and they were increased at most ∥f∥

∑m
i=1 di

times, implying the size of the final coefficients can be bounded by T = (2∥f∥)
∑m

i=1 di . Having all
these prerequisites, the final ingredient of the proof is Siegel’s lemma, which ensures that we can find
small cI solving the above system.

Lemma 4.3. (Siegel’s lemma) Consider a linear system of M equations of the form
∑N

j=1Ai,jxj = 0,
for i = 1, . . . ,M . If Ai,j are integers of norm bounded by T , then there exists an integer solution

x ∈ Zn with maxi |xi| ≤ 2(3NT )
M

N−M .

Proof. The proof relies on the Pigeonhole principle. The idea of the proof is to find a vector x in a
box [−K,K]N ⊂ RN such that Ax = 0M . We do this by finding two vectors with the same image and
subtracting them.
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More precisely, let K = (3NT )
M

N−M and define the boxes B1 = {x ∈ Rn| − K ≤ |xi| ≤ K},
B2 = {y ∈ RM | −NTK ≤ |yi| ≤ NTK}. First, note that Ax ∈ B2 for x ∈ B1, because:

|(Ax)j | = |
N∑
i=1

Aijxi| ≤ N max
i

|Aij |max
i

|xi| ≤ NTK.

The definition of K and an easy computation shows B2 has less integer points than B1. Hence, by
Pigeonhole principle, there are vectors x1,x2 ∈ B1 with Ax1 = Ax2. If we let x = x1 −x2, it is clear

that Ax = 0M and maxi |xi| ≤ 2K = 2(3NT )
N

N−M , completing the proof.

The above lemma directly applies to the problem at hand, and thus there exist the coefficients cI
solving the constructed system and having size at most

|cI | ≤ 2
(
3

m∏
i=1

(1 + di)(2∥f∥)
∑m

i=1 di
) M

N−M ≤ 2C
∑m

i=1 di ,

because M ≤ 1
24N . This completes the proof and constructs the auxiliary polynomial.

5 Roth’s lemma

The main ingredient of the proof is Roth’s lemma, which serves to bound the the index of a polynomial
at a rational point of large height near (α, . . . , α). More precisely, we have the following statement:

Lemma 5.1. (Roth’s lemma) Let P ∈ Z[x1, . . . , xm] be the auxiliary polynomial for which degi P ≤ di,
with d1, . . . , dm ∈ Z>0. Also, let 0 < σ ≤ 1

2 and (p1q1 , . . . ,
pm
qm

) ∈ Qm such that the following assumptions
are satisfied:

• for i = 1, . . . ,m− 1, we have σdi ≥ di+1, and

• for i = 1, . . . ,m we have qdii ≥ 24md1σ−1∥P∥σ−1
.

Then, ind(P ;d, (p1q1 , . . . ,
pm
qm

)) ≤ 2mσ
1

2m−1 .

Before passing to the proof of this lemma, we show an auxiliary claim about linearly independent
polynomials and their Wronskians. This lemma is classical and our proof is based on [3].

Lemma 5.2. Let h1, . . . , hn ∈ Z[x1, . . . , xm] be arbitrary polynomials. These polynomials are linearly
independent over Q if and only if there exist multi-indices µ1, . . . ,µn such that |µi| ≤ i − 1 and the

Wronskian Wµ1,...,µn = det
(
∂µihj

)
i,j=1,...,n

is not identically zero.

Proof. Suppose first that h1, . . . , hn are linearly dependent, i.e. that there exist scalars c1, . . . , cn ∈ Q,
not all zero, for which

∑n
i=1 cihi = 0. The goal is to show that any Wronskian Wµ1,...,µn vanishes

identically. Then, applying µj derivative to the above equation gives
∑n

i=1 ci∂µjhi = 0. This shows
that the columns of the matrix defining Wµ1,...,µn are linearly dependent, which means Wµ1,...,µn

vanishes identically.
Next, consider the case when hj are linearly independent. The first step is to reduce the multi-

variate case to the univariate one. To this end, we have the following claim:

Claim 5.1. Choose an integer d ∈ Z>0 bigger than the partial degrees of hj, d > maxi,j degi hj.

Then, the polynomials Hj(t) = hj(t, t
d, . . . , td

m−1
) ∈ Z[t] for j = 1, . . . , n are linearly independent if

hj(x1, . . . , xm) ∈ Z[x1, . . . , xm] are linearly independent.

Proof. First, note that the mapping xk11 . . . xkmm 7→ t
∑m

i=1 kid
i−1

is injective by the assumption on d.
Therefore, the monomials appearing in hj(x1, . . . , xm) and Hj(t) are in one-to-one correspondence.

Suppose polynomials Hj are not independent, i.e. there exists scalars c1, . . . , cn ∈ Q, not all zero,
such that

∑n
j=1 cjHj(t) = 0. Then, for every exponent k =

∑m
i=1 kid

i−1 we have
∑n

j=1 cj [t
k]Hj = 0,

7



where [tk]Hj stands for the coefficient of tk in Hj . Using the one-to-one correspondence established

above we have
∑n

j=1 cj [x
k1
1 . . . xkmm ]hj = 0. Summing over all monomials xk11 . . . xkmm now gives the

linear dependency of polynomials hj , implying a contradiction.1

In case of univariate polynomials, a simple criterion checks linear independence.

Claim 5.2. If the polynomials H1, . . . ,Hn ∈ Q[t] are linearly independent, the Wronskian defined by

W (t) = det
((

d
dt

)i−1
Hj(t)

)
i,j=1,...,n

is not identically zero.

Proof. Before computing the Wronskian, we will alter the polynomials Hj slightly. The idea is that
adding to one of the polynomials Hj a linear combination of Hi with i ̸= j does not change the
Wronskian. More precisely, for any choice of scalars ci ∈ Q, replacing Hj 7→ Hj +

∑
i ̸=j ciHi will not

change the Wronskian. Therefore, by performing appropriate operations, we may assume that the
lowest order terms of all Hj are of different degree.

Linear independence guarantees that the polynomials will remain non-zero throughout this process,
meaning every Hj(t) will have a well defined lowest order term. In other words, we may write
Hj(t) = ajt

bj (1 + tFj(t)), for some polynomials Fj ∈ Q[t]. Their derivatives will now have the
form ( d

dt

)i
Hj(t) = aj(bj)it

bj−i(1 + tGi,j(t)),

where (bj)i = bj(bj − 1) · · · (bj − i+ 1) denotes the falling factorial and Gi,j(t) ∈ Q[t]. Using this, one
can get an expression for the Wronskian determinant as:

W (t) = det
(
aj(bj)i−1t

bj−i+1(1 + tGi−1,j(t))
)
i,j=1,...,n

=
( n∏

j=1

aj

)
tb1+···+bn−(n2) det

(
(bj)i−1(1 + tGi−1,j(t))

)
i,j=1,...,n

. (3)

The identity (3) follows directly from the permutation expansion, by noting that every term con-
tains exactly b1 + · · ·+ bn −

(
n
2

)
power of t.

As our goal showing that Wronskian is not zero, note that first two factors are clearly nonzero,
while the final determinant modulo t corresponds to the determinant D = det

(
(bj)i−1

)
i,j=1,...,n

.
To see why this determinant is nonzero for pairwise distinct bj , it is useful to define the polynomials

pi(x) = (x)i = x(x − 1) . . . (x − i + 1) and note D = det
(
pi−1(bj)

)
i,j=1,...,n

. Note that polynomials
p0, . . . , pn−1 all have different degrees and therefore are linearly independent. As they all belong to a
space of dimension n, they form a basis for it. Elementary linear algebra now shows that the basis
1, x, . . . , xn−1 of this space can be obtained from p0, . . . , pn−1 through elementary operations. In other
words, the determinant D can be transformed into the Vandermonde determinant using elementary
operations, and the Vandermonde determinant is clearly nonzero as the integers bj are distinct.

Therefore, the determinant D ̸= 0, which implies det
(
(bj)i−1(1 + tPi−1,j(t))

)
i,j=1,...,n

is nonzero

modulo t and therefore nonzero in general. Finally, using equation (3), we conclude W (t) is also not
identically zero, which completes the proof of the claim.

To complete the proof of the lemma 5.2 is now relatively straightforward. The idea is to express
the Wronskian of H1, . . . ,Hn using the Wronskians Wµ1,...,µn of h1, . . . , hn. To do that, note first that

the derivatives
(
d
dt

)i−1
Hj(t) can be expressed as a linear combination of ∂µhj for |µ| ≤ i− 1. In other

words, a simple induction and chain rule show there exist polynomials pi,µ(t) depending on d,m but
not on h1, . . . , hn such that:( d

dt

)i−1
Hj(t) =

∑
|µ|≤i−1

pi,µ(t)∂µhj(t, . . . , t
dm−1

). (4)

1It is not hard to see that this proof actually shows that linear independence of Hj implies linear independence of hj ,
but we skip this because it is not necessary for the main proof.
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Using (4), it is easy to express the Wronskian W (t) as:

W (t) = det
(( d

dt

)i−1
Hj(t)

)
i,j=1,...,n

= det
( ∑
|µ|≤i−1

pi,µ(t)∂µhj(t, . . . , t
dm−1

)
)
i,j=1,...,n

=
∑

µ1,...,µn

|µi|≤i−1

p1,µ1(t) · · · pn,µn(t) det
(
∂µihj(t, . . . , t

dm−1
)
)
i,j=1,...,n

=
∑

µ1,...,µn

|µi|≤i−1

p1,µ1(t) · · · pn,µn(t)Wµ1,...,µn(t, t
d, . . . , td

m−1
)

If the Wronskian W (t) is not identically zero, it must be that one of the terms of the right hand side
is also nonzero. This shows the existence of multi-indices µ1, . . . ,µn for which Wµ1,...,µn(x1, . . . , xm)
is nonzero, which completes the proof of the lemma.

Proof of Roth’s lemma. The proof proceeds by induction on the number of variables. First, we deal
with case m = 1.

If t = ind(P ;d, p1q1 ), we have
(
x1 − p1

q1

)td1
|P (x1), and therefore Gauss’ lemma gives (q1x1 −

p1)
t1d|P (x1). Looking at the highest order coefficient in P implies ∥P∥ ≥ qtd11 . Combining this

with the assumption qd11 ≥ 24d1σ
−1∥P∥σ−1

, we infer q1 ≥ 22σ
−1
qtσ

−1

1 , i.e. t ≤ σ. This provides a
slightly better bound, ind(P ;d, p1q1 ) ≤ σ, the improvement which we will use later.

In case m > 1, we represent P as a linear combination P =
∑s

j=0 fj(x1, . . . , xm−1)gj(xm), with
minimal s. Note that minimality of s implies that {fj}, {gj} are linearly independent. Therefore, by
the preliminary lemma, there exist multi-indices µ0, . . . ,µs with |µi| ≤ i and the following nonzero
Wronskians:

U(x1, . . . , xm−1) = det
(
∂µifj

)
i,j=0,...,s

̸= 0, V (xm) = det
(
∂νgj

)
ν,j=0,...,s

̸= 0.

Note that multiplying U and V yields a nonzero polynomial W of the form

W (x1, . . . , xm) = U(x1, . . . , xm−1)V (xm) = det
(
∂µi,νP

)
i,ν=0,...,s

. (5)

The polynomial W turns out to be very useful in upper bounding the index of P . Therefore,
after showing the relation between these two indices, we turn to bounding the index of W from above
by inductively applying Roth’s lemma to U and V . Combining these two bounds will complete the
inductive step.

In what is to follow, we will fix the degree sequence d and the point
(
p1
q1
, . . . , pmqm

)
and denote

ind(f ;d,
(
p1
q1
, . . . , pmqm

)
) simply by ind(f), for a polynomial f ∈ Z[x1, . . . , xm].

Claim 5.3. For W defined as above, ind(W ) ≥ (s+ 1)
(
1
2 min(ind(P ), ind(P )2)− σ

)
.

Proof. By the properties given in claim 3.1, if j ∈ {0, . . . , s}:

ind(∂µj ,νP ) ≥ ind(P )−
m−1∑
i=1

µji

di
− ν

dm
≥ ind(P )− |µj |

dm−1
− ν

dm

Note that |µj | ≤ s by definition of the Wronskian and s ≤ dm as {gj} is a family of s + 1 linearly
independent polynomials of degree ≤ dm. Therefore,

ind(∂µj ,νP ) ≥ ind(P )− |µj |
dm−1

− ν

dm
≥ ind(P )− ν

dm
− dm

dm−1
≥ max

(
ind(P )− ν

dm
, 0
)
− σ,

where the last inequality follows from the fact index must always be nonnegative. The last bound
can be used to control the indices of W and P using claim 3.1 and the permutation expansion of the
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determinant from (5):

ind(W ) ≥ min
π∈Ss+1

s∑
i=0

ind(∂µi,π(i)P ) ≥ min
π∈Ss+1

s∑
i=0

[
max

(
ind(P )− π(i)

dm
, 0
)
− σ

]
ind(W ) ≥

s∑
i=0

max
(
ind(P )− i

s
, 0
)
− σ(s+ 1)

Finally, we want to bound
∑s

i=0max
(
ind(P )− i

s , 0
)
. In case ind(P ) ≥ 1, we have:

s∑
i=0

max
(
ind(P )− i

s
, 0
)
= (s+ 1) ind(P )− s(s+ 1)

2s
≥ (s+ 1)

ind(P )

2
.

In case ind(P ) < 1, we can write ind(P ) = k
s + λ, for k ≤ s− 1, 0 ≤ λ < 1

n . Then,

s∑
i=0

max
(
ind(P )− i

s
, 0
)
= (s+ 1)λ+

k(k + 1)

2s
≥ s+ 1

2

(k
s
+ λ

)2
,

where the last inequality follows by expanding the square and cancelling the remaining terms. Com-
bining the previous three equations, we finally get:

ind(W ) ≥ s+ 1

2
min

(
ind(P ), ind(P )2

)
,

which completes the proof of this claim.

On the other hand, one can bound ind(W ) from above using the induction hypothesis, which is
shown in the following claim.

Claim 5.4. For W defined as above, ind(W ) ≤ 2(m− 1)(s+ 1)σ1/2m−2
+ (s+ 1)σ.

Proof. As W = U · V , claim 3.1 implies

ind(W ;d,
(p1
q1

, . . . ,
pm
qm

)
) = ind(U ; (d1, . . . , dm−1),

(p1
q1

, . . . ,
pm−1

qm−1

)
) + ind(V ; dm,

pm
qm

).

Our goal is now to analyze the indices of U, V as given above. Before applying Roth’s lemma, we
need to bound the norms of U, V . To this end, we recall claim 3.2 gives ∥U∥∥V ∥ = ∥W∥. One can
also show ∥W∥ ≤ 24d1(s+1)∥P∥s+1 as follows.

If we let d =
∑m

i=1 degi P , Gelfond’s lemma (claim 3.3) implies:

∥W∥ = ∥
∑

π∈Ss+1

s∏
j=0

∂µi,π(i)P∥ ≤ (s+ 1)! max
π∈Ss+1

∥
s∏

j=0

∂µi,π(i)P∥ ≤ (s+ 1)! max
π∈Ss+1

2d
s∏

j=0

∥∂µi,π(i)P∥

As ∂µi,π(i)x
I =

(
i1
µ1

)
· · ·

(
im
π(i)

)
xI−µ, we have the bound ∥∂µi,π(i)P∥ ≤ 2d∥P∥. Using that σ ≤ 1

2 implies

d ≤ 2d1, we now have the bound on ∥W∥:

∥W∥ ≤ (s+ 1)! max
π∈Ss+1

2d
s∏

j=0

∥∂µi,π(i)P∥ ≤ 22s
2
22d122d1(s+1)∥P∥s+1 ≤ 24d1(s+1)∥P∥s+1. (6)

As ∥U∥∥V ∥ = ∥W∥, we have ∥U∥ ≤ ∥W∥, ∥V ∥ ≤ ∥W∥, and therefore the bound (6) suffices to to apply
the induction hypothesis on U, V . First, let us define a new degree sequence with respect to which
their indices will be calculated. Let d′i = (s + 1)di and let d′ = (d′1, . . . , d

′
m−1). Then, one can apply

Roth’s lemma to U , with the new degree sequence d′, same σ and at the same point (p1q1 , . . . ,
pm−1

qm−1
).

The degrees d′i obviously still satisfy the assumptions, and we have degi U ≤ d′i,degm V ≤ d′m because
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U is a determinant of a (s + 1) × (s + 1) matrix with entries of partial degrees bounded by di. The
second assumption is also satisfied because:

q
(s+1)di
i ≥ 24m(s+1)d1σ−1∥P∥(s+1)σ−1 ≥ 24(m−1)(s+1)d1σ−1∥U∥σ−1

.

Therefore, the conclusion of the lemma is:

ind(U ;d′,
(p1
q1

, . . . ,
pm−1

qm−1

)
) ≤ 2(m− 1)σ1/2m−2

.

One can also check the improved version of the lemma in case m = 1 applies to V , and hence
ind(V ; d′m, pmqm ) ≤ σ.

Relating these indices to the original degree sequence amounts to scaling the bounds by s+1, and
therefore:

ind(W ;d,
(p1
q1

, . . . ,
pm
qm

)
) ≤ 2(m− 1)(s+ 1)σ1/2m−2

+ (s+ 1)σ,

which completes the proof of the claim.

Combining the bounds for ind(W ) from the previous two claims, we get:

s+ 1

2

[
min

(
ind(P ), ind(P )2

)
− σ

]
≤ 2(m− 1)(s+ 1)σ1/2m−2

+ (s+ 1)σ

1

2
min

(
ind(P ), ind(P )2

)
≤ 2(m− 1)σ1/2m−2

+ 2σ

The last equation gives min
(
ind(P ), ind(P )2

)
≤ 4mσ1/2m−2

. From the definition of the index, it is

clear ind(P ) ≤ m and therefore ind(P )2 ≤ 4m2σ1/2m−2
. Taking the square root of the last bound

finally completes the proof of Roth’s lemma.

6 Completing the proof

Having constructed the auxiliary polynomial and proven Roth’s lemma, we are now ready to put
together all the pieces and prove Roth’s theorem.

Proof. The idea of the proof is to assume the contrary, i.e. that there are infinitely many good
approximations p

q , and choose a sequence of m rationals p1
q1
, . . . , pmqm with increasing denominators.

Then, we will construct the auxiliary polynomial having high index at α, using the arguments from
section 4. The goal will be to show that this auxiliary polynomial P does not have high index at the

point
(
p1
q1
, . . . , pmqm

)
, which will ultimately provide a contradiction.

Before using the lemma we proved earlier, we will first fix their parameters based on ε. First, pick
ϵ > 0 such that (2 + ε)(12 − 3ϵ) > 1, m > rϵ−2 and fix σ = ϵ2

m−1
. Then, choose two parameters

M = σ−1 and L ≥ (4m+ 2C)σ−1, where C = C(α) > 0 is the constant produced by lemma 4.1. We
will have one more condition on L, but we postpone the precise bound because it would be unnatural
to state it now. Using these parameters and the assumption there are infinitely many rational solutions
to equation (1), we can find a sequence of m solutions p1

q1
, . . . , pmqm satisfying q1 ≥ 2L, qi+1 ≥ qMi . With

these qi fixed, we choose the degrees sequence of our auxiliary polynomial to be di =
D

log qi
, where D

is a very big integer we will let go to infinity at the end of the proof. It may be that di defined in this
way are not integers, but this is only a technical point which does not alter the essence of the proof -
one may round them to the nearest integer.

Having fixed the above parameters, use lemma 4.1 to construct a polynomial P with degi P ≤ di,
ind

(
P ; (d1, . . . , dm), (α, . . . , α)

)
≥

(
1
2 − ϵ

)
m, and coefficients of controlled size, ∥P∥ ≤ 2C

∑m
i=1 di .

Before applying Roth’s lemma, we need to check its assumptions. The first one, σdi ≥ di+1

directly follows from log qi+1 > M log qi = σ−1 log qi. On the other hand, to verify the second as-
sumption we need to check that 24md1σ−1∥P∥σ−1 ≤ qdii . Recalling the bounds on ∥P∥, this reduces

to 24md1σ−1∥P∥σ−1 ≤ 24md1σ−1
2Cσ−1

∑m
i=1 di . As di = D/ log qi, and log qi ≥ LM i−1, we further
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have the inequality 24md1σ−1
2Cσ−1

∑m
i=1 di ≤ 2

D
L
σ−1

(
4m+C M

M−1

)
. Finally, from the choice of L, as

L > (4m+ 2C)σ−1, we have 2
D
L
σ−1

(
4m+C M

M−1

)
≤ 2D = qdii , which checks the second condition.

Applying Roth’s lemma now ensures ind(P ;d, (p1q1 , . . . ,
pm
qm

)) ≤ 2mσ
1

2m−1 . This means there exists

a multi-index µ of index ≤ 2mσ1/2m−1
= 2mϵ and ∂µP (p1q1 , . . . ,

pm
qm

) ̸= 0.

Therefore, we set Q = ∂µP and note that the index of Q at (α, . . . , α) remain high, ≥
(
1
2 − 3ϵ

)
m,

and Q does not vanish at (p1q1 , . . . ,
pm
qm

). Moreover, Q has coefficients ≤ 2(C+1)
∑m

i=1 di . Giving lower

and upper bounds on Q(p1q1 , . . . ,
pm
qm

) now gives a contradiction.
First, note that the lower bound trivially follows from the non-vanishing property and the fact

degiQ ≤ di:

Q
(p1
q1

, . . . ,
pm
qm

)
≥

m∏
i=1

1

qdii
≥ 1

2Dm

For the upper bound, we first write the Taylor expansion of Q around (α, . . . , α). Note that all
sums in the Taylor expansion are finite as Q is a polynomial:∣∣∣Q(p1

q1
, . . . ,

pm
qm

)∣∣∣ ≤ ∣∣∣∑
µ

∂µQ(α, . . . , α)
(p1
q1

− α
)µ1

· · ·
(pm
qm

− α
)µm

∣∣∣
≤

m∏
i=1

(di + 1) max
µ:

∑m
i=1

µi
di

≥( 1
2
−3ϵ)m

|∂µQ(α, . . . , α)|
m∏
i=1

1

q
(2+ε)µi

i

≤ 2
∑m

i=1 di max
µ:

∑m
i=1

µi
di

≥( 1
2
−3ϵ)m

|∂µQ(α, . . . , α)|
m∏
i=1

1

q
di(2+ε)

µi
di

i

≤ 2
∑m

i=1 di
1

2D(2+ε)
(

1
2
−3ϵ

)
m

max
µ

|∂µQ(α, . . . , α)|

The only term we still need to estimate is maxµ |∂µQ(α, . . . , α)|. To do this, we write Q =∑
i1,...,im

cIx
I . Then,

|∂µQ(α, . . . , α)| =
∣∣∣∑

I

cI

(
i1
µ1

)
· · ·

(
im
µm

)
α(i1−µ1)+···+(im−µm)

∣∣∣
≤

∑
I

|cI | · 2
∑m

k=1 ik |α|i1+···+im−|µ|

≤
m∏
i=1

(1 + di) · 2(C+2)
∑m

i=1 di ·max{|α|, 1}
∑m

i=1 di ≤ 2C
′ ∑m

i=1 di ,

where C ′ > 0 is a constant depending solely on α. Combining the upper and lower bounds now gives:

1

2Dm
≤ Q

(p1
q1

, . . . ,
pm
qm

)
≤ 2C

′′ ∑m
i=1 di

2D(2+ε)
(

1
2
−3ϵ

)
m
.

Bounding
∑m

i=1 di ≤ 2D
L and letting D → ∞ now gives m ≥ (2 + ε)(12 − 3ϵ)m − 2C′′

L . However,
we may choose L ≥ L(ε, ϵ,m) so that this inequality is not satisfied, because (2 + ε)(12 − 3ϵ) < 1.
Therefore, we have a contradiction and this finishes the proof of Roth’s theorem.
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